[go: up one dir, main page]

JPH01249607A - Production of oxide superconducting film - Google Patents

Production of oxide superconducting film

Info

Publication number
JPH01249607A
JPH01249607A JP63077080A JP7708088A JPH01249607A JP H01249607 A JPH01249607 A JP H01249607A JP 63077080 A JP63077080 A JP 63077080A JP 7708088 A JP7708088 A JP 7708088A JP H01249607 A JPH01249607 A JP H01249607A
Authority
JP
Japan
Prior art keywords
film
superconductor
oriented
crystal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63077080A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Eiki Cho
張 栄基
Nakahiro Harada
原田 中裕
Yuichi Tamura
裕一 田村
Chikushi Hara
原 築志
Okaya Nozaki
野崎 崗哉
Kiyoshi Ogawa
潔 小川
Takeshi Kurihara
武司 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Furukawa Electric Co Ltd, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP63077080A priority Critical patent/JPH01249607A/en
Publication of JPH01249607A publication Critical patent/JPH01249607A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導体膜の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an oxide superconductor film.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年1−a−3r−Cu−0系、Y−Ba−Cu−〇系
、B i −3r−Ca−Cu−0系、Tp、−3r−
Ca−Cu−0系等の酸化物超電導体が見出されている
。これらの酸化物超電導体は高い臨界温度(以下Tcと
略記)を有し、液体N2温度で超電導となるため、従来
の液体He温度で超電導を示す金属超電導体に較べて格
段に経済的であり電カケープル、マグネット導体等の線
材として、又はトランジスタ、ジョセフソン素子、5Q
UID、赤外センサ等の電子デバイスよして各分野での
応用が横側されている。
In recent years, 1-a-3r-Cu-0 system, Y-Ba-Cu-○ system, Bi-3r-Ca-Cu-0 system, Tp, -3r-
Oxide superconductors such as Ca-Cu-0 have been discovered. These oxide superconductors have a high critical temperature (hereinafter abbreviated as Tc) and become superconducting at liquid N2 temperature, so they are much more economical than conventional metal superconductors that exhibit superconductivity at liquid He temperature. As a wire material for electric cables, magnetic conductors, etc., or as transistors, Josephson elements, 5Q
Electronic devices such as UIDs and infrared sensors are widely used in various fields.

ところで上記のような酸化物超電導体の結晶構造は、第
1図にY B a t Cu x 07−δの超電導体
について例示したように立方体の中心にCu等の遷移元
素イオン、角隅にBa、Y等の半径の大きな活性金属イ
オン、そして面心に酸素イオンが配置されたものである
。このような結晶構造からなる酸化物超電導体は、中心
の遷移元素イオンの電子雲が球対称でない為、電気的に
結晶異方性が強く、臨界電流値がC軸方向に小さく、C
軸に垂直な面即ちa、b軸を含む面に平行な方向に大き
い値を示すものである。
By the way, the crystal structure of the above-mentioned oxide superconductor has transition element ions such as Cu in the center of the cube, and Ba in the corners, as illustrated in Fig. 1 for the superconductor YBatCux07-δ. , Y, and other active metal ions with a large radius, and oxygen ions arranged face-centered. Oxide superconductors with such a crystal structure have strong electrical crystal anisotropy because the electron cloud of the central transition element ion is not spherically symmetric, and the critical current value is small in the C-axis direction.
It shows a large value in the direction parallel to the plane perpendicular to the axis, that is, the plane including the a and b axes.

このようなことから酸化物超電導体の製造にあたっては
結晶を配向さセ易いPVDやCVD等の気相析出法が多
用されている。
For this reason, in the production of oxide superconductors, vapor phase deposition methods such as PVD and CVD, which are easy to orient crystals, are often used.

しかしながら上記の気相析出法により結晶配向を行うに
は基体を600 ’C程度以上の高温に保持しながら気
相析出させる必要があり、このため製造中に基体と超電
導体との間に拡散反応が生じて超電導体の特性が劣化し
、又基体が高温に加熱されている為逆スパック現象が起
きてこの時の気化蒸発量が超電導体の成分ごとに異なる
ため組成制御が困難となり、更に成膜速度が基体を常温
にしたときの1/10程度即ら0.1〜0,5岬/11
にまで極端に低下する等種々の問題があった。
However, in order to achieve crystal orientation using the above-mentioned vapor phase deposition method, it is necessary to perform vapor phase precipitation while holding the substrate at a high temperature of about 600'C or higher, and for this reason, a diffusion reaction occurs between the substrate and the superconductor during manufacturing. This causes deterioration of the properties of the superconductor, and since the substrate is heated to high temperatures, a reverse spuck phenomenon occurs, and the amount of evaporation at this time differs depending on the component of the superconductor, making composition control difficult, and further impeding the growth of the superconductor. The film speed is about 1/10 of that when the substrate is at room temperature, that is, 0.1 to 0.5/11
There were various problems such as an extremely low level of performance.

〔課題を解決するための手段及び作用〕本発明はかかる
状況に鑑みなされたものでその目的とするところは、結
晶配向性が高く超電導特性に優れた酸化物超電導体膜を
迅速に製造する方法を提供することにある。
[Means and effects for solving the problems] The present invention was made in view of the above circumstances, and its purpose is to provide a method for rapidly producing an oxide superconductor film having high crystal orientation and excellent superconducting properties. Our goal is to provide the following.

即ち本発明は、基体上に酸化物超電導体物質を所定の結
晶配向性をもたせて膜状に形成したのち、上記配向性膜
体上に上記と同じ酸化物超電導体物質を非配向性状に3
trm以下の厚さに形成し、次いで上記2層の膜体に酸
素含有雰囲気中で融点未満の温度で加熱処理を施す工程
を所望回繰り返し施ずことを特徴とするものである。
That is, in the present invention, an oxide superconductor material is formed in a film shape with a predetermined crystal orientation on a substrate, and then the same oxide superconductor material as described above is formed in a non-oriented state on the oriented film body.
trm or less, and then heat-treating the two-layered film body in an oxygen-containing atmosphere at a temperature below the melting point, which is repeated as many times as desired.

本発明は基体上に酸化物超電導体物質を第1図に示した
結晶構造の導電性の高いab軸を含む結晶面が基体面に
平行になる所定の結晶配向性(以下ab配向と称す)を
もたせて成膜し、次いでごの膜」二に酸化物超電導体物
質を非配向性状に高速成膜し、しかるのち−に記の成膜
体に02含有雰囲気中で融点未満の温度で加熱処理を施
して、上層の非配向性膜体の結晶を、下層の配向性膜体
を種結晶としてab配向に再配列させるとともに0□量
等の調整を行って超電導体となすものである。
In the present invention, an oxide superconductor material is deposited on a substrate with a crystal structure shown in FIG. 1 having a predetermined crystal orientation in which the crystal plane including the highly conductive ab axis is parallel to the substrate surface (hereinafter referred to as ab orientation). Then, the oxide superconductor material is formed into a film in a non-oriented state at high speed, and then the formed film is heated at a temperature below the melting point in an atmosphere containing 02. By performing a treatment, the crystals of the upper non-oriented film are rearranged in the ab orientation using the lower oriented film as a seed crystal, and the amount of 0□ etc. is adjusted to form a superconductor.

上記において非配向性膜を形成し、次いでこの膜体を加
熱処理する工程を所望回繰り返すことにより所望厚さの
超電導体膜を製造し得る。
A superconductor film having a desired thickness can be manufactured by repeating the above steps of forming a non-oriented film and then heat-treating this film body as many times as desired.

本発明において非配向性膜体の0.!含有雰囲気中での
加熱処理温度は超電導体物質の融点未満にする必要があ
り融点を超えると異相析出等の有害な反応が起る場合が
あり好ましくない。又上記加熱処理において02は結晶
化に不可欠の成分であり、通常平衡02分圧以−にの0
2含有雰囲気中で加熱処理がなされる。
In the present invention, the non-oriented film body has 0. ! The heat treatment temperature in the superconducting atmosphere must be lower than the melting point of the superconductor material; if it exceeds the melting point, harmful reactions such as heterophase precipitation may occur, which is not preferable. In addition, in the above heat treatment, 02 is an essential component for crystallization, and the 02 partial pressure is usually lower than the equilibrium 02 partial pressure.
The heat treatment is performed in an atmosphere containing No. 2.

本発明方法において結晶配向性膜ば、成膜速度が遅いの
で厚さを0.1〜1−程度に薄く形成しておくのが好ま
しく、又上記配向性膜上に形成する非配向性膜体ば厚ず
ぎると、後の加熱処理工程においてa b配向が十分に
なされなくなるので3−以下の厚さにする必要があり、
特に1〜2p程度の厚さが好ましい。
In the method of the present invention, since the film formation rate is slow, it is preferable to form the crystal-oriented film as thin as about 0.1 to 1-1, and the non-oriented film to be formed on the oriented film. If the thickness is too large, sufficient a-b orientation will not be achieved in the subsequent heat treatment process, so the thickness must be 3 or less.
Particularly preferred is a thickness of about 1 to 2p.

本発明において酸化物超電導体物質とは、酸素含有雰囲
気中で所定の加熱処理を施すこよにより超電導体となし
得る物質であり、上記加熱処理により超電導体に反応す
るか又は気化し散逸する超電導体構成元素以外の元素や
化合物を含有する酸化物超電導体前駆物質も含まれる。
In the present invention, an oxide superconductor substance is a substance that can be made into a superconductor by performing a prescribed heat treatment in an oxygen-containing atmosphere, and a superconductor that reacts with the superconductor or vaporizes and dissipates by the heat treatment. Also included are oxide superconductor precursors containing elements or compounds other than the constituent elements.

本発明において配向性膜上に形成される非配向性膜とは
、低配向性膜又は無定形状膜又は両者の混在する膜のこ
とで、上記のうち低配向性膜とは上記の配向性膜より配
向性がやや劣る程度の結晶構造のものから、結晶粒の各
々がランダムに配向したものまでを広く含むものであり
、又無定形状膜とは組成的に酸素以外は超電導体と同一
成分からなり、X線回折において明瞭な結晶解析パター
ンを示さない結晶構造のもので、直径が数100Å以下
の微細結晶粒や完全なガラス状態のものにより構成され
たものである。
In the present invention, the non-oriented film formed on the oriented film refers to a film with low orientation, an amorphous film, or a mixture of both. Amorphous films include a wide range of crystal structures, from those with a crystalline structure that is slightly less oriented than films to those in which each crystal grain is randomly oriented, and an amorphous film is a film that is compositionally the same as a superconductor except for oxygen. It has a crystal structure that does not show a clear crystal analysis pattern in X-ray diffraction, and is composed of fine crystal grains with a diameter of several hundred angstroms or less and a completely glassy state.

本発明において酸化物超電導体を膜状に形成する方法と
しては、マグネトロンスパッタリング法、蒸着法、MB
E法等のPVD法やスピンコ−1・法、スプレーコート
法、更にはスクリーン印刷法等の厚膜法も適用すること
ができる。
In the present invention, methods for forming the oxide superconductor into a film include magnetron sputtering method, vapor deposition method, MB
A PVD method such as the E method, a spinco-1 method, a spray coating method, and even a thick film method such as a screen printing method can be applied.

本発明において基体には目的、用途に応じて任意の材質
のものが用いられるが、超電導体に所定の結晶配向性を
もたせ得る結晶格子条件を具備していることが不可欠で
あり、又超電導体物質との反応性や熱膨張のマツチング
性等を考慮して選定する必要がある。
In the present invention, any material can be used for the substrate depending on the purpose and application, but it is essential that the substrate has crystal lattice conditions that can give the superconductor a predetermined crystal orientation. It is necessary to select the material by considering reactivity with the substance, thermal expansion matching property, etc.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 susaiosのテープ上にRFマグネトロンスパッタ
装置により耐酸化バッファ層としてSrOの(100)
配向膜を0.5Irm厚さにコートしたテープを基体と
して用い、この基体上に上記装置を用いて基体を700
°Cに加熱しながらDyBa2Cui、sO7の酸化物
をターゲットとして50mTorr (A r +02
)の低真空下で出力150Wで1時間スパッタリングを
行いDyBa2ctl*o7の膜を0.5戸厚さに形成
した。上記のDyBa2Cu307膜はX線解析により
完全なab配向であること、又ICP分析によりDy:
Ba:Cuが原子比で1:2.01!、05であること
を確認した。
Example 1 SrO (100) was deposited as an oxidation-resistant buffer layer on a susaios tape by an RF magnetron sputtering device.
A tape coated with an alignment film to a thickness of 0.5 Irm was used as a base, and the base was coated on this base with a thickness of 700 Irm using the above device.
While heating to °C, 50 mTorr (A r +02
) Sputtering was performed at an output of 150 W for 1 hour under a low vacuum to form a film of DyBa2ctl*o7 to a thickness of 0.5 mm. The above DyBa2Cu307 film was found to have perfect ab orientation by X-ray analysis, and Dy:
The atomic ratio of Ba:Cu is 1:2.01! , 05.

次いで上記のD y B a 2Cu30tの配向性膜
上に基体を加゛熱せずに[)yBa2cu+otの酸化
物をターゲットとして出力300Wで1時間スパッタリ
ングを行いD y B a 2Cu 30.の膜を2.
5−厚さに形成した。上記の膜はX線解析とICP分析
により、無定形状体であり又Dy:Ba:Cuが原子比
で1 : 1.98 :3.o 1であることを確認し
た。
Next, without heating the substrate, sputtering was performed at an output of 300 W for 1 hour using the oxide of [)yBa2cu+ot as a target on the oriented film of D y B a 2 Cu 30. 2.
5- formed to a thickness. The above film was found to be an amorphous body by X-ray analysis and ICP analysis, and the atomic ratio of Dy:Ba:Cu was 1:1.98:3. o It was confirmed that it was 1.

しかるのち上記のD V B a 2 Cu 307の
膜を0□気流中で900°C1時間加熱後2°(:/m
inの速度で徐冷する加熱処理を施して超電導体膜を製
造した。
After that, the above film of D V Ba 2 Cu 307 was heated at 900°C for 1 hour in a 0□ air flow, and then heated at 2° (:/m
A superconductor film was produced by performing a heat treatment of slow cooling at a speed of 1.5 in.

実施例2 実施例1において無定形状膜の形成工程と加熱処理工程
を2回繰り返した他は実施例1と同じ方法により超電導
体膜を製造した。
Example 2 A superconductor film was produced by the same method as in Example 1 except that the amorphous film formation step and the heat treatment step were repeated twice.

実施例3 実施例1において無定形状膜の形成厚さを1.5μmと
した他は実施例1と同じ方法により超電導体膜を製造し
た。
Example 3 A superconductor film was manufactured by the same method as in Example 1 except that the thickness of the amorphous film was changed to 1.5 μm.

比較例1 実施例1において無定形状膜の形成工程以降の工程を省
略した。
Comparative Example 1 In Example 1, the steps after the step of forming the amorphous film were omitted.

比較例2 実施例1において加熱処理の工程を省略した。Comparative example 2 In Example 1, the heat treatment step was omitted.

比較例3 実施例1において配向性膜の形成を出力150Wで3時
間スパッタリングして行い、また無定形状膜の形成を省
略した他は実施例1と同じ方法により超電導体膜を製造
した。
Comparative Example 3 A superconductor film was manufactured by the same method as in Example 1, except that the oriented film was formed by sputtering at an output of 150 W for 3 hours, and the formation of the amorphous film was omitted.

比較例4 比較例3において配向性膜の形成を出力300Wで3時
間スパッタリングして行った他は比較例3と同じ方法に
より超電導体膜を製造した。
Comparative Example 4 A superconductor film was manufactured by the same method as in Comparative Example 3, except that the oriented film was formed by sputtering at an output of 300 W for 3 hours.

比較例5 実施例1において無定形状膜の形成を300Wで1.4
Hスパツタリングして膜厚を3.5−とした他は実施例
1と同じ方法により超電導体膜を製造した。
Comparative Example 5 In Example 1, the amorphous film was formed at 300 W at 1.4
A superconductor film was produced by the same method as in Example 1 except that H sputtering was performed to make the film thickness 3.5-.

比較例6 実施例1において無定形状膜の形成を300Wで2.2
Hスパツタリングして膜厚を5.5−とした他は実施例
1と同じ方法により超電導体膜を製造した。
Comparative Example 6 In Example 1, the amorphous film was formed at 300 W at 2.2
A superconductor film was produced by the same method as in Example 1 except that H sputtering was performed to make the film thickness 5.5-.

斯くの如くして得た各々の超電導体膜についてTc及び
J、を測定した。結果は主な製造条件及び成膜速度を併
記して第1表に示した。
Tc and J were measured for each superconductor film thus obtained. The results are shown in Table 1 together with the main manufacturing conditions and film formation speed.

第1表より明らかなように本発明方法品(実施例1〜3
)はいずれも成膜が迅速になされ且つTC%JC等の超
電導特性も高い値のものが得られている。これに対し加
熱処理を省略したもの(比較例1.2)はTCが極めて
低い値となり、又スパッタ法により配向性膜を直接形成
したもの(比較例3,4)は成膜速度が遅く本発明方法
品(実施例2)に較べそれぞれ1/4又は2/5程度の
速度であり、又スパック中高温の基体と反応し、J。も
低い値となった。又配向性膜を一度に厚く形成したもの
(比較例5,6)は後の加熱処理工程において結晶配向
が十分になされずに、Jcが低い値となった。
As is clear from Table 1, the method of the present invention (Examples 1 to 3)
), the film can be formed quickly and high values of superconducting properties such as TC%JC have been obtained. On the other hand, those in which heat treatment was omitted (Comparative Examples 1.2) had extremely low TC values, and those in which oriented films were directly formed by sputtering (Comparative Examples 3 and 4) had slow film formation speeds. Compared to the invention method product (Example 2), the speed is about 1/4 or 2/5, respectively, and it reacts with the high temperature substrate during sppacking. was also low. In addition, in the case where the orientation film was formed thickly at once (Comparative Examples 5 and 6), crystal orientation was not sufficiently achieved in the subsequent heat treatment step, resulting in a low Jc value.

牛 実施例中 実施例1で用いたと同し基体」二に、基体を500′C
に加熱しながらY、Ba、Cuの各々の硝酸塩をY+B
a:Cuが原子比で11:3になるように水に溶解した
5%水溶液を02気流にのせて1.5分間噴霧し厚さ約
2戸のYBazCu30.の膜を形成したのち、この膜
を大気中で850°C11]加熱後3°C/minの速
度で徐冷する加熱処理を施して超電導体膜を製造した。
In the cow example, the same substrate used in Example 1 was heated to 500'C.
While heating each nitrate of Y, Ba, and Cu to Y+B
a: A 5% aqueous solution of Cu dissolved in water at an atomic ratio of 11:3 was sprayed on an 02 air stream for 1.5 minutes to form a YBazCu30. After forming a film, this film was heated to 850°C in the atmosphere and then slowly cooled at a rate of 3°C/min to produce a superconductor film.

ケ 実施例中 水溶液噴霧工程と加熱処理工程を3回繰り返しヰ た他は実施例→と回し方法により厚さ6μmの超電導体
膜を製造した。
A superconductor film having a thickness of 6 μm was produced by repeating the same procedure as in Example except that the aqueous solution spraying step and heat treatment step were repeated three times.

比較例7 水溶液を4.5分間噴霧して膜厚を6戸とした他は実施
例3と同じ方法により超電導体膜を製造した。
Comparative Example 7 A superconductor film was produced in the same manner as in Example 3, except that the aqueous solution was sprayed for 4.5 minutes to give a film thickness of 6.

斯くの如くして得た各々の超電導体膜についてTゎ及び
Jcを測定した。結果は主な製造条件を併記して第2表
に示した。
T and Jc were measured for each superconductor film thus obtained. The results are shown in Table 2 along with the main manufacturing conditions.

第2表より明らかなように本発明方法(実施例4.5)
はいずれも成膜速度が速く且つ1゛6、Jcが高い値の
ものが得られている。
As is clear from Table 2, the method of the present invention (Example 4.5)
In all cases, the film formation rate was fast and a high value of 1゛6, Jc was obtained.

これに対し比較方法(比較例7)は無定形状膜を一度に
厚く形成したため後の加熱処理工程において結晶配向が
十分になされずJcが低い値のものとなった。
On the other hand, in the comparative method (Comparative Example 7), since the amorphous film was formed thickly at once, the crystal orientation was not sufficiently achieved in the subsequent heat treatment step, resulting in a low value of Jc.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、結晶配向性が高
<1゛。、Jc等の特性に優れた酸化物超電導体膜を迅
速に製造し得るので、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, the crystal orientation is high <1゜. Since an oxide superconductor film having excellent characteristics such as , Jc, etc. can be rapidly produced, this method has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化物超電導体の結晶構造の一例を示すYBa
zCu307−δの結晶構造である。
Figure 1 shows an example of the crystal structure of an oxide superconductor.
It is a crystal structure of zCu307-δ.

Claims (1)

【特許請求の範囲】[Claims]  基体上に、酸化物超電導体物質を所定の結晶配向性を
もたせて膜状に形成したのち、上記配向性膜体上に上記
と同じ酸化物超電導体物質を非配向性状に3μm以下の
厚さに形成し、次いで上記2層の膜体に酸素含有雰囲気
中で融点未満の温度で加熱処理を施す工程を所望回繰り
返し施すことを特徴とする酸化物超電導体膜の製造方法
After forming a film of an oxide superconductor material with a predetermined crystal orientation on the substrate, the same oxide superconductor material as above is formed on the oriented film body in a non-oriented state with a thickness of 3 μm or less. 1. A method for producing an oxide superconductor film, comprising repeating the step of forming the above-mentioned two-layer film at a temperature below the melting point in an oxygen-containing atmosphere as many times as desired.
JP63077080A 1988-03-30 1988-03-30 Production of oxide superconducting film Pending JPH01249607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077080A JPH01249607A (en) 1988-03-30 1988-03-30 Production of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077080A JPH01249607A (en) 1988-03-30 1988-03-30 Production of oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH01249607A true JPH01249607A (en) 1989-10-04

Family

ID=13623800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077080A Pending JPH01249607A (en) 1988-03-30 1988-03-30 Production of oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH01249607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155249A (en) * 2009-12-28 2011-08-11 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155249A (en) * 2009-12-28 2011-08-11 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9054134B2 (en) 2009-12-28 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9859401B2 (en) 2009-12-28 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10141425B2 (en) 2009-12-28 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP2711253B2 (en) Superconducting film and method for forming the same
JPH07267791A (en) Method for producing oxide superconductor thin film and oxide superconductor thin film laminate
JPH01249607A (en) Production of oxide superconducting film
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH02175613A (en) Production of oxide superconducting thin film
JP3020518B2 (en) Oxide superconductor thin film
JPH06216417A (en) Preparation of cuo superconductor
JPH01184266A (en) Method for manufacturing oxide superconducting molded body
JP2781331B2 (en) Manufacturing method of thin film superconductor
JP3038758B2 (en) Method for producing oxide superconducting thin film
JP2564598B2 (en) Oxide superconductor and manufacturing method thereof
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH0244786A (en) Manufacturing method of Josephson element
JPH01252526A (en) Method for producing oxide superconductor film containing copper
JPH03275504A (en) Oxide superconductor thin film and its production
JP3015393B2 (en) Method for producing oxide superconductor thin film
JPH01161628A (en) Oxide superconducting thin film creation method
JPH08306977A (en) Thin film superconductor and manufacturing method thereof
JPH02217306A (en) Production of oxide superconductor
JP3188912B2 (en) Method for producing oxide superconducting thin film
JPH01115009A (en) Oxide superconducting molded body and its manufacturing method
JPH0244782A (en) Superconducting element and its manufacturing method
JPH02133304A (en) Method for manufacturing oxide superconductor
JPH02212306A (en) Oxide superconducting thin film
JPH02270966A (en) Production of thin oxide superconductor film