[go: up one dir, main page]

JPH01242761A - Ultra high strength steel having low yield ratio and its manufacture - Google Patents

Ultra high strength steel having low yield ratio and its manufacture

Info

Publication number
JPH01242761A
JPH01242761A JP6719988A JP6719988A JPH01242761A JP H01242761 A JPH01242761 A JP H01242761A JP 6719988 A JP6719988 A JP 6719988A JP 6719988 A JP6719988 A JP 6719988A JP H01242761 A JPH01242761 A JP H01242761A
Authority
JP
Japan
Prior art keywords
steel
yield ratio
less
martensitic structure
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6719988A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Yoshihiro Kataoka
片岡 義弘
Shingo Sato
新吾 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6719988A priority Critical patent/JPH01242761A/en
Publication of JPH01242761A publication Critical patent/JPH01242761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the title steel having high safety by subjecting a low alloy thermal refined steel having specific componental compsn. to quenching and tempering under specific conditions and depositing a Cu phase into a martensitic structure. CONSTITUTION:The steel constituted of, by weight, 0.20-0.50% C, <=0.40% Si, <=1.20% Mn, 0.50-4.50% Ni, 0.50-3.50% Cr, 0.30-1.50% Mo, 0.05-0.30% V, 0.30-2.50% Cu, <=0.010% P, <=0.005% S and the balance consisting of inevitable impurities with Fe is refined. The steel ingot is rolled and is quenched from the temp. range of Ac3 transformation point or above into a martensitic structure. The steel is thereafter tempered at the temp. range of 400-650 deg.C to deposit a Cu phase into the martensitic structure. By this method, the ultra high strength steel suitable for a machine structure, etc., and having about <=95% yield ratio can be obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は機械構造用などに利用される引張強さ100 
kgf/−以上で、かつ降伏比(降伏点/引張強さ)が
95%以下の超高張力鋼およびその製造方法に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to mechanical structures with a tensile strength of 100
The present invention relates to an ultra-high tensile strength steel having a yield ratio (yield point/tensile strength) of 95% or less and a method for producing the same.

〈従来の技術〉 一般に、降伏比が高くなるほど塑性変形能が減少し、脆
性破壊が生じやすくなる。i械構造用゛鋼材などに利用
される超高張力鋼では使用中の安全性、即ち脆性破壊防
止の観点から降伏比の低いことが要求される。
<Prior Art> Generally, the higher the yield ratio, the lower the plastic deformability and the more likely brittle fracture will occur. Ultra-high tensile strength steel used for structural steel materials for i-machines is required to have a low yield ratio from the viewpoint of safety during use, ie, prevention of brittle fracture.

しかしながら、ll質高張力鋼では高強度化とともに降
伏比が高くなる傾向にあるため、引張強さ100 kg
f/−以上の超高張力鋼の降伏比は95%超と高かった
However, with high-strength steel, the yield ratio tends to increase with increasing strength, so the tensile strength of 100 kg
The yield ratio of ultra-high tensile strength steel of f/- or higher was as high as over 95%.

ところで従来より低降伏比を得る方法として次の3方法
がある。
By the way, there are three conventional methods for obtaining a lower yield ratio.

■ 焼入冷却速度の低下あるいは合金元素量の低減によ
り焼入性を低下させベイナイト組繊とする。
■ Hardenability is reduced by decreasing the quenching cooling rate or reducing the amount of alloying elements to create a bainite composite fiber.

■ 焼もどし処理を行わず焼入れのままで使用する。■ Use as quenched without tempering.

■ α+γの2相焼入れを採用する。■ Adopt α + γ two-phase quenching.

しかしながら、■の方法は低降伏比(Y、R。However, the method (■) has a low yield ratio (Y, R).

)の低下には有効であるが、不完全焼入れのため強度、
靭性の著しい劣化をまねく、■の方法は焼入れのままで
低Y、R,化を得ようというものであるが、高強度は得
られるものの靭性が低く、かつ矢きな残留応力が消滅し
ない等の欠点がある。
), but due to incomplete quenching, strength and
Method (2) attempts to obtain low Y, R, and hardness by leaving it as quenched, but although high strength is obtained, the toughness is low and significant residual stress does not disappear, etc. There are drawbacks.

■の方法は2相焼入れによるもので、例えば特開昭55
−131130号に示されるように低Y、R,化には有
効であるが、高強度が得難<  100kgf/d以上
の引張強さは得られない。
Method (3) is based on two-phase quenching, for example, JP-A No. 55
As shown in No. 131130, it is effective in reducing Y and R, but it is difficult to obtain high strength.<100 kgf/d or more tensile strength cannot be obtained.

すなわちいずれの方法も高張力と低降伏比を両立させる
ためには不十分な方法である。
In other words, either method is insufficient for achieving both high tensile strength and low yield ratio.

〈発明が解決しようとする課題〉 本発明は上記従来技術でみられる強度、靭性の低下をき
たすことなく、降伏比が95%以下で引張強さ100k
gf/−以上の超高張力鋼およびその製造方法を提供す
るものである。
<Problems to be Solved by the Invention> The present invention achieves a tensile strength of 100K with a yield ratio of 95% or less without causing the deterioration in strength and toughness seen in the above-mentioned prior art.
The present invention provides an ultra-high tensile strength steel having a tensile strength of gf/- or more and a method for manufacturing the same.

く課題を解決するための手段〉 本発明者らは超高張力高で低降伏比の得られる化学成分
系について研究を重ねた結果、■適量の合金成分を含有
させることでマルテンサイト組織を有し高強度、高靭性
を確保できる。■さらにCuを含有させることにより、
軟質のCuが析出して強度、靭性を低下させることなく
、降伏点のみが低下しY、R,を低下させることができ
ることを゛見出し、本発明を完成した。即ち本発明の要
旨とするところは、重量比にて C: 0.20〜0.
50%、 Si: 0.40%以下、  Mn : 1
.20%以下、Ni:0.50〜4.50%、   C
r :’ 0.50〜3.50%、   Mo : 0
.30〜1.50%、   V : 0.05〜0.3
0%、  Cu : 0.30〜2.50%1P j 
0.010%以下、  S:0.005%以下を含有し
、残部が不可避的不純物とreからなり、Cuの析出相
を含むマルテンサイト組織を有する低降伏比の超高張力
鋼であり、また上記組成の鋼をへ〇、変態点以上の温度
範囲で焼入れしマルテンサイト組織としたのち、400
〜650℃の温度範囲で焼もどしを行いマルテンサイト
組織にCu相を析出させることを特徴とする低降伏比の
超高張力鋼の製造方法である。
Means for Solving the Problems〉 As a result of repeated research on chemical composition systems that can obtain ultra-high tensile strength and low yield ratio, the present inventors found that ■ By incorporating an appropriate amount of alloy components, a martensitic structure is created. This ensures high strength and toughness. ■By further containing Cu,
The present invention was completed based on the discovery that only the yield point is lowered and Y and R can be lowered without lowering the strength and toughness due to the precipitation of soft Cu. That is, the gist of the present invention is that the weight ratio of C: 0.20 to 0.
50%, Si: 0.40% or less, Mn: 1
.. 20% or less, Ni: 0.50-4.50%, C
r: '0.50-3.50%, Mo: 0
.. 30-1.50%, V: 0.05-0.3
0%, Cu: 0.30-2.50%1Pj
0.010% or less, S: 0.005% or less, the remainder consists of unavoidable impurities and re, and is an ultra-high strength steel with a low yield ratio that has a martensitic structure containing a Cu precipitate phase, and After quenching the steel with the above composition at a temperature range above the transformation point to form a martensitic structure,
This is a method for producing ultra-high tensile strength steel with a low yield ratio, which is characterized by performing tempering in a temperature range of ~650°C to precipitate a Cu phase in a martensitic structure.

く作 用〉 まづ本発明における化学組成の限定理由について説明す
る。
Function> First, the reason for limiting the chemical composition in the present invention will be explained.

Cは強度の向上に有効な元素であり、所要強度を確保す
るには少なくとも0.20%(wt%、以下同じ)を必
要とするが、0.50%を越えると靭性を低下させるの
で0.20〜0.50%の範囲に限定される。
C is an effective element for improving strength, and at least 0.20% (wt%, same hereinafter) is required to ensure the required strength, but if it exceeds 0.50%, toughness decreases, so It is limited to a range of .20 to 0.50%.

StはPとともに焼もどし脆化感受性を著しく高める元
素であり、低温焼もどし中における脆化を防止するには
、その含有量は少ない方が望ましいが、本発明によって
規制するP : 0.010%以下。
St is an element that, together with P, significantly increases the susceptibility to tempering embrittlement, and in order to prevent embrittlement during low-temperature tempering, it is desirable that its content be low, but the present invention regulates P: 0.010%. below.

Mo : 0.30%以上の場合、Stは0.40%以
下であれば脆化を生じないので、0.40%以下に限定
した。
When Mo: 0.30% or more, St does not cause embrittlement if it is 0.40% or less, so it was limited to 0.40% or less.

Mnは焼入性を高め、強度、靭性を向上させる有効な元
素であるが、1.20%を越えて添加されると靭性を低
下させるだけでなく、焼もどし脆化感受性を高めるので
1.20%以下に限定される。
Mn is an effective element that improves hardenability, strength, and toughness, but if added in excess of 1.20%, it not only reduces toughness but also increases susceptibility to tempering embrittlement. Limited to 20% or less.

Ni、 Crの2元素はいずれもMn同様焼入性を高め
、強度、靭性を向上させるに有効な元素であり、この効
果を期待するには少なくとも旧:0.50%以上。
Both Ni and Cr are effective elements for improving hardenability, strength, and toughness like Mn, and in order to expect this effect, they must be at least 0.50% old.

Cr : 0.50%以上必要である。しかしNiが4
.50%。
Cr: 0.50% or more is required. However, Ni is 4
.. 50%.

Crが3.50%を越えて過度に添加されると靭性を低
下させるだけでなく、焼もどし脆化感受性を高めるので
これを上限とし、Ni : 0.50〜4.50%、C
r:0.50〜3.50%の範囲に限定される。
If Cr is added in excess of 3.50%, it not only reduces the toughness but also increases the susceptibility to tempering embrittlement, so this is the upper limit. Ni: 0.50 to 4.50%, C
r: limited to a range of 0.50 to 3.50%.

Noは焼もどし脆化の抑制に有効な元素であり°、低温
焼もどし中における焼もどし脆化を抑えるには少なくと
も0.30%以上必要である。しかし1.50%を越す
過度の添加は靭性を低下させるので0.30〜1.50
%の範囲に限定される。
No is an element effective in suppressing temper embrittlement, and is required to be at least 0.30% in order to suppress temper embrittlement during low-temperature tempering. However, excessive addition exceeding 1.50% will reduce toughness, so
% range.

■は強度を向上させる元素であり、そのためには少な(
とも0.05%以上必要であるが、0.30%を越える
と靭性を低下させるので0.05〜0.30%の範囲に
限定される。
■ is an element that improves strength, and for that purpose a small amount (
Both are required in an amount of 0.05% or more, but if it exceeds 0.30%, toughness decreases, so it is limited to a range of 0.05 to 0.30%.

Pは焼もどし脆化感受性を著しく高めるので少ない方が
望ましいが、0.010%以下であれば脆化を生じない
ので0.010%以下に限定した。
Since P significantly increases the susceptibility to tempering embrittlement, it is desirable to have a small amount, but if it is 0.010% or less, embrittlement will not occur, so it is limited to 0.010% or less.

Sも靭性を低下させる元素であり、少ない方が望ましい
が、o、oos%以下であれば靭性低下の影響が少ない
のでo、oos%以下に限定した。
S is also an element that reduces toughness, and it is desirable to have less S, but if it is less than o, oos%, there is little effect of reducing toughness, so it is limited to less than o, oos%.

Cuは本発明の特徴である低降伏比化を実現するために
大切な元素である。降伏比におよぼすCuの影響に関し
、本発明者らが行った実験結果について説明する。
Cu is an important element for achieving a low yield ratio, which is a feature of the present invention. The results of experiments conducted by the present inventors regarding the influence of Cu on the yield ratio will be explained.

第1表に示すCu含有量の異なる鋼をAc3変態点以上
の900″Cで焼入れし、580’Cで焼もどし処理を
行い、引張特性を調べた。その結果を第1表に示す、 
Cu無添加材では降伏強度(Y、S、):152 kg
f/lj、  引張強さ(T、  S、  )  : 
 159kgf/dで降伏比(降伏強さ/引張強さ)(
Y、R,)は96%と高い、これに対しCu含有量を増
加するとT。
Steels with different Cu contents shown in Table 1 were quenched at 900'C above the Ac3 transformation point, tempered at 580'C, and their tensile properties were investigated.The results are shown in Table 1.
Yield strength (Y, S,) for Cu-free material: 152 kg
f/lj, tensile strength (T, S, ):
Yield ratio (yield strength/tensile strength) at 159 kgf/d (
Y, R, ) is as high as 96%, whereas when the Cu content is increased, T.

S、はほとんど低下しないが、Y、S、のみは顕著に低
下し、Y、R,を95%以下に低下できる。
Although S hardly decreases, only Y and S decrease significantly, and Y and R can be decreased to 95% or less.

このようにCuはY、R,の低下に顕著な効果を発揮す
るが、そのためには少な(とも0.30%以上を必要と
するが、2.50%を越えると熱間加工性を低下させる
ので0.30〜2.50%の範囲に限定される。
In this way, Cu has a remarkable effect on reducing Y and R, but for this purpose a small amount (0.30% or more of both is required, but if it exceeds 2.50%, hot workability decreases). Therefore, it is limited to a range of 0.30 to 2.50%.

次に上記限定組成鋼の調質条件について説明する。Next, the refining conditions for the limited composition steel will be explained.

本発明ではAcs点以上の温度から焼入れだ後、400
〜650°Cの温度範囲で焼もどし処理をする。
In the present invention, after quenching from a temperature above the Acs point,
Tempering treatment at a temperature range of ~650°C.

焼入温度はAcs点未満の温度では十分な強度が得られ
ないので、Ac3点以上の温度から焼入れマルテンサイ
ト組織とする必要がある。焼もどし温度範囲は、400
℃未満では焼もどし効果が十分でないため靭性が低いば
かりでなく、軟質ならの析出相が得られず低降伏比が得
難い、一方650°C@越える過度な焼もどしでは十分
な強度が得られず、またCuの溶解度も高くなるためC
uの析出量が少なくなり降伏比の低下効果が小さ(なる
、したがって焼もどし温度範囲は400〜650°C範
囲に限定した。
Since sufficient strength cannot be obtained at a quenching temperature below the Acs point, it is necessary to form a quenched martensitic structure at a temperature above the Ac3 point. The tempering temperature range is 400
Below 650°C, the tempering effect is not sufficient and the toughness is low, and if it is soft, the precipitated phase cannot be obtained, making it difficult to obtain a low yield ratio. On the other hand, excessive tempering above 650°C will not provide sufficient strength. , since the solubility of Cu also increases, C
The amount of precipitation of u is reduced, and the effect of lowering the yield ratio is small (therefore, the tempering temperature range is limited to 400 to 650°C).

〈実施例〉 第2表に示した組成の本発明tlii15種および比較
1115種を供試材とした。なおNα6,7.8の比較
鋼は従来の機械構造用N[−Cr−Mo鋼(fls  
G4103  SNCM)であり、いずれもCuを含育
廿ず、比較鋼9はC,Cr、 Moが外れ、比較鋼10
はSt、P。
<Example> 15 types of tlii of the present invention and 1115 types of comparison having the compositions shown in Table 2 were used as test materials. The comparison steel with Nα6 and 7.8 is conventional N[-Cr-Mo steel (fls
G4103 SNCM), and none of them contain Cu; Comparative Steel 9 has C, Cr, and Mo removed, and Comparative Steel 10 does not contain Cu.
St, P.

Cr含有量が本発明の組成条件を満足していない゛。The Cr content does not satisfy the compositional conditions of the present invention.

これらの供試材は真空溶解炉で溶製し、鋼塊を40鴫厚
鋼板に圧延した後、焼入れ・焼もどし処理を施し、その
後引張試験およびシャルビー衝撃試験を行った0組織は
すべてマルテンサイト組織であった。その結果を第3表
に示す、現用鋼である比較鋼8116.7は降伏比が9
7%と高いのに対して、本発明鋼の階1〜5は降伏比が
85〜92%と低いことがわかる。Na6,7mと同様
にCuを含まない比較鋼8はやはり降伏比が96%と高
い、また比較鋼N119,10のようにC,Cr、 M
oもしくはSi、P、Crの含有量が本発明の成分範囲
から外れると、高強度、高靭性が得られない、さらに焼
もどし温度が本発明条件から外れ350℃と低い場合、
Cuの析出による降伏比個下の効果が十分発揮されずY
、R。
These test materials were melted in a vacuum melting furnace, and the steel ingots were rolled into 40mm thick steel plates, then quenched and tempered, and then subjected to tensile tests and Charby impact tests. All 0 structures were martensite. It was an organization. The results are shown in Table 3. Comparative steel 8116.7, which is currently in use, has a yield ratio of 9.
It can be seen that the yield ratio is as high as 7%, whereas the yield ratio of grades 1 to 5 of the steel of the present invention is as low as 85 to 92%. Similar to Na6,7m, Comparative Steel 8, which does not contain Cu, has a high yield ratio of 96%, and like Comparative Steel N119,10, it contains C, Cr, M.
If the content of o or Si, P, and Cr is out of the component range of the present invention, high strength and high toughness cannot be obtained, and furthermore, if the tempering temperature is outside the conditions of the present invention and is as low as 350 ° C.
The effect of lowering the yield ratio due to Cu precipitation is not fully demonstrated
,R.

が96%と高く、かつ靭性も低い、逆に焼もどし温度が
680℃と高すぎても高強度が得られないことは明らか
である。
is as high as 96%, and the toughness is also low.Conversely, it is clear that high strength cannot be obtained even if the tempering temperature is too high as 680°C.

〈発明の効果〉 本発明は上記実施例から明らかなように、低合金調質鋼
の成分を限定し、特に適量のCuを含有させることによ
って機械構造用等に適した安全性の高い降伏比が95%
以下の超高張力鋼を得ることができた。
<Effects of the Invention> As is clear from the above examples, the present invention limits the components of the low-alloy heat-treated steel, and in particular contains an appropriate amount of Cu, thereby creating a yield ratio with high safety and suitable for mechanical structures. is 95%
We were able to obtain the following ultra-high tensile strength steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は引張特性におよぼすCu含存置の影響を示すグ
ラフである。 特許出願人   川崎製鉄株式会社 第1図 Cu含有量(wt%)
FIG. 1 is a graph showing the influence of Cu content on tensile properties. Patent applicant Kawasaki Steel Corporation Figure 1 Cu content (wt%)

Claims (1)

【特許請求の範囲】 1、重量比にてC:0.20〜0.50% Si:0.40%以下 Mn:1.20%以下 Ni:0.50〜4.50% Cr:0.50〜3.50% Mo:0.30〜1.50% Cu:0.30〜2.50% P:0.010%以下 S;0.005%以下 を含有し、残部が不可避的不純物とFeからなり、Cu
の析出相を含むマルテンサイト組織であることを特徴と
する低降伏比の超高張力鋼。 2、重量比にてC:0.20〜0.50% Si:0.40%以下 Mn:1.20%以下 Ni:0.50〜4.50% Cr:0.50〜3.50% Mo:0.30〜1.50% V:0.05〜0.30% Cu:0.30〜2.50% P:0.010%以下 S:0.005%以下 を含有し、残部が不可避的不純物とFeからなる鋼をA
c_3変態点以上の温度範囲から焼入れしマルテンサイ
ト組織としたのち、400〜650℃の温度範囲で焼も
どしを行いマルテンサイト組織にCu相を析出させるこ
とを特徴とする低降伏比の超高張力鋼の製造方法。
[Claims] 1. By weight: C: 0.20-0.50% Si: 0.40% or less Mn: 1.20% or less Ni: 0.50-4.50% Cr: 0. 50 to 3.50% Mo: 0.30 to 1.50% Cu: 0.30 to 2.50% P: 0.010% or less S: Contains 0.005% or less, the remainder being unavoidable impurities. Consists of Fe, Cu
Ultra-high tensile strength steel with a low yield ratio characterized by a martensitic structure containing a precipitated phase. 2. By weight: C: 0.20-0.50% Si: 0.40% or less Mn: 1.20% or less Ni: 0.50-4.50% Cr: 0.50-3.50% Mo: 0.30-1.50% V: 0.05-0.30% Cu: 0.30-2.50% P: 0.010% or less S: 0.005% or less, the balance is A steel consisting of unavoidable impurities and Fe
Ultra-high tensile strength with a low yield ratio characterized by quenching at a temperature range above the c_3 transformation point to form a martensitic structure, followed by tempering at a temperature range of 400 to 650°C to precipitate a Cu phase in the martensitic structure. Method of manufacturing steel.
JP6719988A 1988-03-23 1988-03-23 Ultra high strength steel having low yield ratio and its manufacture Pending JPH01242761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6719988A JPH01242761A (en) 1988-03-23 1988-03-23 Ultra high strength steel having low yield ratio and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6719988A JPH01242761A (en) 1988-03-23 1988-03-23 Ultra high strength steel having low yield ratio and its manufacture

Publications (1)

Publication Number Publication Date
JPH01242761A true JPH01242761A (en) 1989-09-27

Family

ID=13337997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6719988A Pending JPH01242761A (en) 1988-03-23 1988-03-23 Ultra high strength steel having low yield ratio and its manufacture

Country Status (1)

Country Link
JP (1) JPH01242761A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130199674A1 (en) * 2011-02-18 2013-08-08 Siderca S.A.I.C. Ultra high strength steel having good toughness
JP2014227608A (en) * 2013-05-21 2014-12-08 ゼネラル・エレクトリック・カンパニイ Martensitic alloy component and process of forming martensitic alloy component
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
CN112143960A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Steel plate with ultrahigh strength and low yield ratio and manufacturing method thereof
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US12129533B2 (en) 2015-04-14 2024-10-29 Tenaris Connections B.V. Ultra-fine grained steels having corrosion- fatigue resistance
CN119082622A (en) * 2024-08-29 2024-12-06 钢铁研究总院有限公司 A cleavage-resistant martensitic ultra-high strength steel and a preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9188252B2 (en) * 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US20130199674A1 (en) * 2011-02-18 2013-08-08 Siderca S.A.I.C. Ultra high strength steel having good toughness
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
JP2014227608A (en) * 2013-05-21 2014-12-08 ゼネラル・エレクトリック・カンパニイ Martensitic alloy component and process of forming martensitic alloy component
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US12129533B2 (en) 2015-04-14 2024-10-29 Tenaris Connections B.V. Ultra-fine grained steels having corrosion- fatigue resistance
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN112143960A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Steel plate with ultrahigh strength and low yield ratio and manufacturing method thereof
CN119082622A (en) * 2024-08-29 2024-12-06 钢铁研究总院有限公司 A cleavage-resistant martensitic ultra-high strength steel and a preparation method thereof

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP2018504519A (en) Steel material for high-strength pressure vessel excellent in low-temperature toughness after PWHT and method for producing the same
JP2020509193A (en) Steel for pressure vessel excellent in resistance to high temperature tempering heat treatment and post-weld heat treatment and method for producing the same
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JPH01242761A (en) Ultra high strength steel having low yield ratio and its manufacture
CA3108674C (en) Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
KR20220085495A (en) Steel material having low surface hardness and excellent low temperature impact toughness and method for manufacturing thereof
CN115572901A (en) A kind of 630MPa level high quenching and tempering stability low carbon low alloy steel plate and its manufacturing method
JPS5914535B2 (en) Non-heat treated high tensile strength steel line pipe thick plate with unstable ductility and good fracture resistance
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPH05113106A (en) High-purity heat-resistant steel and method for manufacturing high-low pressure integrated turbine rotor made of high-purity heat-resistant steel
KR100554756B1 (en) Manufacturing method of fine grained ferrite high strength structural steel
JPH10287957A (en) High-strength PC steel rod and method of manufacturing the same
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
CN114080466A (en) Steel bar and method of making the same
KR100368218B1 (en) A manufacturing process of a high strength steel with high temper soften resistance
JPS61174326A (en) Manufacturing method for mechanical structural steel with excellent delayed fracture resistance
JPH07278747A (en) Low decarburizing spring steel
KR940008060B1 (en) Making method of high tension steel
JP2508034B2 (en) High strength and high toughness hot forging and quenching steel
JPS63179019A (en) Manufacturing method of low yield ratio high tensile strength steel plate
JPS6117885B2 (en)
JPS63130748A (en) High strength non-thermal steel