[go: up one dir, main page]

JPH01252762A - Method for coating inner surface of metallic cylinder - Google Patents

Method for coating inner surface of metallic cylinder

Info

Publication number
JPH01252762A
JPH01252762A JP8035088A JP8035088A JPH01252762A JP H01252762 A JPH01252762 A JP H01252762A JP 8035088 A JP8035088 A JP 8035088A JP 8035088 A JP8035088 A JP 8035088A JP H01252762 A JPH01252762 A JP H01252762A
Authority
JP
Japan
Prior art keywords
cylinder
metal
coating layer
coating film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8035088A
Other languages
Japanese (ja)
Inventor
Yoji Kawatani
川谷 洋司
Yoshio Nanba
吉雄 難波
Toshiki Onaka
年樹 大中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8035088A priority Critical patent/JPH01252762A/en
Publication of JPH01252762A publication Critical patent/JPH01252762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a dense coating film layer free of oxides and pores and having excellent adhesive and bonding properties by forming a thermally sprayed coating film layer of a low-melting-point metal on the inner surface of a metallic cylinder, and heating the layer while rotating the cylinder to melt the layer under vacuum. CONSTITUTION:The metallic cylinder 1 made of mild steel, etc., with the roughed surface is horizontally placed on a rotary supporting ring 4, and rotated by a rotating means 5 at a constant peripheral speed. A thermal spraying gas 2 supported by a gun moving jig 3 is simultaneously reciprocated to thermally spray a metal having a lower m.p. than the cylinder on the inner surface of the cylinder 1, and a coating film layer 6 is formed. An outflow interrupting plate 7 is set on both ends of the cylinder 1, and the cylinder is placed on the rotary ring 10 and rotated in a vacuum chamber 8. The cylinder 1 is heated by a heating source 11 consisting of a radiant heat reflecting plate 12 and a Kanthal wire 13, and held at a temp. higher than the m.p. of the thermal spraying metal by a thermocouple 14 to melt the coating film layer 6 on the inner surface. By this method, a good-quality coating film layer is formed on the inner surface of a metallic cylinder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油掘削用鋼管等のような金属円筒の内面に
、耐蝕性・耐摩耗性等に優れる金属、特には自溶性合金
等を溶射して被膜層を形成させ、その内面の特性を向上
させる金属円筒内面のコーティング方法に関するもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method of applying a metal having excellent corrosion resistance and wear resistance, particularly a self-fusing alloy, etc. to the inner surface of a metal cylinder such as a steel pipe for oil drilling. The present invention relates to a method of coating the inner surface of a metal cylinder by thermal spraying to form a coating layer to improve the characteristics of the inner surface.

〔従来の技術〕[Conventional technology]

母材の表面に、溶融状態にある金属あるいはセラミック
ス等の粒子群を連続的に吹き付けて、耐蝕性・耐摩耗性
・耐熱性等を有する被膜層を形成させる溶射法は、周知
であり、また、この溶射法は、金属部材の表面特性を向
上させるためのコーチイブ方法として多用されている。
The thermal spraying method, in which particles of metal or ceramics in a molten state are continuously sprayed onto the surface of a base material to form a coating layer having corrosion resistance, wear resistance, heat resistance, etc., is well known. This thermal spraying method is often used as a coating method for improving the surface properties of metal parts.

この溶射法により、金属円筒の内面に、耐蝕性や耐摩耗
性を有する被覆層を形成させるものとしては、例えば、
特開昭62−186972号公報に開示されたものがあ
る。
Examples of methods for forming a corrosion-resistant and wear-resistant coating layer on the inner surface of a metal cylinder using this thermal spraying method include:
There is one disclosed in Japanese Unexamined Patent Publication No. 186972/1983.

この従来技術は、CrMo合金鋼等の金属円筒の内面に
、該金属円筒より低融点であるNi−Cr−3i−8合
金等の金属粉末を溶射して被膜層を形成し、しかる後に
、該金属円筒を、溶射した金属粉末の融点以上で該金属
円筒の融点以下の温度に、高周波誘導加熱等の適宜加熱
手段にて加熱し、その内面の被膜層のみを内側から熔融
させるものであって、溶射により形成された耐蝕性や耐
摩耗性を有する被膜層を、加熱して溶融処理することに
より、該被膜層内に溶射過程で形成された無数の空孔を
除去すると共に、金属円筒と被膜層の界面における拡散
接合を図り、当該金属円筒内面の被膜層を、緻密で空孔
がなく、かつ緊密な結合状態とするものである。
This prior art involves spraying metal powder such as Ni-Cr-3i-8 alloy, which has a lower melting point than that of the metal cylinder, on the inner surface of a metal cylinder such as CrMo alloy steel to form a coating layer, and then A metal cylinder is heated to a temperature above the melting point of the sprayed metal powder and below the melting point of the metal cylinder using an appropriate heating means such as high-frequency induction heating, and only the coating layer on the inner surface is melted from the inside. By heating and melting the corrosion-resistant and wear-resistant coating layer formed by thermal spraying, the countless pores formed in the coating layer during the thermal spraying process are removed, and the metal cylinder and Diffusion bonding is achieved at the interface of the coating layer, so that the coating layer on the inner surface of the metal cylinder is dense, has no pores, and is in a tightly bonded state.

因みに、上記の従来技術において、溶射金属の一例とし
て用いられるNi−Cr−3i−8合金のようなりとS
iを含有するNi基やGo基合金は、特に゛°自溶性合
金”として知られており、これら自溶性合金は、金属母
材の表面に溶射した後に、該被膜層を加熱・溶融させる
溶融処理を施すことで、溶射により形成された被膜層中
の酸化物を8201、SiO□として被膜層表面に浮上
させると共に、被膜層中の気孔を浮上させて、当該被膜
層を酸化物が少なく無気孔で緻密な被膜層とし得、かつ
、その過程で母材との拡散接合を促進させて、母材との
結合性の優れる被膜層とし得ることは周知である。
Incidentally, in the above-mentioned conventional technology, Ni-Cr-3i-8 alloy used as an example of thermal spray metal and S
Ni-based and Go-based alloys containing i are particularly known as ``self-fusing alloys,'' and these self-fusing alloys are melted by heating and melting the coating layer after being thermally sprayed onto the surface of the metal base material. By performing the treatment, the oxides in the coating layer formed by thermal spraying are made to float to the surface of the coating layer as 8201, SiO It is well known that a coating layer can be made dense with pores, and that diffusion bonding with the base material can be promoted in the process, resulting in a coating layer that has excellent bonding properties with the base material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、金属母材の表面に、耐蝕性・耐摩耗性・
耐熱性等を有する自溶性合金等の金属を溶射して被膜層
を形成した後に、該被膜層を溶融処理することにより、
当該金属母材の表面に、酸化物が少なく、気孔がなく緻
密で、かつ母材との接合性に優れる被膜層とすることが
できる。
As mentioned above, the surface of the metal base material has corrosion resistance, wear resistance,
By thermally spraying a metal such as a self-fusing alloy having heat resistance to form a coating layer, and then melting the coating layer,
It is possible to form a coating layer on the surface of the metal base material that contains few oxides, has no pores, is dense, and has excellent bonding properties with the base material.

ただし、この溶融処理にて所定の効果を得るには、当該
被膜層の金属を融点以上の温度に加熱して、溶融状態と
することが前提とされるので、この溶融処理の過程にお
いて、当該被膜層は流動性を持つものとなる。
However, in order to obtain the desired effect in this melting process, it is assumed that the metal of the coating layer must be heated to a temperature higher than the melting point to be in a molten state. The coating layer becomes fluid.

従って、前記従来技術(特開昭62−186972号)
のように、金属円筒の内面に被膜層を形成させるとき、
溶射後の溶融処理において、該被膜層を全体的に溶融状
態とすると、流動性を得た被膜層が、内周面の下方に向
かって流動するので安定した被膜層を維持し得なくなり
、また、その流動を抑制せんとして加熱温度を低いもの
とすると、溶融処理の効果が削減され、目的とする良好
な被覆層が得られなくなるという問題が派生する。
Therefore, the above-mentioned prior art (Japanese Patent Application Laid-open No. 186972/1983)
When forming a coating layer on the inner surface of a metal cylinder, as in
If the entire coating layer is melted in the melting process after thermal spraying, the coating layer that has obtained fluidity will flow downwards on the inner peripheral surface, making it impossible to maintain a stable coating layer. If the heating temperature is set low in order to suppress the flow, the effect of the melting process will be reduced, leading to the problem that the intended good coating layer will not be obtained.

しかし、前記従来技術(特開昭62−186972号)
においては、溶融処理の過程における円筒内面の被覆層
の流動について、また、その対処について一切言及され
ていない。
However, the prior art (Japanese Patent Application Laid-open No. 186972/1983)
No mention is made of the flow of the coating layer on the inner surface of the cylinder during the melting process or how to deal with it.

一方、本発明者等は、金属円筒の内面に自溶性合金を溶
射して被膜層を形成した後、該被膜層を、バーナで部分
的に加熱・溶融させ、これを順次に全内面に及ぼすこと
で被膜層の流動を抑制して溶融処理する方法を試行した
が、この方法においては、円筒内面に存する溶融部分の
測温が困難であり、また溶融状態が直接的に視認できず
、その溶融処理が不均一で不確実なものとなり易いとい
う問題点が派生することが判明し、さらには、溶融処理
を大気下にて施すとき、被膜層中の気孔および酸化物は
被膜表面に浮上して減少するものの、その一部が被膜中
に残留して、これらが被膜層の特性を低下させる要因と
なることが判明した。
On the other hand, the present inventors sprayed a self-fusing alloy onto the inner surface of a metal cylinder to form a coating layer, then partially heated and melted the coating layer with a burner, and sequentially applied this to the entire inner surface. We tried a method of melting treatment by suppressing the flow of the coating layer, but with this method, it was difficult to measure the temperature of the molten part on the inner surface of the cylinder, and the molten state could not be directly observed. It has been found that the problem arises that the melting process tends to be uneven and uncertain, and furthermore, when the melting process is performed in the atmosphere, the pores and oxides in the coating layer float to the surface of the coating. However, it was found that some of it remained in the coating and became a factor in deteriorating the properties of the coating layer.

本発明は上記問題点に鑑み、その内面に溶射して形成さ
せた金属の被膜層に施す溶融処理を確実なものとし得て
、酸化物が少なく、気孔がなく緻密で、かつ母材との密
着・接合性に優れる被膜層の形成を可能とする金属円筒
内面のコーティング方法の提供を目的とするものである
In view of the above-mentioned problems, the present invention is capable of ensuring reliable melting treatment of a metal coating layer formed by thermal spraying on the inner surface, and has a structure that is dense with few oxides, free of pores, and has a high degree of compatibility with the base material. The object of the present invention is to provide a method for coating the inner surface of a metal cylinder, which makes it possible to form a coating layer with excellent adhesion and bonding properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は以下を要旨として
いる。すなわち、本発明に係る金属円筒内面のコーティ
ング方法は、金属円筒の内面に、該金属円筒の融点より
低い融点の金属を溶射して被膜層を形成させ、しかる後
に該金属円筒を真空下にて、回転させながら溶射金属の
融点以上の温度に加熱して、その内面の被膜層を溶融処
理するものである。
In order to achieve the above object, the present invention has the following gist. That is, in the method of coating the inner surface of a metal cylinder according to the present invention, a metal having a melting point lower than that of the metal cylinder is thermally sprayed onto the inner surface of the metal cylinder to form a coating layer, and then the metal cylinder is placed under vacuum. The coating layer on the inner surface of the sprayed metal is melted by heating it to a temperature higher than the melting point of the sprayed metal while rotating.

〔作用〕[Effect]

本発明ににおいては、金属円筒の内面に、該金属円筒の
融点より低い融点の金属を溶射して被膜層を形成させ、
しかる後に、該金属円筒を溶射金属の融点以上の温度に
加熱するので、当該金属円筒を溶融させることなく、そ
の内面の被膜層のみを溶融させて、溶融処理することが
でき、かつ、円筒全体を加熱することで内面の被膜層を
均一に加熱−ン容融させることができる。
In the present invention, a coating layer is formed on the inner surface of a metal cylinder by spraying a metal having a melting point lower than that of the metal cylinder,
After that, the metal cylinder is heated to a temperature higher than the melting point of the sprayed metal, so it is possible to melt only the coating layer on the inner surface of the metal cylinder without melting the metal cylinder, and to melt the entire cylinder. By heating the inner surface, the coating layer on the inner surface can be uniformly heated and melted.

また、溶融処理は、当該金属円筒を真空下にて回転させ
ながら加熱して行うので、この溶融処理の過程において
、加熱・溶融されて流動性を得た円筒内面の被膜層は、
円筒の回転による遠心力にて円筒内周面に均等に押付け
られ、その流動性が高まるほど、均等厚のものとなる。
In addition, since the melting process is performed by heating the metal cylinder while rotating it under vacuum, the coating layer on the inner surface of the cylinder that has been heated and melted and has fluidity in the process of the melting process is
It is evenly pressed against the inner circumferential surface of the cylinder by the centrifugal force caused by the rotation of the cylinder, and the higher the fluidity, the more uniform the thickness becomes.

そして、この溶融処理の過程において、比重差で被膜層
の表面に浮上させられる被膜層中の気孔および酸化物は
、遠心力の角加速度の付加にて、その浮上を助長され、
また、この溶融処理は真空下にて行われるので、被膜層
中の気孔および酸化物の浮上分離はより促進され、かつ
、ガス成分の除去も行われ、被膜層がより健全なものと
なる。
During this melting process, the pores and oxides in the coating layer, which are floated to the surface of the coating layer due to the difference in specific gravity, are encouraged to float by the addition of angular acceleration due to centrifugal force.
Furthermore, since this melting treatment is performed under vacuum, the floating separation of pores and oxides in the coating layer is further promoted, and gas components are also removed, resulting in a healthier coating layer.

そしてまた、この溶融処理過程において、被膜層は遠心
力にて円筒内面に押付けられので、円筒内面と被膜層と
の界面における拡散接合もより促進され、両者の密着・
接合が確実なものとなる。
In addition, during this melting process, the coating layer is pressed against the inner surface of the cylinder by centrifugal force, which further promotes diffusion bonding at the interface between the inner surface of the cylinder and the coating layer, resulting in tighter contact between the two.
The bonding becomes reliable.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まず、外径240Il11、内径200mm、長さ50
011!1の軟鋼製の円筒を準備し、その内面にグリッ
ドブラストによる粗面化処理を施し、続いて、その内面
に、耐蝕・耐摩耗性を有し、融点が980〜1040℃
のB + S i+ Crを含むNi基自溶性合金を溶
射した。
First, the outer diameter is 240Il11, the inner diameter is 200mm, and the length is 50mm.
A mild steel cylinder of No. 011!1 is prepared, and its inner surface is roughened by grid blasting, and then the inner surface is coated with a material that has corrosion and abrasion resistance and a melting point of 980 to 1040°C.
A Ni-based self-fluxing alloy containing B + Si + Cr was thermally sprayed.

第1図aは本実施例に用いた溶射装置の概要を示す一部
を欠いた正面図で、第1図すは第1図aのA−A断面図
である。
FIG. 1a is a partially cutaway front view showing an overview of the thermal spraying apparatus used in this example, and FIG. 1a is a sectional view taken along the line AA in FIG. 1a.

第1図aおよび第1図すにおいて、(1)は円筒であっ
て、該円筒(1)は前記の粗面化処理済の軟鋼製のもの
で、ここでは溶射装置にセットされた状態を示す。
In Fig. 1a and Fig. 1, (1) is a cylinder, and the cylinder (1) is made of the above-mentioned roughened mild steel, and here it is shown set in a thermal spraying device. show.

(2)はプラズマ溶射ガンであって、該溶射ガン(2)
は、ガン移動用治具(3)に保持され、当該装置にセッ
トされた円筒(1)の内径を長手方向に移動可能とされ
である。
(2) is a plasma spray gun;
is held in a gun moving jig (3) and is movable in the longitudinal direction of the inner diameter of a cylinder (1) set in the device.

(4)は回転支持輪であって、該回転支持輪(4)は、
二列に対をなして複数配され、円筒(1)を水平に支持
すると共に、回転手段(5)にて駆動されて、その上部
に支持する円筒(1)を回転させるものとされである。
(4) is a rotation support wheel, and the rotation support wheel (4) is
A plurality of cylinders are arranged in pairs in two rows to support the cylinder (1) horizontally, and are driven by a rotating means (5) to rotate the cylinder (1) supported on the upper part. .

溶射は、円筒(1)を回転輪(4)を介して一定周速で
回転させながら、溶射ガン(2)を円筒(1)の両端間
を一定速度で往復動させて行い、その被111J Ji
 (6)の厚さは、約111II11とした。
Thermal spraying is performed by rotating the cylinder (1) at a constant circumferential speed via a rotary wheel (4) and reciprocating the thermal spraying gun (2) between both ends of the cylinder (1) at a constant speed. Ji
The thickness of (6) was approximately 111II11.

次に、上記溶射により円筒(1)の内面全体に形成させ
た被膜N(6)に溶融処理を施した。
Next, the coating N (6) formed on the entire inner surface of the cylinder (1) by the above thermal spraying was subjected to a melting treatment.

第2図aは、本実施例に用いた熔融処理装置の要部を示
す正断面図であり、第2図すは第2図aのA−A断面図
である。
FIG. 2a is a front sectional view showing the main parts of the melt processing apparatus used in this example, and FIG. 2A is a sectional view taken along the line AA in FIG. 2a.

第2図aおよび第2図すにおいて、(1)は円筒であっ
て、該円筒(1)は、その内面全体に被膜層(6)を形
成させた前記のもので、ここでは当該溶融処理装置にセ
ットされた状態を示す。
In Fig. 2a and Fig. 2, (1) is a cylinder, and the cylinder (1) is the one described above with a coating layer (6) formed on its entire inner surface, and here the melting treatment Indicates the state set in the device.

(7)は流出遮断板であって、該流出遮断i (7)は
、内径を円筒(1)の内径より小さくしたリング状のも
ので、円筒(1)の両端面部に同心状にそれぞれ取付け
られである。
(7) is an outflow blocking plate, and the outflow blocking plate (7) is a ring-shaped member with an inner diameter smaller than that of the cylinder (1), and is attached concentrically to both end faces of the cylinder (1). It is rare.

(8)は真空チャンバであって、該真空チャンバ(8)
は、その内底部に、二列に対をなして複数配されて円筒
(1)を水平に支持すると共に、回転手段(9)にて駆
動されて円筒(1)を高速回転させる回転輪0■を配設
し、かつ、その向上部に、土壁部より高さ調整自由に吊
下され、回転輪00)に支持された円筒(1)の上部全
長を円弧状に覆う加熱a!a+)を配設したものである
。なお、加熱源θ0は、その上部に円弧状の輻射熱反射
板02)を配し、その下面部に図外の給電手段により制
御可能に通電されるカンタル線側を配したものとされで
ある。
(8) is a vacuum chamber, the vacuum chamber (8)
A plurality of rotating wheels 0 are disposed in pairs in two rows on the inner bottom to horizontally support the cylinder (1), and are driven by a rotating means (9) to rotate the cylinder (1) at high speed. A heating a! is installed in the upper part of the cylinder (1), which is hung from the earthen wall at a freely adjustable height, and covers the entire length of the upper part of the cylinder (1) in an arc shape, which is supported by the rotating wheel 00). a+). The heating source θ0 has an arc-shaped radiant heat reflecting plate 02) disposed on its upper part, and a Kanthal wire side which is controllably energized by a power supply means (not shown) is disposed on its lower surface.

04は測温熱電対であって、該測温熱電対置は、真空チ
ャンバ(8)内にセットされた円筒(1)の内側の温度
を測定するよう配されである。
04 is a temperature measuring thermocouple, and the temperature measuring thermocouple is arranged to measure the temperature inside the cylinder (1) set in the vacuum chamber (8).

溶融処理は、真空チャンバ(8)内の真空度を1O−3
torr、とじ、設定加熱温度を1040°C1保持時
間を10m1n、とする条件で実施し、円筒(1)は、
昇温・保持・冷却の過程において常に0.6M/sec
、なる一定速度で回転させ、また、冷却は、真空チャン
バ(8)内にArガスを送入し、該Arガスの不活性雰
囲気下にて50″C/Hr、の冷却速度で600’Cま
で冷却し、しかる後、真空チャンバ(8)を開放して大
気下にて放冷するものとした。
During the melting process, the degree of vacuum in the vacuum chamber (8) is reduced to 1O-3.
The cylinder (1) was heated under the following conditions:
Constantly 0.6M/sec in the process of heating, holding, and cooling
, and for cooling, Ar gas was introduced into the vacuum chamber (8), and the cooling rate was 600'C at a cooling rate of 50'C/Hr under an inert atmosphere of the Ar gas. After that, the vacuum chamber (8) was opened to allow cooling in the atmosphere.

以上の処理後に得られた円筒(1)内面の被膜層(6)
は、平滑な表面を呈し、また、該円筒を破断調査したと
ころ、その被膜層(6)の厚さは各破断面共にほぼ均等
厚であり、かつ各断面組織は無気孔で酸化物の残留が極
めて少ない緻密で良好な組織を示し、また、軟鋼製円筒
内面との界面における接合状態も非常に良好であった。
Coating layer (6) on the inner surface of the cylinder (1) obtained after the above treatment
exhibits a smooth surface, and when the cylinder was fractured and investigated, the thickness of the coating layer (6) was almost uniform on each fractured surface, and each cross-sectional structure was porous and free of residual oxides. It exhibited a dense and good structure with very few particles, and the bonding state at the interface with the inner surface of the mild steel cylinder was also very good.

第3図は本実施例にて得られた円筒(1)内面の被膜層
(6)部の断面組織を示す金属組織写真であり、図中の
Aで示す範囲は被膜層(6)部を、Bで示す部位は母材
である軟鋼円筒(1)部の断面組織をそれぞれ示す。
FIG. 3 is a photograph of the metallographic structure showing the cross-sectional structure of the coating layer (6) on the inner surface of the cylinder (1) obtained in this example, and the range indicated by A in the figure shows the coating layer (6). , B indicate the cross-sectional structure of the base material, the mild steel cylinder (1).

そして、第4図および第5図は本実施例の比較例の被膜
層部の断面組織を示す金属組織写真であり、これらは、
本実施例と同一の軟鋼板表面に、同一組成の自溶性合金
を同〒条件にて溶射して形成させた被膜層であり、溶射
後の溶融処理条件のみが本実施例と異なるものである。
FIG. 4 and FIG. 5 are metallographic photographs showing the cross-sectional structure of the coating layer portion of the comparative example of this example, and these are
This is a coating layer formed by thermally spraying a self-fusing alloy with the same composition under the same conditions on the same mild steel plate surface as in this example, and the only difference from this example is the melting treatment conditions after thermal spraying. .

第4図は大気下にて回転させないで溶融処理した例、第
5図はAr雰囲気下にて回転させないで溶融処理した例
の断面組織を示すもので、それぞれの図中のAで示す範
囲は被膜層部を、Bで示す部位は母材である軟鋼板部の
断面組織を示す。
Figure 4 shows the cross-sectional structure of an example melted in the atmosphere without rotation, and Figure 5 shows the cross-sectional structure of an example melted without rotation in an Ar atmosphere.The range indicated by A in each figure is The portion of the coating layer portion indicated by B indicates the cross-sectional structure of the mild steel plate portion that is the base material.

第4図および第5図に示す比較例のものに比べ、第3図
に示す本実施例のものは、その被膜層部の酸化物の残留
が極めて少なく、緻密で良好な組織であり、また、母材
である軟鋼との拡散接合状態も非常に良好であることが
判る。
Compared to the comparative examples shown in FIGS. 4 and 5, the example shown in FIG. 3 has extremely little residual oxide in the coating layer, and has a dense and good structure. It can be seen that the diffusion bonding state with the base metal, mild steel, is also very good.

なお、本実施例においては、溶射する金属としてB +
 S 11 Crを含むNi基自溶性合金を用いたが、
これは、例示であって、溶射の対象とする円筒の金属材
料より低融点のものであれば、要求される円筒内面の特
性に応じて、他の組成の金属や自溶性合金を適用するこ
とができる。
In this example, the metal to be thermally sprayed is B +
Although a Ni-based self-fluxing alloy containing S 11 Cr was used,
This is just an example; metals with other compositions or self-fusing alloys may be used depending on the required characteristics of the inner surface of the cylinder, as long as they have a lower melting point than the metal material of the cylinder to be sprayed. Can be done.

また、これらの適用に当たっては、円筒の金属材料と、
溶射する金属の各々の選択・組合せによって、両者間の
熱膨張や冷却収縮に大きな差が生じる場合があるので、
対象とされる円筒の金属材料と、溶射金属の特性を事前
に充分検討し、両者間に、例えば、Mo、 WSWCや
Tic等の悲膨張率調整金属を介在させて溶射する漸変
溶射を適用するとか、溶射および溶融処理後の冷却に際
して恒温処理や徐冷処理を適用する等の配慮を加えられ
ることが望ましい。
In addition, for these applications, cylindrical metal materials and
Depending on the selection and combination of metals to be sprayed, there may be large differences in thermal expansion and cooling contraction between the two.
The characteristics of the metal material of the target cylinder and the sprayed metal are thoroughly studied in advance, and a graded thermal spraying is applied in which thermal expansion coefficient adjustment metal such as Mo, WSWC, or Tic is interposed between the two. In addition, it is desirable that consideration be given to applying constant temperature treatment or slow cooling treatment during cooling after thermal spraying and melting treatment.

そしてまた、溶融処理設備としては、被処理体である円
筒を回転させながら加熱・冷却させる本発明の主旨を逸
脱しない限り、−船釣な真空熱処理炉を用いることもで
き、また、熱源を円筒の内径側全長に配して、内面側よ
り加熱するようにすることも好ましい例である。
Furthermore, as the melting treatment equipment, a vacuum heat treatment furnace can be used as long as it does not deviate from the gist of the present invention, which heats and cools the cylindrical object while rotating it. It is also a preferable example to arrange it along the entire length of the inner diameter side and heat it from the inner surface side.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る金属円筒内面のコーティン
グ方法によれば、その内面に溶射して形成させた金属の
被膜層を、比較的に平滑な表面を呈する均等厚のものと
し得、しかも、その内部組織を酸化物の残留が極めて少
なく、無気孔で緻密なものとし得、かつ、母材との密着
・接合性に優れるものとし得、金属円筒内面に優れた特
性の被膜層を形成させることができる。
As described above, according to the method for coating the inner surface of a metal cylinder according to the present invention, the metal coating layer formed by thermal spraying on the inner surface can be made to have a uniform thickness with a relatively smooth surface. The internal structure can be made porous and dense with extremely little residual oxide, and can have excellent adhesion and bonding properties with the base material, forming a coating layer with excellent properties on the inner surface of the metal cylinder. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の実施例に係わる溶射装置の概要を示
す一部を欠いた正面図、第1図すは第1図aのA−A断
面図、 第2図aは本発明の実施例に係わる溶融処理装置の要部
を示す正断面図、第2図すは第2図aのA−A断面図、 第3図は本発明の実施例の被膜層部の断面組織を示す金
属組織写真、 第4図および第5図は比較例の被膜層部の断面組織を示
す金属組織写真である。 (1)−円筒、     (2)−溶射ガン、〔3)−
ガン移動用治具、(4)一回転支持輪、(5)一回転手
段、   (6)−被膜層、(7)−流出遮断板、  
(8)−真空チャンバ、(9)一回転手段、   00
)−回転輪、(ID−加熱源。 特許出願人  株式会社 神戸製鋼所 代 理 人  弁理士  余光 章− 第1図a       第1図す 第2図α       第2図b
Fig. 1a is a partially cutaway front view showing an outline of a thermal spraying apparatus according to an embodiment of the present invention, Fig. 1 is a sectional view taken along line A-A in Fig. A front cross-sectional view showing the main parts of the melt processing apparatus according to the embodiment, a cross-sectional view taken along the line AA in FIG. 2 or FIG. 2a, and FIG. Metal Structure Photographs FIGS. 4 and 5 are metal structure photographs showing the cross-sectional structure of the coating layer portion of the comparative example. (1)-Cylinder, (2)-Thermal spray gun, [3)-
Gun moving jig, (4) one rotation support ring, (5) one rotation means, (6) - coating layer, (7) - outflow blocking plate,
(8) - Vacuum chamber, (9) Single rotation means, 00
) - Rotating wheel, (ID - Heating source. Patent applicant Kobe Steel Co., Ltd. Agent Patent attorney Akira Yomitsu - Figure 1a Figure 1S Figure 2α Figure 2b

Claims (1)

【特許請求の範囲】[Claims] 金属円筒の内面に、該金属円筒の融点より低い融点の金
属を溶射して被膜層を形成させ、しかる後に該金属円筒
を真空下にて、回転させながら溶射金属の融点以上の温
度に加熱して、その内面の被膜層を溶融処理することを
特徴とする金属円筒内面のコーティング方法。
A coating layer is formed by spraying a metal with a melting point lower than the melting point of the metal cylinder on the inner surface of the metal cylinder, and then the metal cylinder is heated under vacuum to a temperature higher than the melting point of the sprayed metal while rotating. A method for coating the inner surface of a metal cylinder, characterized in that the coating layer on the inner surface is melt-treated.
JP8035088A 1988-03-31 1988-03-31 Method for coating inner surface of metallic cylinder Pending JPH01252762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8035088A JPH01252762A (en) 1988-03-31 1988-03-31 Method for coating inner surface of metallic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8035088A JPH01252762A (en) 1988-03-31 1988-03-31 Method for coating inner surface of metallic cylinder

Publications (1)

Publication Number Publication Date
JPH01252762A true JPH01252762A (en) 1989-10-09

Family

ID=13715809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8035088A Pending JPH01252762A (en) 1988-03-31 1988-03-31 Method for coating inner surface of metallic cylinder

Country Status (1)

Country Link
JP (1) JPH01252762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087211A (en) * 1998-09-17 2000-03-28 Dai Ichi High Frequency Co Ltd High frequency remelting treatment method and device
WO2024209741A1 (en) * 2023-04-07 2024-10-10 三菱重工業株式会社 Method for constructing front edge protective layer for wind turbine blade, and protective layer for wind turbine blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087211A (en) * 1998-09-17 2000-03-28 Dai Ichi High Frequency Co Ltd High frequency remelting treatment method and device
WO2024209741A1 (en) * 2023-04-07 2024-10-10 三菱重工業株式会社 Method for constructing front edge protective layer for wind turbine blade, and protective layer for wind turbine blade

Similar Documents

Publication Publication Date Title
US4117302A (en) Method for fusibly bonding a coating material to a metal article
JP3983323B2 (en) Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer
US4243867A (en) Apparatus for fusibly bonding a coating material to a metal article
TWI404813B (en) Tube target
JP5666167B2 (en) Stage heater and shaft manufacturing method
JPH0341955B2 (en)
US3493415A (en) Method of making a diffusion bonded refractory coating
WO1999039020A1 (en) Method of production of self-fusing alloy spray coating member
JPH01252762A (en) Method for coating inner surface of metallic cylinder
JPS62177183A (en) Method for forming metallic lining on inside surface of metallic pipe or the like
JPS6284976A (en) Manufacture of rotary type truing or dressing tool for grinding wheel
JP3001363B2 (en) Method of forming metal spray coating
US6648207B2 (en) Method for applying self-fluxing coatings to non-cylindrical ferritic objects
JPS61288060A (en) Low pressure plasma arc spraying method
JPH05271900A (en) Heating and pressurizing method of thermally sprayed film
SU1475973A1 (en) Method of producing coatings
JP2727450B2 (en) Method for manufacturing inner and outer metal lining tubes
JPS6352084B2 (en)
JP2000120939A (en) Wear resistant metallic pipe and manufacture thereof
JPS5970757A (en) Melt-sprayed construction having columnar structure
JPS60194058A (en) Thermal spraying method
JP6697802B2 (en) Method for manufacturing self-fluxing alloy outer surface cladding tube having curved portion
JPH10158810A (en) Method for thermal spraying to outer peripheral surface of thin metallic pipe
JP4303447B2 (en) Manufacturing method of biaxial cylinder
JP3025140B2 (en) Method for producing metal curved material having metal lining layer on outer surface