JPH01265405A - Conductive paste and conductive circuit - Google Patents
Conductive paste and conductive circuitInfo
- Publication number
- JPH01265405A JPH01265405A JP9323088A JP9323088A JPH01265405A JP H01265405 A JPH01265405 A JP H01265405A JP 9323088 A JP9323088 A JP 9323088A JP 9323088 A JP9323088 A JP 9323088A JP H01265405 A JPH01265405 A JP H01265405A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- circuit
- copper powder
- paste
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Conductive Materials (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、印刷配線板に用いる印刷性に優れた高導電性
、高信頼性を有する、銅粉をフィラーとする導電ペース
トおよび該導電ペーストを用いた導電回路に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a conductive paste containing copper powder as a filler, which has excellent printability, high conductivity, and high reliability, and which is used for printed wiring boards. Concerning a conductive circuit using.
(従来技術及び発明が解決しようとする課題)近年、銅
が銀に比べてエレクトロマイグレーションを起こしにく
いことや低コストであることが評価されて銅粉をフィラ
ーとする銅ペーストが開発されている。(Prior Art and Problems to be Solved by the Invention) In recent years, copper pastes using copper powder as a filler have been developed, as copper has been evaluated for its resistance to electromigration and low cost compared to silver.
しかし、銅粉を熱硬化性樹脂に配合混和してなる樹脂硬
化型の銅ペーストは、これを印刷後、熱硬化する際に加
熱によって銅粉表面が酸化され易いため、低抵抗の導電
回路が得られ難く、その後の経時変化により回路抵抗の
増大も起き易いという欠点を有している。銅粉の酸化を
防止するため、市販の銅ペーストは、バインダーに還元
性樹脂を使用したり還元剤を添加した組成となっている
が、充分な結果は得られていない。However, resin-curing copper paste, which is made by blending copper powder with thermosetting resin, tends to oxidize the surface of the copper powder when it is thermally cured after printing, so it cannot be used as a low-resistance conductive circuit. It has the disadvantage that it is difficult to obtain, and that circuit resistance is likely to increase due to subsequent changes over time. In order to prevent oxidation of copper powder, commercially available copper pastes have compositions that use reducing resins as binders or add reducing agents, but satisfactory results have not been obtained.
市販の銅ペーストにおける銅粉は、電解銅粉、あるいは
これを粉砕加工したものであり、形状が樹枝状またはフ
レーク状である。これらはその形状のために表面積が大
きくタップ密度が小さい。The copper powder in commercially available copper pastes is electrolytic copper powder or pulverized copper powder, and has a dendritic or flake shape. Because of their shape, they have a large surface area and a low tap density.
このため、導電ペーストとした場合、■硬化時の加熱に
より酸化され易いこと、充填性に劣ることから低抵抗回
路が得られない、■銅粉の二次凝集が起き易く且分離し
にくいためスクリーン印刷においてスクリーンの目詰ま
りを起こし易く、印刷回路の欠けや断線を引き起こす原
因となる、■高メツシュのスクリーンを使用することが
出来ないため、高密度、高精度の回路形成に使用できな
い、など種々の問題点を有している。For this reason, when used as a conductive paste, it is difficult to obtain a low-resistance circuit because it is easily oxidized by heating during curing and has poor filling properties. Screens tend to clog during printing, which can cause chipping and disconnection of printed circuits, and high-mesh screens cannot be used, so they cannot be used to form high-density, high-precision circuits. It has the following problems.
更に、銅ペースト回路は通常半田付は性を有しておらず
、上述のように回路抵抗もあまり低くないため、銅ペー
スト回路上に無電解メッキを施し、回路抵抗の低抵抗化
と半田付は性を付与することが行われている。しかし、
上述の如き電解銅粉あるいはこれを粉砕加工した、形状
が樹枝状またはフレーク状の銅粉を使用した市販の銅ペ
ースト回路では、印刷回路の表面性が悪くメッキの核と
なる銅粉が回路表面に十分でなく、無電解メッキを施し
た場合、銅ペースト回路とメッキ金属との密着性が悪く
半田プル強度が不十分である。メッキ付着性を得るため
には銅粉含有量を多くしなければならないが、このため
に、導電ペーストの回路の導電性が犠牲になり、しかも
回路中にボイドが多くなり鋼ペーストの凝集力を低下さ
せてかえって半田プル強度を低下させるという問題があ
る。Furthermore, copper paste circuits are usually not solderable, and as mentioned above, the circuit resistance is not very low. Therefore, electroless plating is applied on the copper paste circuits to reduce the circuit resistance and make it easier to solder. is being given gender. but,
In commercially available copper paste circuits that use electrolytic copper powder as described above or pulverized copper powder that has a dendritic or flake shape, the surface of the printed circuit is poor, and the copper powder that forms the core of the plating is stuck to the circuit surface. When electroless plating is applied, the adhesion between the copper paste circuit and the plated metal is poor, resulting in insufficient solder pull strength. In order to obtain good plating adhesion, the content of copper powder must be increased, but this sacrifices the conductivity of the circuit in the conductive paste and creates more voids in the circuit, which reduces the cohesive strength of the steel paste. There is a problem in that this decreases the solder pull strength.
(課題を解決するための手段)
従来の銅ペーストが有している上記問題点に鑑み鋭意検
討の結果、高導電性、高信頼性を有する銅ペーストに適
した銅粉の特性を見い出し本発明を完成した。(Means for Solving the Problems) As a result of intensive studies in view of the above-mentioned problems that conventional copper pastes have, we have discovered the characteristics of copper powder suitable for copper pastes having high conductivity and high reliability, and have invented the present invention. completed.
即ち、本発明請求項1の導電ペーストは、形状係数6〜
7、比表面積 0.4〜0.7II+278且つタップ
密度4 、0 g/cm3以上の粒状銅粉からなる導電
フィラーを熱硬化性樹脂に配合混和してなることを特徴
とする。That is, the conductive paste of claim 1 of the present invention has a shape factor of 6 to 6.
7. A conductive filler made of granular copper powder having a specific surface area of 0.4 to 0.7II+278 and a tap density of 4.0 g/cm3 or more is blended into a thermosetting resin.
銅粉の形状係数とは、下に示す(1)式におけるKの値
で示され、6〜12の範囲をとる。The shape factor of copper powder is represented by the value of K in equation (1) shown below, and takes a range of 6 to 12.
d=に/ (SXρ) ・・・・(1)(但しS=比表
面積(m2/g)、d=平均粒径(μm)、ρ=銅粉密
度(8,93g/cm3))真球の場合6であり樹枝状
では12である。形状係数は、光学顕微鏡あるいは走査
電子顕微鏡等で観察及び測定される形状と平均粒径に対
し、(1)式に比表面積を代入して得られる平均粒径に
合致する値を選ぶ。d=ni/(SXρ)...(1) (S=specific surface area (m2/g), d=average particle size (μm), ρ=copper powder density (8.93g/cm3)) True sphere It is 6 in the case of , and 12 in the dendritic case. The shape factor is selected to be a value that matches the average particle diameter obtained by substituting the specific surface area into equation (1) for the shape and average particle diameter observed and measured with an optical microscope, scanning electron microscope, or the like.
本発明における銅粉は、形状係数6〜7であり、真珠ま
たは真珠に近い形状の銅粉である。球状の銅粉であると
二次凝集の分離が容易に行われるため、ペースト中に均
一に分散し、スクリーン印刷の際の目詰まりが起き難い
。また異方性のない球状であるから、ペーストとしたと
きの過度のチキソトロピック性を抑えることができ、印
刷時のレベリング性のよい表面平坦な回路塗膜とするこ
とができる。The copper powder in the present invention has a shape factor of 6 to 7, and is a pearl or a pearl-like copper powder. Spherical copper powder easily separates secondary agglomerates, so it is uniformly dispersed in the paste, and clogging during screen printing is less likely to occur. Furthermore, since it is spherical without anisotropy, excessive thixotropic properties can be suppressed when it is made into a paste, and a circuit coating film with a flat surface and good leveling properties during printing can be obtained.
本発明の導電ペーストにおける銅粉の比表面積は0.4
〜0.7m2/gが好ましい。形状係数6〜7では、平
均粒径は大略1〜2μmであり、樹脂硬化型導電ペース
トの導電フィラーとしては極めて微細である。The specific surface area of the copper powder in the conductive paste of the present invention is 0.4
~0.7 m2/g is preferred. When the shape factor is 6 to 7, the average particle size is approximately 1 to 2 μm, which is extremely fine as a conductive filler for a resin-curing conductive paste.
銅粉の比表面積が0.711I21gを越えると、即ち
平均粒径が1μm程度未満であると、粉体の取扱性に問
題があり、急速な酸化反応による燃焼爆発や作業環境の
悪化をまねく。また、比表面積が0.4m2/g未満、
即ち平均粒径が2μm程度を越えると、300メツシュ
以上のスクリーンを用いて高精度の回路パターンを印刷
する場合、メツシュオープニングが狭いため選別効果に
より回路抵抗が高抵抗になり、特にその傾向が0.2m
m以下の細線で顕著になる。なお、銅粉の比表面積は、
窒素ガス吸着法(BET法)により求めることができる
。When the specific surface area of the copper powder exceeds 0.711I21g, that is, when the average particle size is less than about 1 μm, there is a problem in handling the powder, leading to combustion explosion and deterioration of the working environment due to rapid oxidation reaction. In addition, the specific surface area is less than 0.4 m2/g,
That is, when the average particle size exceeds about 2 μm, when printing a high-precision circuit pattern using a screen with a mesh size of 300 or more, the mesh opening is narrow and the screening effect causes a high circuit resistance, and this tendency is particularly high. 0.2m
It becomes noticeable in thin lines of m or less. In addition, the specific surface area of copper powder is
It can be determined by the nitrogen gas adsorption method (BET method).
本発明における銅粉のタップ密度は4 、0 g/cm
3以上の高タップ密度のものが適する。使用する銅粉が
、4 、0 g/cm3以上の高いタップ密度を有して
いると、印刷した導電回路中で銅粉が高充填されるため
に銅粉同士の接触点を多くすることができ低抵抗回路が
得られることになる。一方、タップ密度が4 、0 g
/am3未満であると、導電回路中の銅粉が粗に充填さ
れて回路抵抗が高くなる。またボイドを包含しやすく欠
陥の多い回路となってしまう。なお、タップ密度は、粉
末冶金用粉体で通常測定されているものである。The tap density of copper powder in the present invention is 4.0 g/cm
A high tap density of 3 or more is suitable. If the copper powder used has a high tap density of 4.0 g/cm3 or more, the printed conductive circuit will be highly filled with copper powder, making it possible to increase the number of contact points between the copper powders. As a result, a low resistance circuit can be obtained. On the other hand, the tap density is 4,0 g
If it is less than /am3, the conductive circuit will be coarsely filled with copper powder and the circuit resistance will increase. In addition, the circuit tends to contain voids, resulting in a circuit with many defects. Note that the tap density is one that is normally measured for powder for powder metallurgy.
本発明の導電ペーストは、上記特性を有する銅粉を熱硬
化性樹脂及び添加剤と混練することにより得られる。The conductive paste of the present invention is obtained by kneading copper powder having the above characteristics with a thermosetting resin and additives.
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂
、メラミン樹脂、ポリアミドイミド樹脂等が使用でき、
更に、これら樹脂を混合して使用してもよく、またブチ
ラール樹脂、アクリロニトリルブタジェンゴムその他の
樹脂を必要により混合して使用してもよい。As the thermosetting resin, phenol resin, epoxy resin, melamine resin, polyamideimide resin, etc. can be used.
Furthermore, these resins may be used in combination, and butyral resin, acrylonitrile butadiene rubber, and other resins may be mixed and used as necessary.
導電ペースト中の銅粉配合量は、銅粉と熱硬化性樹脂の
固形分の合計重量に対して75〜90重量%が望ましく
、80〜85重量%が特に望ましい。The content of the copper powder in the conductive paste is preferably 75 to 90% by weight, particularly preferably 80 to 85% by weight, based on the total weight of the solid content of the copper powder and thermosetting resin.
添加剤としては、オレイン酸の如き不飽和脂肪酸や高沸
点溶剤、あるいは消泡剤、揺へん剤を適宜使用すること
ができる。As additives, unsaturated fatty acids such as oleic acid, high boiling point solvents, antifoaming agents, and shaking agents can be used as appropriate.
以上本発明の導電ペーストについて詳細に述べた。次に
、本発明の請求項2の導電回路について説明する。The conductive paste of the present invention has been described above in detail. Next, a conductive circuit according to claim 2 of the present invention will be explained.
本発明の請求項2の導電回路は、スクリーン印刷法によ
り絶縁基板上に回路を印刷した後、硬化して形成した回
路であり、本発明の請求項1記載の導電ペーストを使用
することを特徴とする。The conductive circuit according to claim 2 of the present invention is a circuit formed by printing a circuit on an insulating substrate by a screen printing method and then curing the circuit, and is characterized by using the conductive paste according to claim 1 of the present invention. shall be.
導電回路を形成する基板としては、通常使用されている
ものが何れも使用でき、例えば紙、ガラスマット、ガラ
スクロス等に含浸したフェノール樹脂、エポキシ樹脂、
ポリイミド樹脂、ジアリルフタレート樹脂等の合成樹脂
基板、あるいは樹脂またはホウロウを表面にコーティン
グしたアルミ、鉄などの金属基板などを挙げることがで
きる。As the substrate for forming the conductive circuit, any commonly used substrate can be used, such as phenol resin, epoxy resin, etc. impregnated with paper, glass mat, glass cloth, etc.
Examples include synthetic resin substrates such as polyimide resin and diallyl phthalate resin, and metal substrates such as aluminum and iron whose surfaces are coated with resin or enamel.
スクリーン版の材質は特に限定されるものではなく、ス
テンレスやテトロンのメツシュが使用できる。精密なパ
ターン印刷を行う場合にはステンレスメツシュが好まし
い。スクリーンメツシュは、160−400メツシュ程
度が使用範囲である。The material of the screen plate is not particularly limited, and stainless steel or Tetron mesh can be used. Stainless steel mesh is preferred when printing precise patterns. The usable range of screen mesh is approximately 160-400 mesh.
本発明の請求項2の導電回路は、使用する導電ペースト
中のフィラーである銅粉が球状で微細であり、特に高メ
ツシユのスクリーンに適用可能なため、精密で精度が良
く、しかも回路抵抗の低いことが特徴である。In the conductive circuit according to claim 2 of the present invention, the copper powder that is the filler in the conductive paste used is spherical and fine, and is particularly applicable to high mesh screens, so it is precise and accurate, and has low circuit resistance. It is characterized by low
本発明の請求項3の導電回路は、前記請求項2に記載の
導電回路の一部面あるいは全面に無電解メッキを施した
ことを特徴とする。A conductive circuit according to a third aspect of the present invention is characterized in that electroless plating is applied to a part or the entire surface of the conductive circuit according to the second aspect.
本発明における無電解メッキの金属種には特に制約はな
いが、種類としては、金、銀、銅、ニッケル、錫などが
ある。また、メッキ液は市販のもので充分である。メッ
キを施す際のペースト回路表面の前処理としては、通常
、アルカリ液による脱脂−水洗一酸洗一水洗をするほか
、各メッキ液によってそれぞれ指定された前処理を行う
ものである。There are no particular restrictions on the metal type for electroless plating in the present invention, but examples include gold, silver, copper, nickel, and tin. Moreover, a commercially available plating solution is sufficient. Pretreatment of the paste circuit surface when plating is usually performed by degreasing with an alkaline solution, washing with water, rinsing with pickling, and rinsing with water, as well as carrying out pretreatments designated by each plating solution.
(作用)
本発明の導電ペーストにおいては、使用する銅粉の形状
係数が6〜7てあり、真珠または真球に近い形状の銅粉
である。球状の銅粉であると二次凝集の分離が容易に行
われるため、ペースト中に均一に分散し、スクリーン印
刷の際の目詰まりが起き難い。また異方性のない球状で
あるから、ペーストとしたときの過度のチキソトロピッ
ク性を抑えることができ、印刷時のレベリング性のよい
表面平坦な回路塗膜とすることができる。また、銅粉の
比表面積は0.4〜0.7m2/g、即ち平均粒径が大
略1〜271mであり、粉体の取扱性がよく、300メ
ツシュ以上のスクリーンを用いて高精所の回路パターン
を印刷してもメツシュオープニングとの関連で起こる選
別効果による回路抵抗の高抵抗化が見られず、0.2m
m以下の細線の回路にも十分適用できる。ざらに、銅粉
のタップ密度は、4 、0 g/cm2以上の高タップ
密度のものであるから、印刷した導電回路中で銅粉が高
充填されるために銅粉同士の接触点を多くすることがで
き低抵抗回路が得られることになる。(Function) In the conductive paste of the present invention, the shape factor of the copper powder used is 6 to 7, and the copper powder has a shape close to a pearl or a perfect sphere. Spherical copper powder easily separates secondary agglomerates, so it is uniformly dispersed in the paste, and clogging during screen printing is less likely to occur. Furthermore, since it is spherical without anisotropy, excessive thixotropic properties can be suppressed when it is made into a paste, and a circuit coating film with a flat surface and good leveling properties during printing can be obtained. In addition, the specific surface area of the copper powder is 0.4 to 0.7 m2/g, that is, the average particle size is approximately 1 to 271 m, and the powder is easy to handle, and it can be used in high precision areas using a screen of 300 mesh or more. Even if the circuit pattern was printed, no increase in circuit resistance due to the screening effect associated with mesh opening was observed, and it was found that 0.2 m
It is fully applicable to circuits with thin wires of less than m. In general, the tap density of copper powder is high at 4.0 g/cm2 or more, so in order to fill the printed conductive circuit with high copper powder, there are many contact points between the copper powders. A low resistance circuit can be obtained.
本発明の導電ペーストは、銅粉のタップ密度が大きいた
め回路中の銅粉の充填が密に行われており低抵抗であり
、しかも平均粒径が微細であるためメッキの付着する核
の数が極めて多くなっていてメッキの成長が効率よく行
われる。The conductive paste of the present invention has a high tapping density of copper powder, so the copper powder in the circuit is densely packed, resulting in low resistance.Moreover, the average particle size is small, so the number of nuclei to which plating adheres is small. is extremely large, and the growth of plating is carried out efficiently.
従って、この導電ペーストを使用した印刷回路を下地と
しこれに無電解メッキを施した本発明の導電回路は、メ
ッキのピンホールも極めて少なく、表面平滑な内部欠陥
の少ない信頼性の高い極めて低抵抗の導電回路である。Therefore, the conductive circuit of the present invention, which is based on a printed circuit using this conductive paste and subjected to electroless plating, has extremely low plating pinholes, has a smooth surface, has few internal defects, and has high reliability and extremely low resistance. It is a conductive circuit.
(実施例) 次に、本発明を実施例によって具体的に説明する。(Example) Next, the present invention will be specifically explained using examples.
1 〜
実施例1,2及び比較例1〜3は、形状係数6の球状銅
粉、比較例4,5は形状係数12の樹枝状の電解銅粉、
比較例6は、樹脂状の電解銅粉をボールミルで粉砕加工
してフレーク状とした形状係数10の銅粉を用いた。1 ~ Examples 1 and 2 and Comparative Examples 1 to 3 are spherical copper powders with a shape factor of 6, Comparative Examples 4 and 5 are dendritic electrolytic copper powders with a shape factor of 12,
Comparative Example 6 used copper powder with a shape factor of 10, which was made into flakes by crushing resin-like electrolytic copper powder with a ball mill.
上記それぞれの銅粉とレゾール型フェノール樹脂および
少量のオレイン酸、消泡剤を添加して三本ロールミルで
混練して導電ペーストを調製した。A conductive paste was prepared by adding each of the above copper powders, a resol type phenol resin, a small amount of oleic acid, and an antifoaming agent and kneading them in a three-roll mill.
なお、銅粉の含有量は、各々の導電ペーストにおいて比
抵抗の最低となる値を予め求めてその値を採用した。銅
粉と樹脂固形分の合計量に対して銅粉の含有量は、実施
例1,2および比較例1〜3においては83%、比較例
4においては80%、比較例5,6においては75%で
ある。Note that the content of copper powder was determined in advance by determining the lowest value of specific resistance in each conductive paste, and adopted that value. The content of copper powder relative to the total amount of copper powder and resin solids was 83% in Examples 1 and 2 and Comparative Examples 1 to 3, 80% in Comparative Example 4, and 80% in Comparative Examples 5 and 6. It is 75%.
それぞれの導電ペーストを、200〜400メツシユの
ステンレススクリーンを用いて印刷法によりエポキシガ
ラスクロス基板にパターン印刷を行った。パターンは、
線幅21IIII+1全長368■のジグザグパターン
と311III+角のランドからなる。A pattern of each conductive paste was printed on an epoxy glass cloth substrate by a printing method using a stainless steel screen of 200 to 400 meshes. The pattern is
It consists of a zigzag pattern with a line width of 21III+1 and a total length of 368cm and a land with a corner size of 311III+.
印刷したペーストは、160℃の熱風恒温槽中で30分
間硬化し、回路の抵抗値と膜厚を測定して比抵抗を求め
た。The printed paste was cured for 30 minutes in a hot air constant temperature bath at 160° C., and the resistance value and film thickness of the circuit were measured to determine the specific resistance.
更に、市販の無電解メッキ液により5μm厚の銅メッキ
を施した。200メツシユスクリーンにより印刷したも
のについて、半田プル強度を3mm角のランドでn=1
0で測定し平均値を求めた。Furthermore, copper plating with a thickness of 5 μm was applied using a commercially available electroless plating solution. For those printed with a 200 mesh screen, the solder pull strength is n = 1 on a 3 mm square land.
It was measured at 0 and the average value was calculated.
表1に、それぞれの導電ペーストの銅粉特性と測定結果
を示した。Table 1 shows the copper powder characteristics and measurement results of each conductive paste.
表1から明らかなように、実施例1および2の導電ペー
ストは、比抵抗が極めて優れており、しかもスクリーン
メツシュによる比抵抗の差がない。As is clear from Table 1, the conductive pastes of Examples 1 and 2 have extremely excellent resistivity, and there is no difference in resistivity due to the screen mesh.
比較例1〜3は球状銅粉であるが、タップ密度が4 、
0 g7cm3以下であるため比抵抗が高く、半田プル
強度も低い。比較例3は平均粒径が実施例に比べて2倍
以上大きいため、スクリーンメツシュにより比抵抗の差
がある。Comparative Examples 1 to 3 are spherical copper powders, but the tap density is 4,
Since it is less than 0 g7cm3, the specific resistance is high and the solder pull strength is low. In Comparative Example 3, the average particle diameter is more than twice as large as that in Examples, so there is a difference in specific resistance depending on the screen mesh.
比較例4〜6は比抵抗並びに半田プル強度ともに実施例
より劣り、しかもスクリーンメツシュにより比抵抗に差
がある。Comparative Examples 4 to 6 are inferior to Examples in both specific resistance and solder pull strength, and there is a difference in specific resistance due to the screen mesh.
(発明の効果)
本発明の導電ペーストは特に微細パターンの印刷性に優
れ、またこの導電ペーストを使用した導電回路は導電性
が高く、しかも回路欠陥が少ないためこの回路を下地に
して無電解メッキを施した導電回路は、半田付は性に優
れており、印刷配線板としてきわめて有用である。(Effects of the Invention) The conductive paste of the present invention is particularly excellent in printing fine patterns, and the conductive circuit using this conductive paste has high conductivity and has few circuit defects, so electroless plating is performed using this circuit as a base. The conductive circuit that has undergone this process has excellent solderability and is extremely useful as a printed wiring board.
特許出願人 古河電気工業株式会社Patent applicant: Furukawa Electric Co., Ltd.
Claims (3)
/g且つタップ密度4.0g/cm^3以上の粒状銅粉
からなる導電フィラーを熱硬化性樹脂に配合混和してな
る導電ペースト。(1) Shape factor 6-7, specific surface area 0.4-0.7m^2
/g and a tap density of 4.0 g/cm^3 or more, a conductive paste made by blending and mixing a conductive filler made of granular copper powder with a thermosetting resin.
載の導電ペーストを印刷した後、加熱硬化させて得られ
る導電回路。(2) A conductive circuit obtained by printing the conductive paste according to claim 1 on an insulating substrate by a screen printing method and then heating and curing the paste.
に、無電解金属メッキを施してなる導電回路。(3) A conductive circuit obtained by subjecting part or all of the surface of the conductive circuit according to claim 2 to electroless metal plating.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9323088A JPH01265405A (en) | 1988-04-15 | 1988-04-15 | Conductive paste and conductive circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9323088A JPH01265405A (en) | 1988-04-15 | 1988-04-15 | Conductive paste and conductive circuit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH01265405A true JPH01265405A (en) | 1989-10-23 |
Family
ID=14076742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9323088A Pending JPH01265405A (en) | 1988-04-15 | 1988-04-15 | Conductive paste and conductive circuit |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01265405A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08217955A (en) * | 1995-02-17 | 1996-08-27 | Matsushita Electric Ind Co Ltd | Conductive composition |
| US5681441A (en) * | 1992-12-22 | 1997-10-28 | Elf Technologies, Inc. | Method for electroplating a substrate containing an electroplateable pattern |
| WO2006126499A1 (en) * | 2005-05-25 | 2006-11-30 | Sumitomo Electric Industries, Ltd. | Conductive paste and wiring board using it |
| US20140178573A1 (en) * | 2012-09-10 | 2014-06-26 | Heraeus Precious Metals North America Conshohocken Llc | Low firing temperature copper composition |
-
1988
- 1988-04-15 JP JP9323088A patent/JPH01265405A/en active Pending
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5681441A (en) * | 1992-12-22 | 1997-10-28 | Elf Technologies, Inc. | Method for electroplating a substrate containing an electroplateable pattern |
| JPH08217955A (en) * | 1995-02-17 | 1996-08-27 | Matsushita Electric Ind Co Ltd | Conductive composition |
| WO2006126499A1 (en) * | 2005-05-25 | 2006-11-30 | Sumitomo Electric Industries, Ltd. | Conductive paste and wiring board using it |
| JP2006331788A (en) * | 2005-05-25 | 2006-12-07 | Sumitomo Electric Ind Ltd | Conductive paste and wiring board using the same |
| US8007690B2 (en) | 2005-05-25 | 2011-08-30 | Sumitomo Electric Industries, Ltd. | Conductive paste and wiring board using it |
| US20140178573A1 (en) * | 2012-09-10 | 2014-06-26 | Heraeus Precious Metals North America Conshohocken Llc | Low firing temperature copper composition |
| US9183967B2 (en) * | 2012-09-10 | 2015-11-10 | Heraeus Precious Metals North America Conshohocken Llc | Low firing temperature copper composition |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5951918A (en) | Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit | |
| AU608215B2 (en) | Conductive copper paste composition | |
| US7211205B2 (en) | High conductivity inks with improved adhesion | |
| JP4954885B2 (en) | Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste | |
| TW574716B (en) | Electroconductive paste | |
| JPS6381706A (en) | Composition for copper based thick film | |
| JP4922793B2 (en) | Mixed conductive powder and method for producing the same, conductive paste and method for producing the same | |
| JPH01265405A (en) | Conductive paste and conductive circuit | |
| JP3513636B2 (en) | Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit | |
| JP4441817B2 (en) | Circuit board | |
| JPH04277406A (en) | copper conductor paste | |
| JPS61185806A (en) | conductive resin paste | |
| JPH0931419A (en) | Anisotropic conductive adhesive film | |
| JPH10152630A (en) | Conductive paste and composite conductive powder | |
| JP2963518B2 (en) | Conductive paste composition | |
| JPH0662900B2 (en) | Conductive paint | |
| JPH03176906A (en) | copper paste | |
| JP3540830B2 (en) | Adhesive composition | |
| JP2628734B2 (en) | Conductive paste | |
| JPS62229601A (en) | Method for producing resin-curing conductive paste and conductive circuit board | |
| JPH0649272A (en) | Electrically conductive composition | |
| JPH0714427A (en) | Conductive paste | |
| JP3083146B2 (en) | Conductive paste composition | |
| JP4189792B2 (en) | Conductive composition | |
| GB1574438A (en) | Printed circuits |