JPH01260767A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPH01260767A JPH01260767A JP63086489A JP8648988A JPH01260767A JP H01260767 A JPH01260767 A JP H01260767A JP 63086489 A JP63086489 A JP 63086489A JP 8648988 A JP8648988 A JP 8648988A JP H01260767 A JPH01260767 A JP H01260767A
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- sodium ion
- active material
- battery
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 36
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 19
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 5
- 239000007774 positive electrode material Substances 0.000 claims abstract description 4
- 239000003792 electrolyte Substances 0.000 abstract description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052744 lithium Inorganic materials 0.000 abstract description 8
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 abstract description 8
- 239000011734 sodium Substances 0.000 abstract description 8
- 238000007599 discharging Methods 0.000 abstract description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 6
- 239000011149 active material Substances 0.000 abstract description 6
- 229910052708 sodium Inorganic materials 0.000 abstract description 6
- 239000007773 negative electrode material Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 230000009257 reactivity Effects 0.000 abstract 1
- 230000002441 reversible effect Effects 0.000 abstract 1
- 229910006287 γ-MnO2 Inorganic materials 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 11
- 238000010304 firing Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910000528 Na alloy Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 229920002943 EPDM rubber Polymers 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- -1 polyparaphenylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229910001495 sodium tetrafluoroborate Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(1)産業上の利用分野
本発明は、エネルギー密度が高く、サイクル寿命が長い
性能が良好な二次電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a secondary battery with high energy density, long cycle life, and good performance.
(2)従来の技術
現在までLl、Na等のアルカリ金属を負極活物質とし
て用い、1.2−ジメトキシエタン、プロピレンカーボ
ネート、γ−ブチロラクトン等の溶媒中に、溶質として
LiCj)04.LiBF4゜L iA s F e等
を溶解した、いわゆる非水電解質を用いる二次電池の開
発が進められている。(2) Prior art Until now, alkali metals such as Ll and Na have been used as negative electrode active materials, and LiCj)04. Development of a secondary battery using a so-called non-aqueous electrolyte in which LiBF4°L iAs Fe and the like is dissolved is progressing.
しかしこの種の二次電池は比較的高い電気容量を発揮す
るもののサイクル寿命が短かく、充分、使用に耐えるレ
ベルになかった。However, although this type of secondary battery exhibits a relatively high electric capacity, its cycle life is short, and it is not at a level that can be used satisfactorily.
その理由は、正極及び負極が充放電に対するI′+1逆
性が低いためである。The reason for this is that the positive and negative electrodes have low I'+1 reversibility with respect to charging and discharging.
例えば正極では、TI 、V、Cr 、Mo等の層状構
造もしくはトンネル構造を有する酸化物及びカルコゲン
化合物が知られているが、これらの構造を有する化合物
では電池の充放電によりアルカリ金属イオンが化合物の
層もしくはトンネル内へ出入りする。このため、正極活
物質自体の結晶構造は、膨張、収縮を繰り返すことによ
り活物質粒間が破壊され電極崩壊が起こり、可逆性が低
下することもあり、また放電で挿入されたアルカリ金属
イオンが上記酸化物中で強く結合し、次の充電で充分に
アルカリ金属イオンが放出できず、徐々に電池容量の低
下を招きサイクル寿命が悪い等の欠点か指摘される。For example, for positive electrodes, oxides and chalcogen compounds with layered structures or tunnel structures such as TI, V, Cr, Mo, etc. are known, but in compounds with these structures, alkali metal ions are released from the compound during charging and discharging of the battery. Entering or exiting a layer or tunnel. For this reason, the crystal structure of the cathode active material itself is subject to repeated expansion and contraction, which destroys the particles between the active material particles and causes the electrode to collapse, reducing reversibility.Also, the alkali metal ions inserted during discharge It has been pointed out that the alkali metal ions are strongly bound in the oxide, and the alkali metal ions cannot be sufficiently released during the next charge, leading to a gradual decrease in battery capacity and poor cycle life.
一方負極では、最も軽量で電気容量密度が高いリチウム
が活物質として多く用いられるが、二次電池の場合は、
充電時にデンドライトを生じ、対極との短絡を招いたり
、また、リチウム自身が高活性のため、電解質や溶媒と
反応し、このため充放電効率が低く、サイクル寿命も短
かいという欠点を有する。それら欠点を改善するため、
リチウム単体の代わりにリチウム合金を用いたり、また
負極表面にイオン導電性の被膜を作製し、リチウムと電
解液が直接接触するのを防止する方法等が検討されてい
る。On the other hand, in negative electrodes, lithium, which is the lightest and has the highest electric capacity density, is often used as the active material, but in the case of secondary batteries,
It has the drawbacks of forming dendrites during charging, leading to a short circuit with the counter electrode, and because lithium itself is highly active, it reacts with electrolytes and solvents, resulting in low charge/discharge efficiency and short cycle life. In order to improve those shortcomings,
Methods of preventing direct contact between lithium and the electrolyte are being considered, such as using a lithium alloy instead of lithium alone or creating an ion-conductive film on the surface of the negative electrode.
(3)発明が解決しようとする課題
しかし、上記のような構成では、二次電池としての電気
容量密度を大きくした場合のサイクル寿命が悪く、エネ
ルギー密度が高く、サイクル寿命が長い、性能が良好な
二次電池を得ることはできなかった。(3) Problems to be solved by the invention However, with the above configuration, the cycle life is poor when the capacitance density is increased as a secondary battery, and the energy density is high, the cycle life is long, and the performance is good. It was not possible to obtain a suitable secondary battery.
(4)課題を解決するための手段
本発明者等は、正極活物質にM n 02とNaOHと
の混合焼成品を用い、負極活物質にナトリウムイオンが
充電により還元されて電極反応を維持するものを用い、
電解質として、ナトリウムイオン導伝性非水電解質を用
いることによって上記課題が解決されることが分かり本
発明に至った。(4) Means for Solving the Problem The inventors used a fired mixture of M n 02 and NaOH as the positive electrode active material, and maintained the electrode reaction by reducing sodium ions to the negative electrode active material by charging. using things,
It has been found that the above problems can be solved by using a sodium ion conductive non-aqueous electrolyte as the electrolyte, leading to the present invention.
構成要素としての正極活物質であるM n 02とNa
OHとの混合焼成品としては、その作製方法も重要な要
素である。原料のM n 02およびNaOHについて
は特にグレード及び製法の指定は必要ない。例えばM
n 02については電解合成品であっても化学合成品で
あってもよく、結晶構造そのものについては、α型でも
β型でもγ型でもδ型でも、スピネル型でもその他どの
ようなものでも差支えない。しかし、元の結晶構造自身
がナトリウムイオンを多量に挿入できるものが好ましく
、その点から、β型またはγ型またはそれらの混在した
ものがよい。M n 02 and Na which are positive electrode active materials as constituent elements
As for the mixed fired product with OH, the manufacturing method is also an important factor. Regarding the raw materials M n 02 and NaOH, there is no need to specify the grade and manufacturing method. For example, M
n02 may be an electrolytically synthesized product or a chemically synthesized product, and the crystal structure itself may be α type, β type, γ type, δ type, spinel type, or any other type. . However, it is preferable that the original crystal structure itself is capable of inserting a large amount of sodium ions, and from this point of view, β-type, γ-type, or a mixture thereof is preferable.
一方M n O2とNaOHとを混合焼成する方法とし
ては次の方法をとる必要がある。On the other hand, as a method for mixing and firing M n O2 and NaOH, it is necessary to use the following method.
まず、混合焼成するM n 02とNaOHとのモル比
は、M n O2に対しNaOHは、0.2乃至1.2
の範囲内がよい。First, the molar ratio of M n 02 and NaOH to be mixed and fired is 0.2 to 1.2.
It is better to be within the range of .
この範囲を外れたものでは、?li性能向上の効果は小
さい。Is it outside this range? The effect of improving li performance is small.
使用するM n O2及びNaOHはあらかじめ水分を
除去した方が好ましいが、必ずしもこの工程は必要ない
。Although it is preferable to remove moisture from the M n O2 and NaOH used, this step is not necessarily necessary.
次いでM n 02とNaOHは、できる限りよく混合
する必要があり両粉体物を混練することもよく混合する
にはよい方法である。Next, M n 02 and NaOH need to be mixed as well as possible, and kneading both powders is also a good way to mix them well.
特に重要なのは焼成温度であり、高すぎても低すぎても
混合焼成する効果は殆どなくなる。What is particularly important is the firing temperature; if it is too high or too low, the effect of mixing and firing will be almost negated.
即ち、焼成温度は、200℃以上450℃以下でなくて
はならず、200℃未満であると焼成効果が得られず、
また450℃を超えるとNaOHとM n O2との反
応がすすみすぎて、高容量の活物質を得ることはできな
い。この中で特に焼成効果をはやめ、効率良く焼成する
温度は250℃乃至380℃の範囲内である。That is, the firing temperature must be 200°C or more and 450°C or less; if it is less than 200°C, no firing effect will be obtained;
Furthermore, if the temperature exceeds 450°C, the reaction between NaOH and MnO2 will proceed too much, making it impossible to obtain a high-capacity active material. Among these, the temperature at which the firing effect is particularly suppressed and the firing is performed efficiently is within the range of 250°C to 380°C.
一方負極活物質としては、ナトリウム単体の他にナトリ
ウム合金、ナトリウム合金と電導性高分子との複合体、
ナトリウム合金とカーボンブラック等の炭素材料との複
合体、電導性高分子のナトリウムイオンインサージョン
化合物等があるが好ましいのは、ナトリウム合金と電導
性高分子との複合体、ナトリウム合金とカーボンブラッ
ク等の炭素材料との複合体である。On the other hand, as negative electrode active materials, in addition to sodium alone, sodium alloys, composites of sodium alloys and conductive polymers,
There are composites of sodium alloys and carbon materials such as carbon black, sodium ion insertion compounds of conductive polymers, etc., but preferred are composites of sodium alloys and conductive polymers, sodium alloys and carbon black, etc. It is a composite with carbon material.
上記電導性高分子の種類としては、ポリパラフェニレン
、ポリアセチレン、ポリチオフェン又はラダー状ポリマ
ー等が好ましく、また、炭素材料としては、カーボンブ
ラック、黒鉛、活性炭等を挙げることができる。これら
は、粉体状であっても繊維状であってもどちらでも購わ
ない。Preferred examples of the conductive polymer include polyparaphenylene, polyacetylene, polythiophene, and ladder polymers, and examples of the carbon material include carbon black, graphite, and activated carbon. I don't buy these either in powder or fibrous form.
またナトリウムイオン導伝性電解質としては、一般には
、ナトリウム塩を非水溶媒に溶解した電解液が用いられ
、例えばN a P F e 、N a B F 4゜
NaAsF NaCff ONaCF35o4B’
4 。As the sodium ion conductive electrolyte, an electrolytic solution in which a sodium salt is dissolved in a non-aqueous solvent is generally used, such as NaPFe, NaBF4゜NaAsF NaCff ONaCF35o4B'
4.
等のナトリウム塩を1.2−ジメトキシエタン、プロピ
レンカーボネート、2−メチルテトラヒドロフラン、テ
トラヒドロフラン、エチレンカーボネート、ジオキサン
、γ−ブチロラクトン等の非水溶媒に溶解したものであ
る。またナトリウムイオン導伝性の固体電解質を用いて
も一溝に差支えない。A sodium salt of 1,2-dimethoxyethane, propylene carbonate, 2-methyltetrahydrofuran, tetrahydrofuran, ethylene carbonate, dioxane, γ-butyrolactone, or the like is dissolved in a non-aqueous solvent. Furthermore, it is possible to use a solid electrolyte that conducts sodium ions.
(5)作 用
本発明の構成要素の二次電池では、正極に於いては、M
n 02とNaOHとの焼成品を用いることにより、
放電によりナトリウムイオンが活物質中に挿入され、充
電により挿入されたナトリウムイオンが可逆性よく放出
される。一方1.負極に於いては、充電によってナトリ
ウムイオンが還元され、放電によってリチウム系よりも
可逆性よくナトリウムイオンに酸化放出されるため、正
極に単なるγ型M n Oやβ型M n O2を用いた
ちのよりも、可逆性よく、容量密度の大きい電池を作製
することができる。さらにリチウムよりも電解液との反
応活性が低いナトリウム系を用いることにより、電池の
エネルギー密度、サイクル寿命のよい高性能の二次電池
を得ることができる。(5) Function In the secondary battery that is a component of the present invention, in the positive electrode, M
By using a fired product of n02 and NaOH,
Sodium ions are inserted into the active material by discharging, and the inserted sodium ions are reversibly released by charging. On the other hand 1. In the negative electrode, sodium ions are reduced by charging, and are oxidized and released into sodium ions by discharging with better reversibility than lithium-based ions. It is possible to produce a battery with good reversibility and high capacity density. Furthermore, by using a sodium-based material that has a lower reaction activity with the electrolyte than lithium, a high-performance secondary battery with good battery energy density and cycle life can be obtained.
(6)実施例
以下、本発明をコイン型二次電池に応用した実施例につ
いて説明する。(6) Example Hereinafter, an example in which the present invention is applied to a coin-type secondary battery will be described.
〔実施例1〕
(正極の製造方法)
γ型M n O2とNaOHを当モルずつよく混合した
後、アルゴン雰囲気中で、室温から350℃になるまで
約1時間で昇温し、350℃で20時間保持した。焼成
後自然冷却で室温まで戻し、アルゴン雰囲気中で、カー
ボンブラックを10重量%、ポリテトラフルオロエチレ
ンを3重量%加えよく混合した後、補強及び集電をかね
たニッケル網を含有した形で、直径15m+s、厚み4
50茄になるよう錠剤成型器を用い成型した。次いで結
着強度を上げるため250℃で2時間加熱して、ペレッ
ト状正極を得た。[Example 1] (Manufacturing method of positive electrode) After thoroughly mixing γ-type M n O2 and NaOH in equimolar amounts, the temperature was raised from room temperature to 350°C in about 1 hour in an argon atmosphere, and the mixture was heated at 350°C. It was held for 20 hours. After firing, the mixture was naturally cooled to room temperature, and in an argon atmosphere, 10% by weight of carbon black and 3% by weight of polytetrafluoroethylene were added and mixed well. Diameter 15m+s, thickness 4
It was molded using a tablet molding machine to give a total of 50 tablets. Next, in order to increase the binding strength, the mixture was heated at 250° C. for 2 hours to obtain a pellet positive electrode.
(負極の製造方法)
ナトリウムと鉛のモル比が2.5:lになるよう鉄製る
つぼに取り、アルゴン下で室温から徐々に昇温し、約5
00℃で4時間溶融後、340℃で15時間焼鈍し、室
温まで冷却した。(Manufacturing method of negative electrode) Place the molar ratio of sodium and lead in an iron crucible at 2.5:l, and gradually raise the temperature from room temperature under argon to approximately 5:1.
After melting at 00°C for 4 hours, it was annealed at 340°C for 15 hours and cooled to room temperature.
この合金を乳鉢でよく粉砕した後、昭和電工■製人造黒
鉛粉末を所定量混ぜ、次いでキシレンに溶解したEPD
M(日本合成ゴム製:商品名JSR−EP25X)を上
記混合物と混ぜ練りこんだ。尚、上述した所定量はナト
リウム合金と黒鉛粉末とEPDMの重量比が82:14
:4となるような配合比とした。After thoroughly crushing this alloy in a mortar, a predetermined amount of artificial graphite powder manufactured by Showa Denko was mixed in, and then EPD dissolved in xylene was mixed.
M (manufactured by Japan Synthetic Rubber Co., Ltd., trade name JSR-EP25X) was mixed and kneaded with the above mixture. Note that the above-mentioned predetermined amounts are such that the weight ratio of sodium alloy, graphite powder, and EPDM is 82:14.
: The blending ratio was set to be 4.
次いで上記混合物を錠剤成型機で直径15m+*、厚み
300ρになるよう成型してペレット状負極を得た。Next, the above mixture was molded using a tablet molding machine to a diameter of 15 m+* and a thickness of 300 ρ to obtain a pellet negative electrode.
(電池試験)
上記方法で作製した負極と正極を用い、電解液に1mo
l)/l濃度のN a P F eの1.2−ジメトキ
シエタン溶液を用い、図1のコイン型電池を組み、電池
試験を行なった。(Battery test) Using the negative electrode and positive electrode prepared in the above method, add 1 mo to the electrolyte.
Using a 1,2-dimethoxyethane solution of NaPFe at a concentration of 1)/l, the coin type battery shown in FIG. 1 was assembled and a battery test was conducted.
まず放電方向から一定電流値1.7n+Aで電池電圧が
1.7Vになるまで放電し、次いで30分間のレスト時
間をおいたのち、1 、7mAの電流で電池電圧が3.
3vになるまで充電し、レスト時間をおいたのち、再び
放電という充放電の繰り返し試験を行なった。First, discharge from the discharge direction at a constant current value of 1.7n+A until the battery voltage reaches 1.7V, then after a 30-minute rest time, the battery voltage reaches 3.0V with a current of 1.7mA.
The battery was charged to 3V, and after a rest time, the battery was discharged again, which was a repeated test of charging and discharging.
その結果最大放電電気量は13.8mAh 、平均放電
電圧は2.55Vであった。また放電容量がIOmAh
を割るまでのサイクル寿命は852同であった。As a result, the maximum amount of discharged electricity was 13.8mAh, and the average discharge voltage was 2.55V. Also, the discharge capacity is IOmAh
The cycle life until breaking was 852.
またこの電池の100サイクル目で40℃、 20日間
の自己放電テストを行なったところ、自己放電率は、1
2.8%であった。In addition, when this battery was subjected to a self-discharge test at 40℃ for 20 days at the 100th cycle, the self-discharge rate was 1.
It was 2.8%.
〔実施例2〕
(正極の製造)
電解二酸化マンガン(1、C,N(L 、3 )とNa
OHを1 :0.5のモル比で混ぜ、乾燥空気中で30
0℃迄昇温し、300℃で20時間保持した。焼成後室
温まで自然冷却し、アルゴン雰囲気下カーボンブラック
を10重量%キシレンに溶解させたEPDM(エチレン
・プロピレンゴム)を1.5fflf1%加え、よく混
合した後、ニッケル網を含有した形で直径15+n+*
。[Example 2] (Production of positive electrode) Electrolytic manganese dioxide (1, C, N (L, 3) and Na
Mix OH in a molar ratio of 1:0.5 and store in dry air for 30 min.
The temperature was raised to 0°C and held at 300°C for 20 hours. After firing, it was naturally cooled to room temperature, and 1.5fflf1% of EPDM (ethylene propylene rubber) in which 10% by weight of carbon black was dissolved in xylene was added under an argon atmosphere. *
.
厚み450廂になるよう錠剤成型器で成型した。次いで
キシレンを除去するため130℃で、2時間減圧乾燥し
て、正極として用いた。It was molded using a tablet molding machine to a thickness of 450 cm. Next, in order to remove xylene, it was dried under reduced pressure at 130° C. for 2 hours and used as a positive electrode.
(負極の製造方法)
ナトリウムと鉛とを原子比が3.75 : lになるよ
うに混ぜ、500℃で4時間溶融後350℃で15時間
焼鈍し、室温まで冷却した。この合金を乳鉢でよく粉砕
した後、熱分解型黒鉛粉末を所定量混ぜ、次いでキシレ
ンに溶解したEPDMを上記混合物と混ぜ練りこんだ。(Manufacturing method of negative electrode) Sodium and lead were mixed at an atomic ratio of 3.75:l, melted at 500°C for 4 hours, annealed at 350°C for 15 hours, and cooled to room temperature. After thoroughly crushing this alloy in a mortar, a predetermined amount of pyrolytic graphite powder was mixed therein, and then EPDM dissolved in xylene was mixed and kneaded with the above mixture.
尚、上述した所定量とはナトリウム合金と黒鉛粉末とE
PDMの重量比が、85:12:3となるような配合比
とした。Note that the above-mentioned predetermined amounts are sodium alloy, graphite powder, and E.
The blending ratio was such that the weight ratio of PDM was 85:12:3.
次いで、上記混合物から過剰のキシレンを減圧して除去
した後、補強材として75メツシユのニッケル金網を混
合物の上に重ねて全厚みが380庫になるようローラー
プレス法によってシート状に成形した。Next, after removing excess xylene from the mixture under reduced pressure, a 75-mesh nickel wire gauze was layered on top of the mixture as a reinforcing material, and the mixture was formed into a sheet by a roller press method so that the total thickness was 380 mm.
上記方法で成形した電極を直径が約15市になるよう切
り欠き負極とした。The electrode formed by the above method was cut out to have a diameter of about 15 cm to form a negative electrode.
(電池試験)
上記方法で作製した、正極と負極と電解液にL iA
s F eを1.2−ジメトキシエタンと2−メチルテ
トラヒドロフランの体積比が1:1の混合溶媒に溶解し
たものを用い、図1のコイン型電池を組み性能を調べた
。(Battery test) LiA was added to the positive electrode, negative electrode, and electrolyte prepared by the above method.
Using a solution of sFe dissolved in a mixed solvent of 1,2-dimethoxyethane and 2-methyltetrahydrofuran in a volume ratio of 1:1, the coin-type battery shown in FIG. 1 was assembled and its performance was investigated.
試験方法は、実施例1と同様な方法で行なった。The test method was the same as in Example 1.
その結果、最大放電電気量は13.5+nAhを示し、
放電電気量がlO+++Ahを割る迄のサイクル数は5
92回であった。As a result, the maximum discharge amount of electricity was 13.5+nAh,
The number of cycles until the amount of discharged electricity becomes less than 1O+++Ah is 5.
It was 92 times.
また100サイクルロの自己放電率は11.596であ
った。Moreover, the self-discharge rate after 100 cycles was 11.596.
〔実施例3〕
負極黒鉛粉末の代わりにポリバラフェニレンを用いた以
外は実施例1とまったく同様のセルを構成し電池実験を
行なった。[Example 3] A battery experiment was conducted by constructing a cell exactly the same as in Example 1, except that polybaraphenylene was used instead of the negative electrode graphite powder.
その結果、最大放電電気量は13.7IIIAhを示し
、放電電気量がlo■Ahを割る迄のサイクル数は64
7回であった。As a result, the maximum amount of discharged electricity was 13.7IIIAh, and the number of cycles until the amount of discharged electricity was less than lo■Ah was 64.
It was seven times.
また100サイクル目での自己放電率は12.5%であ
った。Furthermore, the self-discharge rate at the 100th cycle was 12.5%.
(7)効 果
上記のように本発明の二次電池は、高容量で高エネルギ
ー密度を有し、かつ可逆性が良く自己放電率が低く、低
コスト化も可能で、ポータプル機器用主電源、バックア
ップ電源をはじめ、家庭用電気製品用電源、また電気自
動車用駆動電源、またロードレベリング用としても、ま
た、身分証明用カード電源等、大型、小型を問わず、優
秀な二次電池を提供するものである。(7) Effects As described above, the secondary battery of the present invention has high capacity and high energy density, has good reversibility, has a low self-discharge rate, can be made at low cost, and can be used as a main power source for portable equipment. We provide excellent secondary batteries, both large and small, for use as backup power supplies, power supplies for household electrical appliances, drive power supplies for electric vehicles, load leveling, and power supplies for identification cards. It is something to do.
第1図は、本発明の電池を評価するために用いたコイン
型二次電池セルの概略断面図である。FIG. 1 is a schematic cross-sectional view of a coin-shaped secondary battery cell used to evaluate the battery of the present invention.
Claims (1)
電によりナトリウムイオンが吸収され放電によりナトリ
ウムイオンが放出される負極を構成要素とし、前記正極
活物質がMnO_2とNaOHとの混合焼成品であるこ
とを特徴とする非水電解質二次電池。The components include a positive electrode, a sodium ion conductive nonaqueous electrolyte, and a negative electrode that absorbs sodium ions during charging and releases sodium ions during discharge, and the positive electrode active material is a mixed fired product of MnO_2 and NaOH. A non-aqueous electrolyte secondary battery featuring:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63086489A JPH01260767A (en) | 1988-04-08 | 1988-04-08 | Secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63086489A JPH01260767A (en) | 1988-04-08 | 1988-04-08 | Secondary battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH01260767A true JPH01260767A (en) | 1989-10-18 |
Family
ID=13888397
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63086489A Pending JPH01260767A (en) | 1988-04-08 | 1988-04-08 | Secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01260767A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8790831B2 (en) | 2008-02-04 | 2014-07-29 | Sumitomo Chemical Company, Limited | Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery |
| US9142860B2 (en) | 2008-02-04 | 2015-09-22 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
| CN105958131A (en) * | 2016-06-20 | 2016-09-21 | 南开大学 | A rechargeable aqueous zinc-ion battery with long cycle life and high energy density |
| US10122014B2 (en) | 2008-02-04 | 2018-11-06 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
-
1988
- 1988-04-08 JP JP63086489A patent/JPH01260767A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8790831B2 (en) | 2008-02-04 | 2014-07-29 | Sumitomo Chemical Company, Limited | Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery |
| US9142860B2 (en) | 2008-02-04 | 2015-09-22 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
| US10122014B2 (en) | 2008-02-04 | 2018-11-06 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
| CN105958131A (en) * | 2016-06-20 | 2016-09-21 | 南开大学 | A rechargeable aqueous zinc-ion battery with long cycle life and high energy density |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5759719A (en) | Electrode material for lithium intercalation electrochemical cells | |
| JP3008228B2 (en) | Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof | |
| JPH07230800A (en) | Nonaqueous electrolyte secondary battery and manufacture thereof | |
| JP3562187B2 (en) | Non-aqueous electrolyte secondary battery | |
| EP2277230A2 (en) | High energy lithium ion secondary batteries | |
| WO1998040923A1 (en) | Nonaqueous electrolyte battery and charging method therefor | |
| JP2003017060A (en) | Positive electrode active material and non-aqueous electrolyte battery | |
| WO2003069701A1 (en) | Production methods for positive electrode active matter and non-aqueous electrolytic battery | |
| JP3079382B2 (en) | Non-aqueous secondary battery | |
| KR101666796B1 (en) | Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same | |
| JPH05144472A (en) | Non-aqueous electrolyte secondary battery | |
| JP2887632B2 (en) | Non-aqueous electrolyte secondary battery | |
| JPH11162467A (en) | Non-aqueous secondary battery | |
| JPH06275265A (en) | Nonaqueous electrolyte secondary battery | |
| JPH07249409A (en) | Nonaqueous electrolyte secondary battery | |
| JPH01260767A (en) | Secondary battery | |
| JPH01197964A (en) | Secondary battery | |
| JP3076887B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
| Kim et al. | Electrochemical characteristics of all-solid lithium ion battery with lithium titanate/lithium lanthanum zirconium oxide composite electrode | |
| JPH04289662A (en) | Non-aqueous electrolyte secondary battery and its positive electrode active material manufacturing method | |
| JP3081981B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
| JP2839627B2 (en) | Rechargeable battery | |
| JP3354611B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
| JPH0945330A (en) | Non-aqueous secondary battery | |
| JP3447187B2 (en) | Non-aqueous electrolyte battery and method for manufacturing the same |