[go: up one dir, main page]

JPH01274042A - Alcohol content detection device - Google Patents

Alcohol content detection device

Info

Publication number
JPH01274042A
JPH01274042A JP10470588A JP10470588A JPH01274042A JP H01274042 A JPH01274042 A JP H01274042A JP 10470588 A JP10470588 A JP 10470588A JP 10470588 A JP10470588 A JP 10470588A JP H01274042 A JPH01274042 A JP H01274042A
Authority
JP
Japan
Prior art keywords
light
fuel
alcohol content
refractive index
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10470588A
Other languages
Japanese (ja)
Other versions
JPH0610654B2 (en
Inventor
Hiroyoshi Suzuki
鈴木 尋善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10470588A priority Critical patent/JPH0610654B2/en
Publication of JPH01274042A publication Critical patent/JPH01274042A/en
Publication of JPH0610654B2 publication Critical patent/JPH0610654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable highly accurate detection of an alcohol content continuously all the time without delay, by forming a fuel refractive index detecting surface in the course of each of a plurality of slender photoconductors while a projector is set on one end face of the photoconductors and a light receiving body on the other end face thereof. CONSTITUTION:Fuel refractive index detecting surfaces 2 supports a plurality of optical fibers 1 in parallel tightly on a support member 7 to be fixed with a filling member. Then, the detecting surface is ground to differential distances from the center in the course thereof so that core surfaces with varied average refractive indexes are exposed to form a contact liquid face with a fuel. The detecting surface 2 is arranged parallel with a fuel passage 8 to minimize a pressure loss of a fuel flow 8a. The fibers 1 are joined together at one end thereof to form a junction section 6 and light in equal quantity is made incident on the optical fibers 1 through a light diffusing member 4 from a light emitting element 3. A light center of gravity detector 5 is disposed on the other end side in such a manner as to hold one end of all the optical fibers within an effective light receiving range and receives totally reflected light on the detecting surface 2. Photocurrent is sent to a detection circuit 10 from electrodes IL and IR corresponding to a quantity of light received from the photo detector 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃焼器等に供給される燃料の性状を非接触
で判別する装置に係わり、特に自動車等のエンジンに用
いられるアルコール混合燃料中のアルコール含有率を測
定する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for non-contact determining the properties of fuel supplied to a combustor, etc., and particularly relates to a device for non-contact determining the properties of fuel supplied to a combustor, etc. The present invention relates to a device for measuring the alcohol content of alcohol.

〔従来の技術〕[Conventional technology]

近時、米国、欧州等の各国で、石油の消費量の低減化を
図るため、ガソリン中にアルコールを混合した燃料が自
動車用として背反しつつある。このようなアルコール混
合燃料をガソリン燃料の空燃比にマツチングされたエン
ジンにそのまま用いると、アルコールがガソリンに比し
理論空燃比が小さい等に起因して空燃比がリーン化する
ため、アルコール混合燃料中のアルコール含有率を検出
して燃料噴射弁とうのアクチュエータを制御し、アルコ
ール含有率に応じて空燃比、点火時期等を調整する。従
来、上記のごとき、アルコール含有率検知装置としては
、例えば特開昭57−51920号公報に記載されたも
のが知られている。かかる従来装置を、以下、第8図、
第9図において説明する。
In recent years, in countries such as the United States and Europe, in an effort to reduce oil consumption, fuels containing alcohol mixed with gasoline are being used for automobiles. If such an alcohol-mixed fuel is directly used in an engine that has been matched to the air-fuel ratio of gasoline, the air-fuel ratio will become lean due to the fact that the stoichiometric air-fuel ratio of alcohol is smaller than that of gasoline. The fuel injection valve actuator is controlled by detecting the alcohol content of the fuel injector, and the air-fuel ratio, ignition timing, etc. are adjusted according to the alcohol content. Conventionally, as an alcohol content detection device as described above, the one described in, for example, Japanese Patent Laid-Open No. 57-51920 is known. Such a conventional device is shown below in FIG.
This will be explained in FIG.

第8図は従来のアルコール含有率検知装置を備えた燃料
制御系を示す構成図であって、Aはアルコール含有率検
知装置を示し、20は自動車等のエンジン、21は吸気
管に設けた燃料噴射弁、22は燃料タンク、23はタン
ク22内の燃料を吸上げる燃料ポンプ、25はポンプ2
3と接続した燃料供給パイプ24を介して接続した高圧
フィルタ、26は燃料分配管、27は燃圧レギュレータ
、28はこのレギュレータ27に接続した燃料リターン
パイプで、その先端が上記タンク22内に達している。
FIG. 8 is a configuration diagram showing a fuel control system equipped with a conventional alcohol content detection device, where A indicates the alcohol content detection device, 20 indicates an engine of an automobile, etc., and 21 indicates a fuel installed in an intake pipe. Injection valve, 22 is a fuel tank, 23 is a fuel pump that sucks up the fuel in the tank 22, 25 is pump 2
26 is a fuel distribution pipe, 27 is a fuel pressure regulator, and 28 is a fuel return pipe connected to this regulator 27, the tip of which reaches into the tank 22. There is.

29は空燃比センサ、30は点火プラグ、31はエンジ
ンの回転を検出するセン1す、32は吸気圧センサ、3
3はスルソトル弁、34はエアクリーナ、そして35は
制御装置であって、アルコール含有率検知装置Aの信号
、空燃比センサ29の信号、エンジンの状M!であるエ
ンジン回転センサ31および吸気圧センサ32等の信号
が人力され、入力に応した制御量で燃料噴射弁211点
火プラグ30等を駆動する。燃料タンク22にアルコー
ル混合燃料が給油されると、エンジンの始動とともに、
アルコール混合燃料は燃料ポンプ23で加圧され燃料供
給パイプ24、高圧フィルタ25を通してアルコール含
有率検知装置Aに導かれて、アルコール含有率が測定さ
れる。燃料は、つぎに燃料分配管26に流入し、一部が
燃料噴射弁21よりエンジンに供給され、他は燃圧レギ
ュレータ27、燃料リターンパイプ28を通って燃料タ
ンク22に戻される。燃圧レギュレータ27は、燃料噴
射弁21の噴射燃料量に関わらず、燃料分配管26まで
の圧力を常に一定値に保持する。アルコール含有率検知
装置Aで測定されたアルコール含有率が制御装置35に
人力されると、制御■装置35はエンジン回転センサ3
1および吸気圧センサ32等の信号によりエンジン状態
を判定し、燃料噴射弁21の開弁時間を制御してエンジ
ンに供給する燃料量を変化させ、空燃比センサ29によ
り空燃比を検出して、上記エンジン状態に応じた目標値
となるよう空燃比をフィードバック制j1シ、またエン
ジン状態に応して点火プラグ30の点火時期を制御して
いる。
29 is an air-fuel ratio sensor, 30 is a spark plug, 31 is a sensor 1 for detecting engine rotation, 32 is an intake pressure sensor, 3
3 is a Sursotle valve, 34 is an air cleaner, and 35 is a control device that detects the signal of the alcohol content detection device A, the signal of the air-fuel ratio sensor 29, and the state of the engine M! Signals from the engine rotation sensor 31, intake pressure sensor 32, etc. are input manually, and the fuel injection valve 211, spark plug 30, etc. are driven with a control amount corresponding to the input. When the fuel tank 22 is filled with alcohol mixed fuel, when the engine starts,
The alcohol mixed fuel is pressurized by a fuel pump 23 and guided to an alcohol content detection device A through a fuel supply pipe 24 and a high-pressure filter 25, where the alcohol content is measured. The fuel then flows into the fuel distribution pipe 26 , a portion of which is supplied to the engine through the fuel injection valve 21 , and the rest of the fuel is returned to the fuel tank 22 through the fuel pressure regulator 27 and fuel return pipe 28 . The fuel pressure regulator 27 always maintains the pressure up to the fuel distribution pipe 26 at a constant value, regardless of the amount of fuel injected by the fuel injection valve 21. When the alcohol content measured by the alcohol content detection device A is input manually to the control device 35, the control device 35 detects the engine rotation sensor 3.
1 and the intake pressure sensor 32, etc., the valve opening time of the fuel injection valve 21 is controlled to change the amount of fuel supplied to the engine, the air-fuel ratio is detected by the air-fuel ratio sensor 29, The air-fuel ratio is feedback-controlled to a target value corresponding to the engine condition, and the ignition timing of the spark plug 30 is controlled according to the engine condition.

第9図は、従来のアルコール含有率検知装置への構成図
であって、37は光学ガラス等で形成された円柱状透光
体、9はケース、11は円柱状透光体37とケース9の
間の燃料シール、3はLEDからなる発光素子、36は
フォトダイオードからなる受光素子、8は燃料流路、8
aは燃料流、38aは全反射光、38bは屈折光、1o
は発光素子3を駆動し受光素子36の受光量を測定する
検知回路であり、円柱状透光体37の外周面は燃料流路
8で燃料と均一に接している。発光素子3より発した光
は円柱状透光体37の外周面、即ち燃料との境界面に入
射するが、この時燃料の屈折率Nfと円柱状透光体37
の屈折率Ndとの差により、境界面への入射角が全反射
角型−arc 5IN(Nf/Nd)以上の光38aは
全反射されて受光素子36に達し、入射角が全反射角型
より小さい光38bは燃料中に屈折透過するため、受光
素子36は境界面への入射角が全反射角!以上となる光
のみを受光する。燃料中のアルコール含有率が変化する
と、燃料の屈折率N「が変化し全反射角型が変わるため
、受光素子3Gの受光量が変化する。この受光量の変化
を検出回路lOで測定することにより燃料中のアルコー
ル含有率が求められる。
FIG. 9 is a configuration diagram of a conventional alcohol content detection device, in which numeral 37 is a cylindrical transparent body made of optical glass or the like, 9 is a case, and 11 is a cylindrical transparent body 37 and a case 9. 3 is a light emitting element consisting of an LED; 36 is a light receiving element consisting of a photodiode; 8 is a fuel flow path;
a is the fuel flow, 38a is the total reflected light, 38b is the refracted light, 1o
is a detection circuit that drives the light-emitting element 3 and measures the amount of light received by the light-receiving element 36; The light emitted from the light emitting element 3 enters the outer peripheral surface of the cylindrical transparent body 37, that is, the interface with the fuel, but at this time, the refractive index Nf of the fuel and the cylindrical transparent body 37
Due to the difference in refractive index Nd from Since the smaller light 38b is refracted and transmitted into the fuel, the angle of incidence on the boundary surface of the light receiving element 36 is the total reflection angle! Only the light that meets the above requirements is received. When the alcohol content in the fuel changes, the refractive index N' of the fuel changes and the total reflection angle changes, so the amount of light received by the light receiving element 3G changes. This change in the amount of received light is measured by the detection circuit IO. The alcohol content in the fuel can be determined by:

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来のアルコール含有率検知装置
においては、発光素子3の発光量、受光素子36の受光
感度、ピーク感度周波数が温度により変化するため、エ
ンジンの発熱、それによる燃料温度の上昇等で検知装置
の温度が変わると受光素子36の受光量も変化し、燃料
中のアルコール含有率が正確に求められないといった欠
点があった。また、一般に円柱状透光体37の屈折率N
dの制約より全反射角型が余り小さく出来ないため、円
柱状透光体37をあまり短くできず、装置を小形化でき
な°いという問題点があった。これらの理由により、従
来のアルコール含有率検知装置はエンジンと離間させて
設置せざるを得ないため、特にエンジン始動の際等、実
際に燃料噴射弁21より噴射される燃料のアルコール含
有率を遅滞なく検出することが不可能であり、特にアル
コール含を率の異なる燃料の給油後のエンジン始動の際
等においては、アルコール含有率検知装置Aの燃料流路
8と燃料分配管26内の、燃料のアルコール含を率に差
がでる始動モードも予想され、かかる場合には最悪エン
ジンが始動できないという不具合が出現することも予想
される。
However, in such a conventional alcohol content detection device, the amount of light emitted by the light emitting element 3, the light receiving sensitivity of the light receiving element 36, and the peak sensitivity frequency change depending on the temperature, so detection is caused by engine heat generation and a rise in fuel temperature due to it. When the temperature of the device changes, the amount of light received by the light-receiving element 36 also changes, resulting in a drawback that the alcohol content in the fuel cannot be determined accurately. Further, generally, the refractive index N of the cylindrical transparent body 37 is
Due to the restriction of d, the total reflection angle cannot be made too small, so the cylindrical light-transmitting body 37 cannot be made very short, resulting in a problem that the device cannot be miniaturized. For these reasons, conventional alcohol content detection devices have to be installed separately from the engine, so they delay the alcohol content of the fuel actually injected from the fuel injection valve 21, especially when starting the engine. Especially when starting the engine after refueling with fuel with a different alcohol content, the fuel in the fuel flow path 8 and the fuel distribution pipe 26 of the alcohol content detection device A It is expected that there will be a starting mode in which the percentage of alcohol content differs, and in such a case, it is expected that in the worst case, a problem will occur where the engine cannot be started.

この発明は、かかる従来の課題を解消するためになされ
たもので、装置温度が変化しても常に遅滞なく、連続的
に精度よく燃料のアルコール含を率を検出することがで
き、燃料分配管26等にも取付けられる小形なアルコー
ル含有率検知装置を得ることを目的とする。
This invention was made to solve such conventional problems, and it is possible to continuously and accurately detect the alcohol content of fuel without any delay even when the device temperature changes, and the fuel distribution pipe The purpose of this invention is to obtain a small alcohol content detection device that can be attached to 26 etc.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るアルコール含有率検知装置は、周囲より
中心に向って屈折率が増加する複数の細長光導体の各々
の途中に燃料屈折率検知面を形成し、細長光導体の一方
の端面に投光体を設け、他方の端面に受光体を設けたも
のである。
The alcohol content detection device according to the present invention forms a fuel refractive index detection surface in the middle of each of a plurality of elongated light guides whose refractive index increases from the periphery toward the center, and projects a fuel refractive index on one end surface of the elongated light guide. A light body is provided, and a photoreceptor is provided on the other end surface.

〔作 用〕[For production]

この発明のアルコール含有率検知’A Wは、複数の細
長光う1体の一端の投光体より該複数の細長光導体の燃
料屈折率検知面へ光を入射せしめ、該燃料屈折率検知面
での全反射光を各々の細長光導体の他端の受光体で受光
し、受光体上の光量分布より燃料の屈折率を検出し、燃
料中のアルコール含有率を検知することができる。
The alcohol content detection 'A W of the present invention allows light to enter the fuel refractive index sensing surface of the plurality of elongated light guides from a light projector at one end of a plurality of elongated light guides, and detects the fuel refractive index sensing surface. The total reflected light is received by a photoreceptor at the other end of each elongated light guide, and the refractive index of the fuel can be detected from the light intensity distribution on the photoreceptor, thereby making it possible to detect the alcohol content in the fuel.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明によるアルコール含有率検知装置の構成図
、第2図は第1図のn−n線断面図、第3図は燃料屈折
率検知面の説明図であって、各図において、lは周囲か
ら中心に向って屈折率が単調増加する細長光導体であり
、ここではグレーディトインデックス型光ファイバ(以
下、光ファイバと称する)を用いた例を示す、1aは光
ファイバ1のコア、■bはグリッド、2は該細長光に体
の途中の一部に設けられた燃料屈折率検知面、3は例え
ばLEDからなる発光素子、4は光拡散体、5は受光体
、でここではPSDからなる光重芯位置検知素子を用い
た例を示す、6は光ファイバ■の接合部、7は支持部材
、8は燃料流路、8aは燃料流、9はケース、IOは検
知回路、11はat−+シール、12は充填部材である
。燃料屈折率検知面2は、複数の光ファイバlを支持部
材7上に互いに並行に密着支持し充填部材12で固定し
た後、その中途が第3図に示すごとく中心からの距離が
各々異なるよう研磨され、平均屈折率Ndが各々異なっ
たコアla面を露出して燃料との接液面が形成されてい
る。また、燃料屈折率検知面2は、第2図のごとく燃料
流8aの圧…が最少となるよう燃料流路8に対し平行に
配置される。複数の光ファイバ1の一端側は互いに接合
されて接合部6が形成され、発光素子3より光拡散体4
をとおし各光ファイバ1に等しい光量が入射される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
1 is a block diagram of the alcohol content detection device according to the present invention, FIG. is an elongated optical guide whose refractive index increases monotonically from the periphery toward the center, and here an example using a graded index optical fiber (hereinafter referred to as optical fiber) is shown. 1a is the core of the optical fiber 1; (b) is a grid, 2 is a fuel refractive index detection surface provided in a part of the body for the elongated light, 3 is a light emitting element made of, for example, an LED, 4 is a light diffuser, and 5 is a photoreceptor; An example using an optical center of gravity position detection element made of a PSD is shown, 6 is the joint of the optical fiber ■, 7 is the support member, 8 is the fuel flow path, 8a is the fuel flow, 9 is the case, IO is the detection circuit, 11 is an at-+ seal, and 12 is a filling member. The fuel refractive index detection surface 2 is constructed by supporting a plurality of optical fibers 1 closely parallel to each other on a support member 7 and fixing them with a filling member 12, so that the midway points are at different distances from the center as shown in FIG. The surfaces of the cores la, which are polished and have different average refractive indexes Nd, are exposed to form surfaces in contact with fuel. Further, the fuel refractive index detection surface 2 is arranged parallel to the fuel flow path 8 so that the pressure of the fuel flow 8a is minimized as shown in FIG. One ends of the plurality of optical fibers 1 are joined to each other to form a joint 6, and the light diffuser 4 is connected to the light emitting element 3.
An equal amount of light is incident on each optical fiber 1 through the optical fiber.

光ファイバ1の他端側には、光重芯位置検知素子5がそ
−のを効受光幅内に全光ファイバ1端が収まるよう光フ
ァイバ1に沿った形で配置され、上記燃料屈折率検知面
2での全反射光を受光する。光重芯位置検知素子5から
は受光量に対応する光電流がそれぞれ電橿IL、IRよ
り検知回路10に送出される。ここで、発光素子3、光
拡散体4、光重芯位置検知素子5は支持部材7で一体に
支持するように構成するのが良い0以上のごとき検知部
は支持部材7の周囲で燃料シール11を介してケース9
に取付けられており、ケース9は例えば燃料分配管26
の入口管路と燃料分配管26との間に挟持される。
On the other end side of the optical fiber 1, an optical center of gravity position detection element 5 is arranged along the optical fiber 1 so that the entire end of the optical fiber 1 falls within the effective light receiving width. Totally reflected light on the detection surface 2 is received. Photocurrents corresponding to the amount of received light are sent from the optical center of gravity position detection element 5 to the detection circuit 10 via electric poles IL and IR, respectively. Here, it is preferable that the light emitting element 3, the light diffuser 4, and the light center of gravity position detection element 5 be configured to be integrally supported by the support member 7. Case 9 through 11
The case 9 is attached to, for example, a fuel distribution pipe 26.
is sandwiched between the inlet pipe and the fuel distribution pipe 26.

次に本実施例の動作につき第4〜第6図を用いて説明す
る。第4図は、この発明のアルコール含有率検知装置の
一実施例の動作説明図、第5図は、光重芯位置検知素子
5の説明図、第6図(al、 (blは、この実施例で
の光重心位置検知素子5上のアルコール含有率に対する
受光量分布の変化の説明図で、lotは発光素子駆動部
、102は光電流増幅部、103は減算部、104は加
算部、105は徐算部である。第4図において、発光素
子3が発光素子駆動部101で駆動されて発光し、放射
光は光拡散体4を通してN = rn本の光ファイバl
に各々略等しい光量で入射するが、ここではその内、屈
折率検知面2での平均屈折率が各々Ndi、Ndj な
るN−1番目、j番目の光ファイバli、 ljにつき
図示しており、光ファイバ1jの方が屈折率検知面2が
ファイバ中心に近いため、Ndi < Ndjである。
Next, the operation of this embodiment will be explained using FIGS. 4 to 6. FIG. 4 is an explanatory diagram of the operation of one embodiment of the alcohol content detection device of the present invention, FIG. 5 is an explanatory diagram of the optical center of gravity position detection element 5, and FIG. This is an explanatory diagram of the change in the distribution of the amount of received light with respect to the alcohol content on the optical center of gravity position detection element 5 in the example, in which lot is a light emitting element drive section, 102 is a photocurrent amplification section, 103 is a subtraction section, 104 is an addition section, 105 is a subtraction unit. In FIG. 4, the light emitting element 3 is driven by the light emitting element driving unit 101 to emit light, and the emitted light passes through the light diffuser 4 and is connected to N = rn optical fibers l.
Of these, the N-1st and jth optical fibers li and lj, whose average refractive indexes at the refractive index detection surface 2 are Ndi and Ndj, respectively, are shown here. Since the refractive index detection surface 2 of the optical fiber 1j is closer to the fiber center, Ndi < Ndj.

従来例にて前述したごとく、アルコール含有率により変
化する燃料の屈折率をNfとすると、屈折率検知面2で
入射光が全反射を生しる臨界入射角型−arc 5IN
(Nf/Nd)であるから、光ファイバ14.lj  
に対する臨界入射角を各々甲i、’Pjとすると、Nd
i < Ndj J: リ甲i>甲jとなる。入射角θ
−甲。
As mentioned above in the conventional example, if the refractive index of the fuel that changes depending on the alcohol content is Nf, the critical incidence angle type -arc 5IN in which the incident light is totally reflected on the refractive index detection surface 2 is used.
(Nf/Nd), so the optical fiber 14. lj
Let Ai and 'Pj be the critical incident angles for Nd
i < Ndj J: Riko i > Koj. Incident angle θ
- Instep.

で屈折率検知面2に入射した光は、光ファイノ<14で
は全反射されてファイバ他端に伝搬するが、光ファイバ
11では屈折角Xで屈折して燃料中に透過するためファ
イバ他端に伝搬する光量は光ファイバ1jより大幅に小
となる。かかる光ファイツマ1の他端部への伝搬光量の
差は、光重心位置検知素子5上に光量分布を形成し、こ
の光量分布は、燃料の屈折率Nfの変化による臨界人射
角甲の変化により、アルコール含有率に対し第6図(a
l、 (blに示すごと(変化する。光重心位置検知素
子5は、第5図のごとく、平板状シリコンの表面にP層
(抵抗層)41、裏面にN層42、中間に1層43の3
層で構成され、光スポットが入射すると、入射光位置よ
り上記抵抗層を通り、電極rL、 IRまでの距離に逆
比例した分割光電流iR,iLが電極IL、 IRより
取出される。取出された光電流iR,iLは、第4図に
示すように検知回路lOに入力され充電流増幅部102
で増幅され減算部103でiR−iLが加算部104で
iR+ iLが求められた後、除算部105で、 位置信号X = (L/2) X (iRiL) / 
(iR+ iL>に比例した出カシoutが求められる
。Lは光重心位置検知素子5の有効受光幅である。第6
図fatのごとく、屈折率検知面2での平均入射角θが
、アルコール含有率が100%の時のm本の光ファイバ
lにおける臨界入射角型より大であれば、m本の光ファ
イバ1の全ての他端側に光が全反射され、光重心位置検
知素子5上の光量分布は略−様となってiRとiLは同
程度となり位置信号Xは0に近い値をとるが、燃料中の
アルコール含有率が低下すると屈折率Nfが高くなり、
全ての光ファイバlにおける臨界入射角型が大となるた
め、rn本の光フアイバ1中で屈折率検知面2での平均
屈折率Ndが小であるものから順に屈折率検知面2での
全反射が生じなくなり、ファイバ他端側に光が伝搬され
なくなって光量分布が電極IR側に偏りIL/IRとな
って、位置信号Xは大となる。したがって、位置信号X
に対応する出力Vou tはアルコール含有率に反比例
することとなる。ここで、アルコール含有率の検知精度
は光ファイバlの数mできまり、使用者が使用目的に応
じ自由に選べばよい。かかる構成においては、燃料中の
アルコール含有率を光重心位置検知素子5上の受光位置
すなわち光量分布により検知するため、エンジンの発熱
等で検知装置の上記検知部の温度が変わって、発光素子
3の発光量、光重心位置検知素子5の受光感度が変化し
ても、検知部の温度変化によらず常に正確に、連続的に
燃料中のアルコール含を率を検知できる。
The light incident on the refractive index detection surface 2 is totally reflected in the optical fiber <14 and propagates to the other end of the fiber, but in the optical fiber 11 it is refracted at the refraction angle The amount of light that propagates is significantly smaller than that of the optical fiber 1j. The difference in the amount of light propagating to the other end of the optical fiber 1 forms a light amount distribution on the light center of gravity position detection element 5, and this light amount distribution is caused by a change in the critical angle of incidence due to a change in the refractive index Nf of the fuel. According to Fig. 6 (a) for the alcohol content,
l, (varies as shown in bl) The optical center of gravity position detection element 5, as shown in FIG. No. 3
When a light spot is incident, divided photocurrents iR, iL are extracted from the electrodes IL, IR from the position of the incident light through the resistive layer and inversely proportional to the distance to the electrodes rL, IR. The extracted photocurrents iR and iL are input to the detection circuit IO as shown in FIG.
After the subtraction unit 103 calculates iR−iL and the addition unit 104 calculates iR+iL, the division unit 105 calculates the position signal X = (L/2) X (iRiL) /
(The output output proportional to iR+iL> is obtained. L is the effective light receiving width of the light center of gravity position detection element 5.
As shown in the figure fat, if the average incidence angle θ at the refractive index detection surface 2 is larger than the critical incidence angle type for m optical fibers l when the alcohol content is 100%, then m optical fibers 1 The light is totally reflected to the other end side of the light center of gravity, and the light intensity distribution on the light center of gravity position detection element 5 becomes approximately --like, iR and iL are approximately the same, and the position signal X takes a value close to 0. As the alcohol content decreases, the refractive index Nf increases,
Since the critical incidence angle type in all the optical fibers 1 becomes large, the average refractive index Nd at the refractive index sensing surface 2 among the rn optical fibers 1 is increased in order from the smallest. Reflection no longer occurs, the light is no longer propagated to the other end of the fiber, the light amount distribution is biased toward the electrode IR side, and becomes IL/IR, and the position signal X becomes large. Therefore, the position signal
The corresponding output Vout will be inversely proportional to the alcohol content. Here, the detection accuracy of the alcohol content rate is determined by the number of meters of optical fiber 1, and the user can freely select it depending on the purpose of use. In this configuration, since the alcohol content in the fuel is detected by the light receiving position on the light center of gravity position detection element 5, that is, the light amount distribution, the temperature of the detection part of the detection device changes due to heat generation of the engine, etc., and the light emitting element 3 Even if the amount of light emitted by the sensor and the light receiving sensitivity of the light center of gravity position detection element 5 change, the alcohol content in the fuel can always be accurately and continuously detected regardless of changes in the temperature of the detection section.

また、アルコール含有率の検知は光ファイバ1の中途に
設けた微少な屈折率検知面2でおこなわれることから、
燃料中に挿入する検知部を小形化することができるとい
う効果がある。
In addition, since the detection of alcohol content is performed by a minute refractive index detection surface 2 provided midway through the optical fiber 1,
This has the effect that the detection section inserted into the fuel can be made smaller.

第7図は、この発明の他の実施例を示す断面図であり、
先端が曲面形状をなした中空板状の支持部材7の表面に
複数の光ファイバ1を密着支持した後、充填部材12で
固定し、光ファイバ1の中途に燃料との接液部である屈
折率検知面2を形成したもので、本実施例では支持部材
7の表裏側2か所に屈折率検知面2を設けた例を示して
いる。
FIG. 7 is a sectional view showing another embodiment of the invention,
After a plurality of optical fibers 1 are tightly supported on the surface of a hollow plate-shaped support member 7 whose tips have a curved surface shape, they are fixed with a filling member 12, and a bending member 1, which is a part of the optical fibers 1 in contact with fuel, is placed in the middle of the optical fibers 1. This embodiment shows an example in which refractive index sensing surfaces 2 are provided at two locations on the front and back sides of the support member 7.

かかる構成においては、光ファイバlの端部を同じ側に
配置でき、発光素子3、受光体5等を同じ側に配置し支
持できる結果、例えば支持部材7に発光素子3、受光体
5等を一体に保持した検知部を、燃料シール11を介し
て、燃料分配管26等の燃料流路8に挿入して取付けら
れる等、装着の自由度が高められかつ装着も簡単になる
という利点がある。また、屈折率検知面2を複数箇所設
けることにより、燃料流路8内の燃料のアルコール含有
率をより平均的に検知できるとともに、入射光中の全反
射に寄与する光量を増大できる結果、受光体5での光量
分布の検知精度を向上できるという効果も期待できる。
In such a configuration, the ends of the optical fibers 1 can be placed on the same side, and the light emitting element 3, the photoreceptor 5, etc. can be placed and supported on the same side, so that, for example, the light emitting element 3, the photoreceptor 5, etc. The detection unit held integrally can be inserted and installed into the fuel flow path 8 such as the fuel distribution pipe 26 via the fuel seal 11, so there is an advantage that the degree of freedom in installation is increased and the installation is easy. . In addition, by providing multiple refractive index detection surfaces 2, the alcohol content of the fuel in the fuel flow path 8 can be detected more evenly, and the amount of light that contributes to total reflection in the incident light can be increased. It can also be expected that the detection accuracy of the light amount distribution on the body 5 can be improved.

上記実施例では細長光導体Iとしてグレーディドインデ
ソクス型光ファイバを用いた場合を示したが、上記光フ
ァイバに限らず少なくとも屈折率検知面の近傍が周囲か
ら中心に向って屈折率が単調に増加する細長光導体であ
ればよい。また、上記実施例では複数の細長光導体の端
部を束ねて一つの発光素子より光を該細長光導体に投光
する構造を示したが、各細長光導体の各々に発光素子を
対応させてもよいし、複数の細長光導体を何組かに分割
してその各々に発光素子を対応させてもよく、さらに受
光体も、各細長光導体の各々にフォトダイオードのごと
き受光素子を対応させ、各々の受光素子の出力より光量
分布を算出してもよいし、CCDのごとき他の光位置検
知素子を利用してもよいことは当業者にとって明らかで
ある。さらにまた、上記実施例では燃料中のアルコール
含有率の検知について示したが、他の液体の屈折率測定
用としても応用できることは言うまでもない。
In the above embodiment, a graded index type optical fiber is used as the elongated light guide I. However, the refractive index becomes monotonous from the periphery toward the center at least in the vicinity of the refractive index detection surface, not limited to the above optical fiber. An increasing number of elongated light guides is sufficient. Furthermore, in the above embodiment, a structure is shown in which the ends of a plurality of elongated light guides are bundled and light is emitted from one light emitting element onto the elongated light guide, but a light emitting element is provided corresponding to each elongated light guide. Alternatively, the plurality of elongated light guides may be divided into several sets and a light emitting element is associated with each set.Furthermore, the photoreceptor may be provided with a light receiving element such as a photodiode corresponding to each of the elongated light guides. It is clear to those skilled in the art that the light amount distribution may be calculated from the output of each light receiving element, or that other optical position detection elements such as a CCD may be used. Furthermore, although the above embodiments described detection of alcohol content in fuel, it goes without saying that the present invention can also be applied to measuring the refractive index of other liquids.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、周囲から中心に
向って屈折率が増加する複数の細長光4体に燃料屈折率
検知面を形成し、この光導体の一端面に投光体を設け、
他端面に受光体を設けて、燃ギ4中のアルコール含有率
を検知するようにしたので、検知装置の小型化が図れ、
また、検知装置を燃料噴射弁の近くの管路に設けられる
ため噴射弁の噴射燃料中のアルコール含有率を常に遅滞
なく連続的に検知できる。さらに、検知装置の温度変化
に係わらず精度よくアルコール含を率を検知できる。
As explained above, according to the present invention, a fuel refractive index detection surface is formed on a plurality of four elongated light beams whose refractive index increases from the periphery toward the center, and a light projector is provided on one end surface of the light guide. ,
Since a photoreceptor is provided on the other end surface to detect the alcohol content in the fuel 4, the detection device can be made smaller.
Furthermore, since the detection device is provided in the conduit near the fuel injection valve, the alcohol content in the fuel injected by the injection valve can always be detected continuously without delay. Furthermore, the alcohol content can be detected with high accuracy regardless of temperature changes in the detection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるアルコール含有率検
知装置の構成図、第2図は第1図のn−■線断面図、第
3図は燃料屈折率検知面の説明図、第4図はアルコール
含有率検知装置の動作説明図、第5図は光重心位置検知
素子の説明図、第6図(a)。 (blはアルコール含有率に対する受光量分布の変化の
説明図、第7図はこの発明の他の実施例のアルコール含
有率検知装置の断面図、第8図は従来のアルコール含有
率検知装置を備えた燃料制御系の構成図、第9図は従来
のアルコール含を率検知装置の断面図である。 l・・・光ファイバ、la・・・コア、2・・・屈折率
検知面、3・・・発光素子、5・・・光重心位置検知素
子、10・・・検知回路。 なお、図中、同一符号は同−又は相当部分を示す。 代理人    大  岩  増  雄 匪           9 −〜 rnlO(2 第3図 1σ:]ア 第4図 第5図 第6図 rL  :IRIL  <   IRIL  <IR第
7図 手 続 補 正 書 (自発ン 特許庁長官殿                 適l
・事件0表示  特願昭63〜104705号2、発明
の名称 アルコール含有率検知装置 3、補正をする者 代表者志岐守哉 三菱電機株式会社内 5、 補正の対象 明細書の特許請求の範囲及び発明の詳細な説明の憫6、
 補正の内容 (1)特許請求の範囲を別紙の如(訂正する。 (2)  明細書7頁15行のF増加」を「変化」と訂
正する。 (3)  同15頁6行の「増加」を「変化」と訂正す
る。 (4)  同1G頁2行の「増加Jを「変化ノと訂正す
る。 7、 添付書類の目録 訂正特許請求の範囲     1連 凧  上 特許請求の範囲 光導体と燃料との屈折率の差により燃料中のアルコール
含有率を検知するアルコール含有率検知装置であって、
複数の細長光導体の各々の途中の一部に燃料屈折率検知
面を形成し、この細長光導体の一方の端面に投光体を設
けて燃料屈折率検知面に入射させ、他方の端面に受光体
を設けて工且且a面での反射光を受光させて受光体上の
光量分布の変化によリアルコール含有率を検知するよう
に構成したものにおいて、複数の細長光導体が周囲から
中心に向って屈折率がJIJLする!Il長光導光導体
り、燃料屈折率検知面での細長光導体の平均屈折率が各
々異なるように該先導体の各々の途中の一部を異なる厚
さで除去し形成したことを特徴とするアルコール含有率
検知装置。
FIG. 1 is a block diagram of an alcohol content detection device according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line n-■ in FIG. 1, FIG. 3 is an explanatory diagram of the fuel refractive index detection surface, and FIG. The figure is an explanatory diagram of the operation of the alcohol content detection device, FIG. 5 is an explanatory diagram of the optical center of gravity position detection element, and FIG. 6(a). (bl is an explanatory diagram of changes in the distribution of received light amount with respect to alcohol content, FIG. 7 is a sectional view of an alcohol content detection device according to another embodiment of the present invention, and FIG. 8 is a diagram showing a conventional alcohol content detection device) Fig. 9 is a cross-sectional view of a conventional alcohol content detection device. l... optical fiber, la... core, 2... refractive index detection surface, 3... ...Light emitting element, 5... Optical center of gravity position detection element, 10... Detection circuit. In the figures, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa 9 - ~ rnlO ( 2 Fig. 3 1σ:] A Fig. 4 Fig. 5 Fig. 6 rL: IRIL < IRIL < IR Fig. 7 Procedures Amendment (Spontaneous request by the Commissioner of the Patent Office)
・Indication of incident 0 Japanese Patent Application No. 104705 2, Name of the invention Alcohol content detection device 3, Representative of the person making the amendment Moriya Shiki Mitsubishi Electric Corporation 5, Claims of the specification to be amended and Detailed explanation of the invention 6,
Contents of the amendment (1) The scope of claims is corrected as shown in the attached sheet. (2) "Increase in F" on page 7, line 15 of the specification is corrected to "change." (3) "Increase" on page 15, line 6 of the same specification. " is corrected as "change." (4) "Increase J" in line 2 of page 1G of the same page is corrected as "change." 7. Amendment of list of attached documents Claims: Single kite Above patent claims: Light guide An alcohol content detection device that detects the alcohol content in the fuel based on the difference in refractive index between the alcohol content and the fuel,
A fuel refractive index sensing surface is formed in a part of the middle of each of the plurality of elongated light guides, a light projecting body is provided on one end face of the elongated light guide to make the light incident on the fuel refractive index sensing face, and a light projector is provided on the other end face. In a device configured to provide a photoreceptor to receive reflected light from the surface A of the surface of the workpiece and detect the real alcohol content based on a change in the light intensity distribution on the photoreceptor, a plurality of elongated light guides detect light from the surroundings. The refractive index increases toward the center! The Il long light guide is characterized in that a part of the middle of each of the guides is removed and formed to have a different thickness so that the average refractive index of the elongate light guide at the fuel refractive index detection surface is different. Alcohol content detection device.

Claims (1)

【特許請求の範囲】[Claims] 光導体と燃料との屈折率の差により燃料中のアルコール
含有率を検知するアルコール含有率検知装置であって、
複数の細長光導体の各々の途中の一部に燃料屈折率検知
面を形成し、この細長光導体の一方の端面に投光体を設
けて燃料屈折率検知面に入射させ、他方の端面に受光体
を設けて接平面での反射光を受光させて受光体上の光量
分布の変化によリアルコール含有率を検知するように構
成したものにおいて、複数の細長光導体が周囲から中心
に向って屈折率が増加する細長光導体であり、燃料屈折
率検知面での細長光導体の平均屈折率が各々異なるよう
に該光導体の各々の途中の一部を異なる厚さで除去し形
成したことを特徴とするアルコール含有率検知装置。
An alcohol content detection device that detects the alcohol content in fuel based on the difference in refractive index between a light guide and the fuel,
A fuel refractive index sensing surface is formed in a part of the middle of each of the plurality of elongated light guides, a light projecting body is provided on one end face of the elongated light guide to make the light incident on the fuel refractive index sensing face, and a light projector is provided on the other end face. In a device configured to provide a photoreceptor to receive reflected light on a tangential plane and detect the real alcohol content based on a change in the light intensity distribution on the photoreceptor, a plurality of elongated light guides are arranged from the periphery toward the center. The elongated light guide is formed by removing a portion of the middle of each light guide with a different thickness so that the average refractive index of the elongate light guide at the fuel refractive index sensing surface is different. An alcohol content detection device characterized by:
JP10470588A 1988-04-26 1988-04-26 Alcohol content detector Expired - Lifetime JPH0610654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10470588A JPH0610654B2 (en) 1988-04-26 1988-04-26 Alcohol content detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10470588A JPH0610654B2 (en) 1988-04-26 1988-04-26 Alcohol content detector

Publications (2)

Publication Number Publication Date
JPH01274042A true JPH01274042A (en) 1989-11-01
JPH0610654B2 JPH0610654B2 (en) 1994-02-09

Family

ID=14387899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10470588A Expired - Lifetime JPH0610654B2 (en) 1988-04-26 1988-04-26 Alcohol content detector

Country Status (1)

Country Link
JP (1) JPH0610654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859662B2 (en) 2007-02-28 2010-12-28 Mitsubishi Electric Corporation On-vehicle fuel property detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859662B2 (en) 2007-02-28 2010-12-28 Mitsubishi Electric Corporation On-vehicle fuel property detection device

Also Published As

Publication number Publication date
JPH0610654B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US4994682A (en) Fiber optic continuous liquid level sensor
US5074659A (en) Device for detecting alcoholic content
JP2008286531A (en) Fuel property detection device
CA1332205C (en) Fibre optic sensors for the continuous measurement of liquid level and other parameters
CN101256089A (en) A Variable Precision Optical Fiber Sensor
TW200835850A (en) Apparatus for inspecting the characteristics of automobile fuel
WO1991013323A3 (en) Fiber optic fuel and liquid gauge
JP2011043462A (en) Optical fiber sensor and fuel supply apparatus having the same
EP0292097B1 (en) Device for detecting the mixing ratio of petrol and an alcohol or the like
JPS6291840A (en) Fuel property detector
JPH01274042A (en) Alcohol content detection device
JPH01270646A (en) Apparatus for detecting alcohol content
JPH01263536A (en) Apparatus of detecting content ratio of alcohol
CN107576369B (en) Optical fiber continuous liquid level sensor based on end face reflection coupling
JPS58129235A (en) Fuel property detector
JPS57194324A (en) Optical temperature measuring device
SU1755123A1 (en) Fiber-optics refractometer
JPH01262442A (en) Alcohol content detector
JPH01282448A (en) refractive index detector
JPH03233347A (en) Alcohol content detection device
JPH0249144A (en) Detector for liquid mixing ratio of mixed liquid
JPH03251745A (en) Methanol concentration detection method
JPS61173135A (en) Liquid sensor
JPH0247487Y2 (en)
JPH0440343A (en) Alcohol content detecting device