[go: up one dir, main page]

JPH01272827A - Method for carrying out continuous graphitization treatment and apparatus therefor - Google Patents

Method for carrying out continuous graphitization treatment and apparatus therefor

Info

Publication number
JPH01272827A
JPH01272827A JP63096799A JP9679988A JPH01272827A JP H01272827 A JPH01272827 A JP H01272827A JP 63096799 A JP63096799 A JP 63096799A JP 9679988 A JP9679988 A JP 9679988A JP H01272827 A JPH01272827 A JP H01272827A
Authority
JP
Japan
Prior art keywords
inert gas
chamber
graphitization
vapor
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63096799A
Other languages
Japanese (ja)
Other versions
JP2744617B2 (en
Inventor
Kohei Arakawa
公平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP63096799A priority Critical patent/JP2744617B2/en
Publication of JPH01272827A publication Critical patent/JPH01272827A/en
Application granted granted Critical
Publication of JP2744617B2 publication Critical patent/JP2744617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a graphite whisker, by continuously and intermittently passing a carbonaceous fiber packed in a heat resistant vessel into a high- temperature area and subjecting a vapor growth carbon fiber having substantially powdery form to graphitization treatment. CONSTITUTION:A vapor growth carbon fiber is packed into a container 10 made of graphite and carried into an inert gas-replacing front chamber and degassed through a gas valve 22 and an inert gas is charged therein. The container 10 carried into a chamber 30 for work fixing is supported with a supporter 32 for fixing and successively transferred into a chamber 34 for graphitization treatment, passed into an effective heating area 36 and transferred through a carrying chamber 40 and preliminary chamber 44 into an inert gas- replacing rear chamber 50. The chamber 50 is degassed through a gas valve 52 and an inert gas is charged therein to replace the vapor in the chamber by the inert gas and the container 10 is carried into a conveyor and a graphite whisker being contents of the container is taken out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素繊維の黒鉛化処理に関し、さらに詳しく
は、実質的に粉体の形状の気相成長炭素繊維を連続的に
黒鉛化処理して黒鉛ウィスカーを製造する方法および装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to graphitization treatment of carbon fibers, and more particularly, to continuous graphitization treatment of vapor-grown carbon fibers that are substantially in the form of powder. The present invention relates to a method and apparatus for producing graphite whiskers.

〔従来の技術〕[Conventional technology]

炭素lIi紺はほとんど炭素元素から構成されている繊
維状材料の一種であり、高圧不活性ガスの下で炭素アー
ク中に単結晶を成長させるか、炭化水素ガスの熱分解に
よって気相から単結晶を成長させるか、有機Il維を炭
素化するかによって製造される。有I1m雑の炭素化に
よる方法が最も広く用いられ、出発原料としては、セル
ロース繊維、レーヨン繊維、アクリロニトリル系iI雑
等が用いられる。これらを空気および水分の非存在下に
約800℃前後の温度に加熱すると炭素m維が形成され
、これをさらに約3000℃に加熱すると黒鉛繊維が形
成される。炭素繊維および黒鉛繊維は極めて高い強度お
よび剛性を有し、例えば複合材料(composite
)を作成する際のプラスチック樹脂強化剤として使用さ
れる。
Carbon lIi navy blue is a type of fibrous material that is mostly composed of carbon element, and is grown as a single crystal from the gas phase by growing a single crystal in a carbon arc under high pressure inert gas or by pyrolysis of hydrocarbon gas. It is produced by growing organic Il fibers or by carbonizing organic Il fibers. The most widely used method is carbonization of I1m miscellaneous materials, and the starting materials used include cellulose fibers, rayon fibers, acrylonitrile-based II miscellaneous materials, and the like. When these are heated to a temperature of about 800° C. in the absence of air and moisture, carbon fibers are formed, and when these are further heated to about 3000° C., graphite fibers are formed. Carbon fibers and graphite fibers have extremely high strength and stiffness, making them useful for example in composite materials.
) is used as a plastic resin reinforcing agent in making.

炭素繊維における構成炭素原子は、グラファイト型の六
方晶系六角板状扁平結晶として存在し、六炭素環が連な
って層状構造を構成している。炭素m維をさらに加熱し
て黒鉛繊維とすると、この基本的な層状構造は変らない
が、層と層との間の距離すなわち面間隔が小さくなり、
より緻密な構造となる。例えば、気相成長炭素繊維(V
apor Growth CarbonFiber、 
VGCF)の面間隔は3.48人であるが、これを黒鉛
化処理するとその面間隔は 3.354人となる。
The constituent carbon atoms in the carbon fiber exist as graphite-type hexagonal hexagonal plate-shaped flat crystals, and six carbon rings are connected to form a layered structure. When carbon fibers are further heated to form graphite fibers, this basic layered structure remains the same, but the distance between the layers, that is, the interplanar spacing, becomes smaller.
It becomes a more detailed structure. For example, vapor grown carbon fiber (V
apor Growth Carbon Fiber,
VGCF) has a lattice spacing of 3.48 people, but when this is subjected to graphitization treatment, the lattice spacing becomes 3.354 people.

一般に、面間隔が3.36Å以下となれば実質的に黒鉛
と考えることができるが、この面間隔に反映される黒鉛
化の程度は、一定時間以上黒鉛化処理を行えば処理温度
にのみ相関する。すなわち、黒鉛化の程度を処理時間の
関数として考えると、黒鉛化の程度は処理開始から時間
と共に増加するが一定の時間が経過すると飽和値に達し
、以後時間が経過しても黒鉛化の程度は変化せず、この
時の飽和値は処理温度のみによって規定される。処理温
度を上昇させるにつれて飽和値に達した際の面間隔は減
少し、例えば、2000℃、2500℃、3000℃で
それぞれ3.42人、3.37人、3.36人となる。
Generally, if the interplanar spacing is 3.36 Å or less, it can be considered to be essentially graphite, but the degree of graphitization reflected in this interplanar spacing is only correlated with the processing temperature if graphitization treatment is carried out for a certain period of time. do. In other words, if we consider the degree of graphitization as a function of treatment time, the degree of graphitization will increase with time from the start of treatment, but after a certain period of time it will reach a saturation value, and the degree of graphitization will continue to increase even after a certain amount of time has elapsed. does not change, and the saturation value at this time is defined only by the processing temperature. As the processing temperature is increased, the spacing at the time when the saturation value is reached decreases, for example, at 2000°C, 2500°C, and 3000°C, it becomes 3.42 people, 3.37 people, and 3.36 people, respectively.

飽和値に達するまでの所要時間は通常は数分であるため
、所望の黒鉛化の程度の黒鉛化繊維を得るためには、炭
素tanを所定温度に数分間維持すれば充分である。
Since the time required to reach the saturation value is usually several minutes, maintaining the carbon tan at a given temperature for several minutes is sufficient to obtain graphitized fibers with the desired degree of graphitization.

従来のバッチ式黒鉛化処理では、3000℃前後の処理
温度に達するまで操作開始から約3時間を要し、実質的
に必要な温度で数分間処理を行った後に、再び約6時間
をかけて常温に戻して黒鉛化を行っていたために、昇温
工程と降温工程に多大の時間を要し極めて効率が悪かっ
た。このような欠点を解消するために繊維状の炭素繊維
を連続黒鉛化処理づる方法および装置が種々工夫されて
いる。繊維、状の材料は連続的に長い一本の線状構造で
あるため処理の連続化を図ることは比較的容易゛である
。しかしながら、例えば長さ2〜2000m程度の炭素
繊維ウィスカー、あるいはVGCFのような実質的に粉
体の形状の材料の連続黒鉛化処理を繊維状の材料の連続
黒鉛化処理と同じ思想で行うことはできない。
In conventional batch-type graphitization processing, it takes about 3 hours from the start of operation to reach the processing temperature of around 3000°C, and after processing for several minutes at the practically required temperature, it takes about 6 hours again to reach the processing temperature of around 3000 ° C. Since graphitization was performed after the temperature was returned to room temperature, the temperature raising and cooling steps required a large amount of time and were extremely inefficient. In order to eliminate these drawbacks, various methods and apparatuses have been devised for continuously graphitizing fibrous carbon fibers. Since the fiber-shaped material has a continuous long linear structure, it is relatively easy to achieve continuous processing. However, it is not possible to carry out continuous graphitization of carbon fiber whiskers with a length of about 2 to 2000 meters or materials that are substantially in the form of powder, such as VGCF, using the same concept as continuous graphitization of fibrous materials. Can not.

黒鉛ウィスカーは、黒鉛ウィスカー強化プラスチック複
合材料の製造等に使用し得る極めて高い強度および剛性
を有する素材であり、これを気相成長炭素繊維から効率
よく製造する方法および装置の実現が望まれている。
Graphite whiskers are materials with extremely high strength and rigidity that can be used to manufacture graphite whisker-reinforced plastic composite materials, and it is desired to realize a method and apparatus for efficiently manufacturing them from vapor-grown carbon fibers. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、実質的に粉体の形状の気相成長炭素繊維を連
続的に効率よく黒鉛化処理して黒鉛ウィスカーを製造す
る方法および装置を提供することを目的とする。
An object of the present invention is to provide a method and apparatus for producing graphite whiskers by continuously and efficiently graphitizing vapor-grown carbon fibers that are substantially in the form of powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、耐熱性容器に充填した炭素質繊維を連
続的又は間欠的に高温帯域を通過させることを特徴とす
る連続黒鉛化処理方法が提供される。
According to the present invention, there is provided a continuous graphitization treatment method characterized by passing carbonaceous fibers filled in a heat-resistant container continuously or intermittently through a high-temperature zone.

炭素質繊維が気相成長繊維(VGCF)、PAN系炭素
1iAM、レーヨン系炭素繊維、ピッチ系炭素繊維であ
れば好適であり、高温帯域が不活性ガス雰囲気であれば
好適であり、高温帯域が1500℃〜3500℃であれ
ば好適であり、耐熱性容器が黒鉛製容器であれば好適で
ある。
It is preferable that the carbonaceous fiber is vapor grown fiber (VGCF), PAN-based carbon 1iAM, rayon-based carbon fiber, or pitch-based carbon fiber, and it is preferable that the high-temperature zone is an inert gas atmosphere. It is suitable if it is 1500 degreeC - 3500 degreeC, and it is suitable if the heat-resistant container is a container made from graphite.

さらに本発明によれば、実質的に粉体の形状の気相成長
炭素繊維を連続的に黒鉛化処理して黒鉛ウィスカーを製
造するに際し、中空円柱形黒鉛製容器に気相成長炭素繊
維を充填し、不活性ガス置換前室に気相成長炭素41t
I#を充填した中空円柱形黒鉛製容器を搬入し、空気を
除去して不活性ガス置換前室を実質的に真空にした後に
不活性ガスを導入して気相を不活性ガスに置換し、気相
成長炭素m維を充填した複数の中空円柱形黒鉛製容器が
内部を滑動し得るバイブ状の形状であって不活性ガス雰
囲気下で黒鉛化処理を行い得る温度に加熱維持した黒鉛
化処理室入口から気相成長炭素繊維を充填した中空円柱
形黒鉛製容器を所定時間間隔で断続的に次々と搬入して
黒鉛化処理を行い気相成長炭素繊維を黒鉛ウィスカーに
変換し、黒鉛化処理室入口への搬入に調時して黒鉛化処
理室出口から搬出される黒鉛ウィスカーが充填された中
空円柱形黒鉛製容器を不活性ガス雰囲気下の不活性ガス
置換後室に搬入し、空気を除去して内部を真空にした後
に不活性ガスを導入し得る不活性ガス置換後室から黒鉛
ウィスカーが充填された中空円柱形黒鉛製容器を搬出し
た後に容器から黒鉛ウィスカー°を取出すことを特徴ど
する気相成長炭素繊維の連続黒鉛化処理方法が提供され
る。
Furthermore, according to the present invention, when producing graphite whiskers by continuously graphitizing vapor-grown carbon fibers substantially in the form of powder, a hollow cylindrical graphite container is filled with vapor-grown carbon fibers. Then, 41 tons of vapor-grown carbon was added to the chamber before inert gas replacement.
A hollow cylindrical graphite container filled with I# is brought in, the air is removed and the pre-inert gas replacement chamber is made substantially evacuated, and then an inert gas is introduced to replace the gas phase with the inert gas. , a graphitization method in which a plurality of hollow cylindrical graphite containers filled with vapor-grown carbon fibers are heated and maintained at a temperature that allows graphitization treatment in an inert gas atmosphere. Hollow cylindrical graphite containers filled with vapor-grown carbon fibers are brought in one after another intermittently at predetermined time intervals from the entrance of the processing chamber, and the graphitization process is performed to convert the vapor-grown carbon fibers into graphite whiskers and graphitize them. A hollow cylindrical graphite container filled with graphite whiskers, which is carried out from the graphitization processing chamber outlet at the same time as the transport to the processing chamber entrance, is carried into the chamber after inert gas replacement under an inert gas atmosphere. The graphite whiskers are removed from the container after the hollow cylindrical graphite container filled with graphite whiskers is removed from the inert gas purging chamber into which an inert gas can be introduced after the interior is evacuated. A method for continuously graphitizing vapor grown carbon fibers is provided.

さらに本発明によれば、実質的に粉体の形状の気相成長
炭素繊維を連続的に黒鉛化処理して黒鉛ウィスカーを製
造する装置であって、気相成長炭素繊維を充填する複数
の中空円柱形黒鉛製容器からなる充填手段と、気相成長
炭素繊維を充填した中空円柱形黒鉛製容器を不活性ガス
置換を行う不活性ガス置換前室に搬入する搬入手段と、
不活性ガス雰囲気下の黒鉛化処理室入口にあって空気を
除去して内部を真空にし得る真空手段と不活性ガスを導
入し得る不活性ガス導入手段とを備え中空円柱形黒鉛製
容器を収納する不活性ガス置換前室からなる不活性ガス
置換手段と、不活性ガス置換前室から黒鉛化処理室に気
相成長炭素繊維を充填した中空円柱形黒鉛製容器を所定
の時間間隔で断続的に次々と搬入する搬入手段と、気相
成長炭素繊維を充填した複数の中空円柱形黒鉛製容器が
内部を滑動し得るバイブ状の形状の黒鉛化処理室と黒鉛
化処理室を加熱する加熱手段と黒鉛化処理室を不活性ガ
ス雰囲気下に維持する維持手段とからなり気相成長炭素
IIIを黒鉛ウィスカーに変換する黒鉛化処理手段と、
黒鉛化処理室入口への搬入に調時して黒鉛化処理室出口
から搬出される黒鉛ウィスカーが充填された中空円柱形
黒鉛製容器を不活性ガス置換を行う不活性ガス置換後室
に搬送する搬送手段と、不活性ガス雰囲気下の黒鉛化処
理室出口にあって空気を除去して内部を真空にし得る真
空手段と不活性ガスを導入し得る不活性ガス導入手段と
を備え中空円柱形黒鉛製容器を収納する不活性ガス置換
後室からなる不活性ガス置換手段と、不活性ガス置換後
室から黒鉛ウィスカーが充填された中空円柱形黒鉛製容
器を搬出する搬出手段とからなることを特徴とする気相
成長炭素繊維の連続黒鉛化処理装置が提供される。
Further, according to the present invention, there is provided an apparatus for producing graphite whiskers by continuously graphitizing vapor-grown carbon fibers substantially in the form of powder, the apparatus comprising a plurality of hollow spaces filled with vapor-grown carbon fibers. a filling means consisting of a cylindrical graphite container; a carrying means for transporting the hollow cylindrical graphite container filled with vapor-grown carbon fibers into an inert gas replacement chamber where inert gas replacement is performed;
A hollow cylindrical graphite container is housed at the entrance of a graphitization processing chamber under an inert gas atmosphere, and is equipped with a vacuum means capable of removing air and creating a vacuum inside, and an inert gas introduction means capable of introducing an inert gas. A hollow cylindrical graphite container filled with vapor-grown carbon fibers is intermittently transferred from the inert gas preplacement chamber to the graphitization treatment chamber at predetermined time intervals. A carrying means for successively carrying the materials into the chamber, a vibrator-shaped graphitization processing chamber in which a plurality of hollow cylindrical graphite containers filled with vapor-grown carbon fibers can slide, and a heating means for heating the graphitization processing chamber. and a maintenance means for maintaining the graphitization chamber under an inert gas atmosphere, and a graphitization treatment means for converting vapor-grown carbon III into graphite whiskers;
The hollow cylindrical graphite container filled with graphite whiskers, which is carried out from the graphitization processing chamber outlet at the same time as the transport to the graphitization processing chamber entrance, is transported to the inert gas replacement chamber where inert gas replacement is performed. A hollow cylindrical graphite comprising a conveyance means, a vacuum means which is located at the outlet of a graphitization processing chamber under an inert gas atmosphere and can remove air to create a vacuum inside, and an inert gas introduction means which can introduce an inert gas. The present invention is characterized by comprising an inert gas replacement means consisting of an inert gas replacement chamber for storing the manufactured container, and a transport means for transporting the hollow cylindrical graphite container filled with graphite whiskers from the inert gas replacement chamber. A continuous graphitization treatment apparatus for vapor-grown carbon fiber is provided.

〔作用〕[Effect]

本発明の連続黒鉛化処理で炭素!IHを黒鉛化して黒鉛
繊維に変える処理を行う黒鉛化処理室は、適当な加熱手
段により加熱され所定温度に維持されるが、黒鉛化処理
室内の温度分布は、処理室中央部付近で最も高く、処理
室入口部および出口部に近づくに従い中央部付近の最高
温度から次第に低下する。前記したように、所望の黒鉛
化の程度を得るには、黒鉛化の程度に相関して一義的に
定まる必要な処理温度で数分間炭素繊維を維持すれば充
分であるため、黒鉛化処理室の中央部付近を必要な処理
温度に維持しておき、この部分に気相成長炭素繊維を数
分間滞留させれば所望の黒鉛化程度の黒鉛ウィスカーを
得ることができる。中空円柱形黒鉛製容器に気相成長炭
素繊維を充填し、この中空円柱形黒鉛製容器が内部を滑
動し得るバイブ状の形状の黒鉛化処理室に気相成長炭素
l!雑を充填した中空円柱形黒鉛製容器を所定時間間隔
で次々と搬入するに際し、搬入の時間間隔を気相成長炭
素繊維を充填した中空円柱形黒鉛製容器が所望の黒鉛化
の程度を得るのに必要な処理温度に維持された黒鉛化処
理室中央部付近に少なくとも数分間滞留するよう設定す
れば、実質的に有効な処理室中央部付近の温度帯域を効
率的に利用しつつ気相成長炭素I!雑の連続黒鉛化処理
を行うことができる。
Carbon with the continuous graphitization treatment of the present invention! The graphitization chamber, where IH is graphitized and converted into graphite fibers, is heated by an appropriate heating means and maintained at a predetermined temperature, but the temperature distribution within the graphitization chamber is highest near the center of the chamber. The temperature gradually decreases from the maximum temperature near the center as it approaches the inlet and outlet of the processing chamber. As mentioned above, in order to obtain the desired degree of graphitization, it is sufficient to maintain the carbon fiber for several minutes at the necessary treatment temperature, which is uniquely determined in correlation to the degree of graphitization. Graphite whiskers with the desired degree of graphitization can be obtained by maintaining the vicinity of the central portion at a necessary processing temperature and allowing the vapor-grown carbon fibers to remain in this portion for several minutes. A hollow cylindrical graphite container is filled with vapor-grown carbon fibers, and the hollow cylindrical graphite container is placed in a vibrator-shaped graphitization chamber that can slide inside. When hollow cylindrical graphite containers filled with miscellaneous materials are transported one after another at predetermined time intervals, the time intervals between the transports are set so that the hollow cylindrical graphite containers filled with vapor-grown carbon fibers achieve the desired degree of graphitization. By setting the graphitization chamber to remain for at least several minutes near the center of the processing chamber, which is maintained at the processing temperature required for Carbon I! Various continuous graphitization treatments can be performed.

〔実施例〕〔Example〕

以下に添付図面を参照して本発明をさらに詳細に説明す
るが、本発明は以下の実施例にのみ限定されるものでは
ない。
The present invention will be described in more detail below with reference to the accompanying drawings, but the present invention is not limited only to the following examples.

第1図に本発明により構成した連続黒鉛化処理装置の垂
直方向要部断面図を示す。第1図において、10は中空
円柱形黒鉛製容器、12は搬入アーム、14は搬入シリ
ンダ、16は弁用シリンダ、18は不活性ガス置換前室
、20はステッピングモータ、22はガスバルブ、24
はリニヤモータ、26はゲートバルブ、28はガスバル
ブ、30はワーク固定用チャンバ、32は固定用支持体
、34は黒鉛化処理室、36は有効加熱帯域、38はガ
スバルブ、40は搬送チャンバ、42はゲートバルブ、
44は予備チャンバ、46はクランプ用シリンダ、48
はゲートバルブ、50は不活性ガス置換後室、52はガ
スバルブ、54は弁用シリンダ、56は搬出シリンダ、
58は搬出アーム、60はコンベヤである。
FIG. 1 shows a vertical cross-sectional view of essential parts of a continuous graphitization treatment apparatus constructed according to the present invention. In FIG. 1, 10 is a hollow cylindrical graphite container, 12 is a carry-in arm, 14 is a carry-in cylinder, 16 is a valve cylinder, 18 is an inert gas exchange front chamber, 20 is a stepping motor, 22 is a gas valve, 24
is a linear motor, 26 is a gate valve, 28 is a gas valve, 30 is a workpiece fixing chamber, 32 is a fixing support, 34 is a graphitization processing chamber, 36 is an effective heating zone, 38 is a gas valve, 40 is a transfer chamber, 42 is a gate valve,
44 is a preliminary chamber, 46 is a clamp cylinder, 48
50 is a gate valve, 50 is an inert gas replacement chamber, 52 is a gas valve, 54 is a valve cylinder, 56 is an unloading cylinder,
58 is a carry-out arm, and 60 is a conveyor.

気相成長炭素!l雑を充填した中空円柱形黒鉛製容器1
0を回転式搬入アーム12で掴み不活性ガス置換前室1
8の搬入用開口部付近まで移動させ搬入シリンダ14に
より駆動する垂直移動式搬入手段で不活性ガス置換前室
18内に搬入し、弁用シリンダ16で封止弁を移動させ
不活性ガス置換前室18の搬入用開口部を封止する。不
活性ガス置換前室18内に備える黒鉛製容器支持移動手
段として、例えばステッピングモータ20により回転す
る回転盤62を設け、回転盤上に複数の黒鉛製容器を支
持し所定角度ずつ回転させることにより移動させれば好
適である。不活性ガス置換前室18は、ゲートバルブ2
6を閉じた状態でガスバルブ22を介して脱気し真空に
した後に例えば窒素のような不活性ガスを導入して気相
を不活性ガスと置換する。
Vapor grown carbon! Hollow cylindrical graphite container filled with miscellaneous materials 1
0 with the rotary carry-in arm 12 and move it to the inert gas replacement front chamber 1.
8 and carried into the inert gas pre-substitution chamber 18 by a vertically moving carrying means driven by a carrying cylinder 14, and the sealing valve is moved by the valve cylinder 16 before inert gas substitution. The entry opening of chamber 18 is sealed. As graphite container support and movement means provided in the inert gas replacement chamber 18, for example, a rotary disk 62 rotated by a stepping motor 20 is provided, and a plurality of graphite containers are supported on the rotary disk and rotated by a predetermined angle. It is preferable to move it. The inert gas replacement front chamber 18 has a gate valve 2
6 is closed, the gas is degassed through the gas valve 22 to create a vacuum, and then an inert gas such as nitrogen is introduced to replace the gas phase with the inert gas.

所定の位置まで移動させた黒鉛製容器は、リニヤモータ
24により駆動される垂直方向移動手段を用いゲートバ
ルブ26の開閉に調時して所定時間間隔でワーク固定用
チャンバ30に搬送する。ワーク固定用チャンバ30に
設けた固定用支持体32で黒鉛製容器を支持し、黒鉛化
処理室34に炭素繊維を充填した容器が順次移送される
のを確実にする。黒鉛化処理室34は、中空円柱形黒鉛
製容器10が内部を滑動し得るバイブ状の形状を有し、
例えば高周波コイルで加熱することによりその中央部付
近に所望の黒鉛化の程度になるよう温度設定された有効
加熱帯域36を形成する。黒鉛製容器の搬入の時間間隔
を調節して有効加熱帯域における容器の滞留時間を設定
温度で黒鉛化を行うのに充分な時間とするが、この時間
は通常は約5分前後である。
The graphite container that has been moved to a predetermined position is transported to the workpiece fixing chamber 30 at predetermined time intervals using vertical movement means driven by the linear motor 24 and timed to the opening and closing of the gate valve 26 . The graphite containers are supported by a fixing support 32 provided in the workpiece fixing chamber 30 to ensure that the containers filled with carbon fibers are sequentially transferred to the graphitization processing chamber 34. The graphitization processing chamber 34 has a vibe-like shape in which the hollow cylindrical graphite container 10 can slide,
For example, by heating with a high frequency coil, an effective heating zone 36 whose temperature is set to a desired degree of graphitization is formed near the center thereof. The time interval between the introduction of the graphite containers is adjusted so that the residence time of the containers in the effective heating zone is sufficient to effect graphitization at the set temperature, which is usually around 5 minutes.

黒鉛製容器は黒鉛化処理宮人[1への搬入に調時して、
順送りに黒鉛化処理室出口から搬出されて搬送チャンt
<、 40まで移動する。なお、ワーク固定用チャンバ
30、黒鉛化処理室34並びに搬送チャンバ40はガス
バルブ28および38を介して不活性ガス雰囲気下に維
持する。
Graphite containers were transported to the graphitized Miyahito [1].
It is carried out from the outlet of the graphitization processing chamber in a sequential manner and transferred to the conveyance chamber t.
<, Move to 40. Note that the workpiece fixing chamber 30, the graphitization processing chamber 34, and the transfer chamber 40 are maintained under an inert gas atmosphere via gas valves 28 and 38.

黒鉛化処理による黒鉛miを充填した容器はクランプ用
シリンダ46により駆動する垂直移動手段によってゲー
トバルブ42を通過して予備チャンバ44に至り、続い
て不活性 ゛ガス置換後室50に移送される。不活性ガ
ス ゛置換後室50は、ゲートバルブ48を閉じ、弁用
シリンダ54で弁を移動させて不活性ガス置換後室50
の出口部を開放し、搬出シリ□ ンダ56により駆動する垂直方向移動手段で黒鉛製容器
を所定位置まで移動させ、回転式 。
The container filled with graphite mi resulting from the graphitization process is passed through the gate valve 42 to the preliminary chamber 44 by a vertical moving means driven by the clamping cylinder 46, and then transferred to the inert gas post-substitution chamber 50. The inert gas post-substitution chamber 50 is opened by closing the gate valve 48 and moving the valve using the valve cylinder 54.
The outlet section of the graphite container is opened, and the graphite container is moved to a predetermined position by vertical moving means driven by the unloading cylinder 56.

搬出アーム58で掴みコンベア60まで移動させる。弁
用シリンダ54により弁を移動させて搬出用出口部を封
止した状態でガスバルブ52を介して脱気し、真空にし
た後に不活性ガスを導入して気相を不活性ガスと置換す
る。コンベヤ60により運ばれる黒鉛製容器の内容物を
取り出せば黒鉛ウィスカーが得られ・る。以下実施例を
第1表に示す。
It is grabbed by the carry-out arm 58 and moved to the conveyor 60. The valve is moved by the valve cylinder 54 to seal the discharge outlet, and the gas is degassed through the gas valve 52, and after creating a vacuum, an inert gas is introduced to replace the gas phase with the inert gas. Graphite whiskers are obtained by removing the contents of the graphite container carried by the conveyor 60. Examples are shown in Table 1 below.

第1表 黒 処 〔 処 〔 面 〔 処 〔 容器には30gのVGCFを充填した。Table 1 black place [ place [ surface [ place [ The container was filled with 30g of VGCF.

比較例としてパッチシステムにおいて黒鉛化処理を行な
った比較例を第2表に承り。
As a comparative example, Table 2 shows a comparative example in which a patch system was subjected to graphitization treatment.

第2表 〔発明の効果) 本発明によれば、実質的に粉体の形状の気相成長炭素繊
維を連続的に効率よく黒鉛化処理して所望の黒鉛化程度
の黒鉛ウィスカーを安定して製造することができる。
Table 2 [Effects of the Invention] According to the present invention, vapor-grown carbon fibers substantially in the form of powder are continuously and efficiently graphitized to stably produce graphite whiskers with a desired degree of graphitization. can be manufactured.

【図面の簡単な説明】 第1図は、本発明により構成した連続黒鉛化処理装置の
垂直方向要部断面図である。 10・・・中空円柱形黒鉛製容器 12・・・搬入アーム   14・・・搬入シリンダ1
6・・・弁用シリンダ 18・・・不活性ガス置換前室 20・・・ステッピングモータ 22・・・ガスバルブ   24・・・リニヤモータ2
6・・・ゲートバルブ  28・・・ガスバルブ30・
・・ワーク固定用チャンバ 32・・・固定用支持体  34・・・黒鉛化処理室3
6・・・有効加熱帯域  38・・・ガスバルブ40・
・・搬送チャンバ  42・・・グー1〜バルブ44・
・・予備チャンバ 46・・・クランプ用シリンダ 48・・・ゲートバルブ 50・・・不活性ガス置換後室
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of a main part of a continuous graphitization treatment apparatus constructed according to the present invention. 10...Hollow cylindrical graphite container 12...Carry-in arm 14...Carry-in cylinder 1
6...Valve cylinder 18...Inert gas replacement chamber 20...Stepping motor 22...Gas valve 24...Linear motor 2
6...Gate valve 28...Gas valve 30.
... Workpiece fixing chamber 32... Fixing support 34... Graphitization processing chamber 3
6... Effective heating zone 38... Gas valve 40.
・・Transport chamber 42・・Goo 1~Valve 44・
・Preliminary chamber 46 ・Clamp cylinder 48 ・Gate valve 50 ・Chamber after inert gas replacement

Claims (7)

【特許請求の範囲】[Claims] (1)耐熱性容器に充填した炭素質繊維を連続的又は間
欠的に高温帯域を通過させることを特徴とする連続黒鉛
化処理方法。
(1) A continuous graphitization method characterized by passing carbonaceous fibers filled in a heat-resistant container continuously or intermittently through a high-temperature zone.
(2)炭素質繊維が気相成長炭素繊維(VGCF)PA
N系炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維
であることを特徴とする請求項1記載の連続黒鉛化処理
方法。
(2) Carbon fiber is vapor grown carbon fiber (VGCF) PA
2. The continuous graphitization method according to claim 1, wherein the carbon fiber is N-based carbon fiber, rayon-based carbon fiber, or pitch-based carbon fiber.
(3)高温帯域が不活性ガス雰囲気であることを特徴と
する請求項1記載の連続黒鉛化処理方法。
(3) The continuous graphitization method according to claim 1, wherein the high temperature zone is an inert gas atmosphere.
(4)高温帯域が1500℃〜3500℃であることを
特徴とする請求項1記載の連続黒鉛化処理方法。
(4) The continuous graphitization treatment method according to claim 1, wherein the high temperature zone is 1500°C to 3500°C.
(5)耐熱性容器が黒鉛製容器であることを特徴とする
請求項1記載の連続黒鉛化処理方法。
(5) The continuous graphitization method according to claim 1, wherein the heat-resistant container is a graphite container.
(6)実質的に粉体の形状の気相成長炭素繊維を連続的
に黒鉛化処理して黒鉛ウィスカーを製造するに際し、中
空円柱形黒鉛製容器に気相成長炭素繊維を充填し、不活
性ガス置換前室に気相成長炭素繊維を充填した中空円柱
形黒鉛製容器を搬入し、空気を除去して不活性ガス置換
前室を実質的に真空にした後に不活性ガスを導入して気
相を不活性ガスに置換し、気相成長炭素繊維を充填した
複数の中空円柱形黒鉛製容器が内部を滑動し得るパイプ
状の形状であつて不活性ガス雰囲気下で黒鉛化処理を行
い得る温度に加熱維持した黒鉛化処理室入口から気相成
長炭素繊維を充填した中空円柱形黒鉛製容器を所定時間
間隔で断続的に次々と搬入して黒鉛化処理を行い気相成
長炭素繊維を黒鉛ウィスカーに変換し、黒鉛化処理室入
口への搬入に調時して黒鉛化処理室出口から搬出される
黒鉛ウィスカーが充填された中空円柱形黒鉛製容器を不
活性ガス雰囲気下の不活性ガス置換後室に搬入し、空気
を除去して内部を真空にした後に不活性ガスを導入し得
る不活性ガス置換後室から黒鉛ウィスカーが充填された
中空円柱形黒鉛製容器を搬出した後に容器から黒鉛ウィ
スカーを取出すことを特徴とする気相成長炭素繊維の連
続黒鉛化処理方法。
(6) When manufacturing graphite whiskers by continuously graphitizing vapor-grown carbon fibers that are substantially in the form of powder, the vapor-grown carbon fibers are filled into a hollow cylindrical graphite container, and the vapor-grown carbon fibers are inert. A hollow cylindrical graphite container filled with vapor-grown carbon fibers is carried into the pre-gas replacement chamber, the air is removed to make the inert gas pre-replacement chamber substantially evacuated, and then an inert gas is introduced and the gas is removed. The phase is replaced with an inert gas, and the container has a pipe-like shape in which a plurality of hollow cylindrical graphite containers filled with vapor-grown carbon fibers can slide, and graphitization treatment can be performed in an inert gas atmosphere. Hollow cylindrical graphite containers filled with vapor-grown carbon fibers are brought in one after another intermittently at predetermined time intervals from the entrance of the graphitization chamber heated and maintained at a certain temperature, and the graphitization process is carried out to convert the vapor-grown carbon fibers into graphite. The hollow cylindrical graphite container filled with graphite whiskers, which are converted into whiskers and carried out from the graphitization processing chamber outlet at the same time as the transport to the graphitization processing chamber entrance, is replaced with inert gas under an inert gas atmosphere. Graphite is removed from the container after the hollow cylindrical graphite container filled with graphite whiskers is transported into the rear chamber and the hollow cylindrical graphite container filled with graphite whiskers is removed from the inert gas replacement chamber. A method for continuous graphitization of vapor-grown carbon fiber, characterized by removing whiskers.
(7)実質的に粉体の形状の気相成長炭素繊維を連続的
に黒鉛化処理して黒鉛ウィスカーを製造する装置であっ
て、気相成長炭素繊維を充填する複数の中空円柱形黒鉛
製容器からなる充填手段と、気相成長炭素繊維を充填し
た中空円柱形黒鉛製容器を不活性ガス置換を行う不活性
ガス置換前室に搬入する搬入手段と、不活性ガス雰囲気
下の黒鉛化処理室入口にあって空気を除去して内部を真
空にし得る真空手段と不活性ガスを導入し得る不活性ガ
ス導入手段とを備え中空円柱形黒鉛製容器を収納する不
活性ガス置換前室からなる不活性ガス置換手段と、不活
性ガス置換前室から黒鉛化処理室に気相成長炭素繊維を
充填した中空円柱形黒鉛製容器を所定の時間間隔で断続
的に次々と搬入する搬入手段と、気相成長炭素繊維を充
填した複数の中空円柱形黒鉛製容器が内部を滑動し得る
パイプ状の形状の黒鉛化処理室と黒鉛化処理室を加熱す
る加熱手段と黒鉛化処理室を不活性ガス雰囲気下に維持
する維持手段とからなり気相成長炭素繊維を黒鉛ウィス
カーに変換する黒鉛化処理手段と、黒鉛化処理室入口へ
の搬入に調時して黒鉛化処理室出口から搬出される黒鉛
ウィスカーが充填された中空円柱形黒鉛製容器を不活性
ガス置換を行う不活性ガス置換後室に搬送する搬送手段
と、不活性ガス雰囲気下の黒鉛化処理室出口にあつて空
気を除去して内部を真空にし得る真空手段と不活性ガス
を導入し得る不活性ガス導入手段とを備え中空円柱形黒
鉛製容器を収納する不活性ガス置換後室からなる不活性
ガス置換手段と、不活性ガス置換後室から黒鉛ウィスカ
ーが充填された中空円柱形黒鉛製容器を搬出する搬出手
段とからなることを特徴とする気相成長炭素繊維の連続
黒鉛化処理装置。
(7) An apparatus for producing graphite whiskers by continuously graphitizing vapor-grown carbon fibers substantially in the form of powder, the device being made of a plurality of hollow cylinders of graphite filled with vapor-grown carbon fibers. A filling means consisting of a container, a carrying means for transporting the hollow cylindrical graphite container filled with vapor-grown carbon fibers into an inert gas replacement chamber where inert gas replacement is performed, and graphitization treatment under an inert gas atmosphere. It consists of an inert gas replacement front chamber that houses a hollow cylindrical graphite container, which is equipped with a vacuum means that is located at the entrance of the chamber and can remove air to create a vacuum inside, and an inert gas introduction means that can introduce an inert gas. an inert gas replacement means, and a transport means for intermittently transporting hollow cylindrical graphite containers filled with vapor-grown carbon fibers from the inert gas pre-replacement chamber to the graphitization processing chamber one after another at predetermined time intervals; A pipe-shaped graphitization processing chamber in which a plurality of hollow cylindrical graphite containers filled with vapor-grown carbon fibers can slide, a heating means for heating the graphitization processing chamber, and an inert gas a graphitization treatment means for converting the vapor-grown carbon fiber into graphite whiskers, which is comprised of a maintenance means for maintaining the vapor-grown carbon fibers in an atmosphere; and graphitization treatment means, which is carried out from the graphitization treatment chamber outlet at the same time as the graphitization treatment chamber is delivered to the graphitization treatment chamber entrance. A transport means for transporting a hollow cylindrical graphite container filled with whiskers to a post-inert gas replacement chamber for inert gas replacement, and a transport means for removing air at the outlet of the graphitization processing chamber under an inert gas atmosphere. An inert gas replacement means comprising an inert gas replacement chamber for housing a hollow cylindrical graphite container, which is equipped with a vacuum means capable of creating a vacuum inside and an inert gas introduction means capable of introducing an inert gas; 1. An apparatus for continuous graphitization of vapor-grown carbon fibers, comprising a carrying means for carrying out a hollow cylindrical graphite container filled with graphite whiskers from a post-substitution chamber.
JP63096799A 1988-04-21 1988-04-21 Method and apparatus for continuous graphitization of vapor grown carbon fiber Expired - Lifetime JP2744617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096799A JP2744617B2 (en) 1988-04-21 1988-04-21 Method and apparatus for continuous graphitization of vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096799A JP2744617B2 (en) 1988-04-21 1988-04-21 Method and apparatus for continuous graphitization of vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH01272827A true JPH01272827A (en) 1989-10-31
JP2744617B2 JP2744617B2 (en) 1998-04-28

Family

ID=14174671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096799A Expired - Lifetime JP2744617B2 (en) 1988-04-21 1988-04-21 Method and apparatus for continuous graphitization of vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2744617B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331536A (en) * 1994-04-11 1995-12-19 Mitsubishi Chem Corp Pitch-based carbon fiber
US6103373A (en) * 1995-11-01 2000-08-15 Showa Denko K.K. Carbon fiber material and electrode materials and method of manufacture therefor
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
JP2004299937A (en) * 2003-03-28 2004-10-28 Kanegafuchi Chem Ind Co Ltd Method of producing graphite film
CN108751184A (en) * 2018-08-21 2018-11-06 北京中石伟业科技股份有限公司 A kind of carbonization of graphite guide hotting mask and graphitization continuous process system and method
CN111059892A (en) * 2019-12-17 2020-04-24 湖南金炉科技股份有限公司 A continuous graphitization furnace
JP2022550405A (en) * 2019-09-30 2022-12-01 ウォンチュン ゲゼルシャフト ミット ベシュレンクテル ハフツング Graphite production method and vertical graphitization furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211437A (en) * 1975-07-17 1977-01-28 Matsushita Electric Ind Co Ltd Outside wall device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211437A (en) * 1975-07-17 1977-01-28 Matsushita Electric Ind Co Ltd Outside wall device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331536A (en) * 1994-04-11 1995-12-19 Mitsubishi Chem Corp Pitch-based carbon fiber
US6103373A (en) * 1995-11-01 2000-08-15 Showa Denko K.K. Carbon fiber material and electrode materials and method of manufacture therefor
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
JP2004299937A (en) * 2003-03-28 2004-10-28 Kanegafuchi Chem Ind Co Ltd Method of producing graphite film
CN108751184A (en) * 2018-08-21 2018-11-06 北京中石伟业科技股份有限公司 A kind of carbonization of graphite guide hotting mask and graphitization continuous process system and method
JP2022550405A (en) * 2019-09-30 2022-12-01 ウォンチュン ゲゼルシャフト ミット ベシュレンクテル ハフツング Graphite production method and vertical graphitization furnace
CN111059892A (en) * 2019-12-17 2020-04-24 湖南金炉科技股份有限公司 A continuous graphitization furnace

Also Published As

Publication number Publication date
JP2744617B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US4226900A (en) Manufacture of high density, high strength isotropic graphite
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
US5217657A (en) Method of making carbon-carbon composites
JP2001503364A (en) High-purity composite materials useful as furnace components
US5114635A (en) Process for producing carbon material and carbon/carbon composites
JPH01272827A (en) Method for carrying out continuous graphitization treatment and apparatus therefor
JPH02148719A (en) Component and device for diffusion furnace
US5597611A (en) Reinforced carbon composites
EP2284122A1 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
JPH01264964A (en) Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
CN118754693A (en) A new type of high-performance SiCf/SiC composite material for nuclear use and its preparation method
CN115819103B (en) Carbon material body and preparation method thereof
JPS63295476A (en) Production of carbon fiber reinforced carbonaceous material
JP2712698B2 (en) Method for producing C / C composite material by composite gas phase impregnation method
CN116283332A (en) Preparation method of pitch-based carbon/carbon composite material with high thermal conductivity in thickness direction
JPH0411786B2 (en)
JPH02199820A (en) Vapor phase treatment apparatus
CN114735703A (en) Synthesis method and application of silicon carbide fiber
JPS6259509A (en) Production of high-density carbon material
US5124092A (en) Method of baking shaped carbonaceous products
JPS63105115A (en) Metal carbide-containing carbon fiber and production thereof
CN114411115A (en) Double-loop double-carbon-source rapid directional vapor deposition method
CN119843482A (en) Crosslinking device and crosslinking method for polycarbosilane fibers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11