JPH01287135A - Copolyester having improved anisotropy - Google Patents
Copolyester having improved anisotropyInfo
- Publication number
- JPH01287135A JPH01287135A JP11744388A JP11744388A JPH01287135A JP H01287135 A JPH01287135 A JP H01287135A JP 11744388 A JP11744388 A JP 11744388A JP 11744388 A JP11744388 A JP 11744388A JP H01287135 A JPH01287135 A JP H01287135A
- Authority
- JP
- Japan
- Prior art keywords
- unit
- component
- mol
- temperature
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001634 Copolyester Polymers 0.000 title description 14
- 229920000728 polyester Polymers 0.000 claims abstract description 44
- 239000000126 substance Substances 0.000 claims abstract description 9
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 abstract description 20
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 abstract description 14
- -1 Polyethylene terephthalate Polymers 0.000 abstract description 12
- 238000001746 injection moulding Methods 0.000 abstract description 9
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 abstract description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 abstract description 6
- 239000005020 polyethylene terephthalate Substances 0.000 abstract description 6
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 abstract description 4
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 abstract description 3
- 238000006068 polycondensation reaction Methods 0.000 abstract 1
- 238000006116 polymerization reaction Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 19
- 239000002994 raw material Substances 0.000 description 17
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000005452 bending Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OQBLGYCUQGDOOR-UHFFFAOYSA-L 1,3,2$l^{2}-dioxastannolane-4,5-dione Chemical compound O=C1O[Sn]OC1=O OQBLGYCUQGDOOR-UHFFFAOYSA-L 0.000 description 1
- UNQWKAVGUZNMJZ-UHFFFAOYSA-N 2,3-dibromoterephthalic acid Chemical group OC(=O)C1=CC=C(C(O)=O)C(Br)=C1Br UNQWKAVGUZNMJZ-UHFFFAOYSA-N 0.000 description 1
- NAQNEMNLLODUCG-UHFFFAOYSA-N 2,3-dichloroterephthalic acid Chemical group OC(=O)C1=CC=C(C(O)=O)C(Cl)=C1Cl NAQNEMNLLODUCG-UHFFFAOYSA-N 0.000 description 1
- QPGBFKDHRXJSIK-UHFFFAOYSA-N 2-tert-butylbenzene-1,3-dicarboxylic acid Chemical group CC(C)(C)C1=C(C(O)=O)C=CC=C1C(O)=O QPGBFKDHRXJSIK-UHFFFAOYSA-N 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- QGNLHMKIGMZKJX-UHFFFAOYSA-N 3-chloro-4-hydroxybenzoic acid Chemical group OC(=O)C1=CC=C(O)C(Cl)=C1 QGNLHMKIGMZKJX-UHFFFAOYSA-N 0.000 description 1
- YGYPMFPGZQPETF-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)-2,6-dimethylphenol Chemical group CC1=C(O)C(C)=CC(C=2C=C(C)C(O)=C(C)C=2)=C1 YGYPMFPGZQPETF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 101100208721 Mus musculus Usp5 gene Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- MCDLETWIOVSGJT-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O MCDLETWIOVSGJT-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- WKOLLVMJNQIZCI-UHFFFAOYSA-N vanillic acid Chemical group COC1=CC(C(O)=O)=CC=C1O WKOLLVMJNQIZCI-UHFFFAOYSA-N 0.000 description 1
- TUUBOHWZSQXCSW-UHFFFAOYSA-N vanillic acid Natural products COC1=CC(O)=CC(C(O)=O)=C1 TUUBOHWZSQXCSW-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 235000013904 zinc acetate Nutrition 0.000 description 1
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は機械的強度、耐熱性、成形性に借れ、異方性の
改良された共重合ポリエステルに関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a copolyester having improved mechanical strength, heat resistance, moldability, and anisotropy.
〈従来技術〉
液晶ポリエステルは溶融粘度が低いため成形が容易に行
えるうえに、成形品が高結晶を有するため自己補強効果
をもち、機械的強度に優れる、線膨張率・成形収縮率が
小さい、難燃性に優れる、耐薬品性・耐溶剤性に優れる
等の特性をもつ。<Prior art> Liquid crystalline polyester has a low melt viscosity, so it can be easily molded, and the molded product has a high crystallinity, so it has a self-reinforcing effect, has excellent mechanical strength, and has a low coefficient of linear expansion and molding shrinkage. It has properties such as excellent flame retardancy, chemical resistance, and solvent resistance.
なかでもポリエチレンテレフタレート成分、4.4′−
ビフェノール成分、テレフタル酸成分およびパラヒドロ
キシ安息香酸成分より成る特願昭62−332516号
に開示の共重合ポリエステルは前記した液晶ポリエステ
ルの特長を具備するうえ、易成形性と高耐熱性を有する
優れた樹脂てあ・る。Among them, polyethylene terephthalate component, 4.4'-
The copolymerized polyester disclosed in Japanese Patent Application No. 62-332516, which is composed of a biphenol component, a terephthalic acid component, and a parahydroxybenzoic acid component, has the above-mentioned characteristics of the liquid crystal polyester, and also has excellent moldability and high heat resistance. Resin Tea Ru.
〈発明が解決しようとする問題点〉
しかし、特願昭62−332516号に開示の共重合ポ
リエステルは機械的強度の異方性が大きい欠点をもつ。<Problems to be Solved by the Invention> However, the copolyester disclosed in Japanese Patent Application No. 62-332516 has a drawback of large anisotropy in mechanical strength.
すなわち、溶融加工成形において樹脂の配向方向(M
D力方向とこれに直角方向(TD力方向の強度・弾性率
か大ぎく異なる。 成形品の外力による破壊は最も弱い
所から起こるのが一般的であり、異方性の大ぎい液晶ポ
リエステルの場合、射出成形品のMD力方向クランクが
発生する。In other words, the direction of orientation of the resin (M
The strength and elastic modulus of the D force direction and the direction perpendicular to this (TD force direction) are very different. Breakage of a molded product due to external force generally occurs from the weakest point, and the In this case, MD force direction cranking of the injection molded product occurs.
特願昭62−332516号に開示のような対称性の良
い分子から成り立つ共重合ポリエステルは、射出成形品
に必要な優れた特性を多く有するにもかかわらず、異方
性が大きいために配向方向か割れやすいという致命的な
欠点をもち、用途か極めて限定される。Although the copolyester consisting of molecules with good symmetry as disclosed in Japanese Patent Application No. 62-332516 has many excellent properties necessary for injection molded products, it has a large anisotropy and cannot be easily oriented in the orientation direction. It has the fatal disadvantage of being easily cracked, and its uses are extremely limited.
また、異方性を緩和する方法としては、特願昭62−3
32517号に開示のようにガラス繊維などを充填する
方法があるか、これも無機物を加えることによる欠点、
例えば混練時のスクリュー摩耗、強度の低下、流動性の
低下、電気的性質の低下、外観不良等が表われ好ましく
ない。In addition, as a method of alleviating anisotropy, Japanese Patent Application No. 62-3
Is there a method of filling glass fiber etc. as disclosed in No. 32517, but this also has disadvantages due to adding inorganic substances,
For example, screw wear during kneading, decrease in strength, decrease in fluidity, decrease in electrical properties, poor appearance, etc. are undesirable.
〈課題を解決するための手段〉
本発明者らは、当該樹脂をさらに高強度・高弾性率にす
へぐポリマー組成の検討を鋭意行った結果、ポリエステ
ル成分、4.4′−ビフェノール成分、テレフタル酸成
分、バラオキシ安息香酸成分に第五成分として、イソフ
タル酸を加えることによりこれを達成することができた
。 さらに驚くべきことに、イソフタル酸を加えること
により異方性か緩和され、成形品の実用強度が大幅に向
上することがわかり、本発明に至った。<Means for Solving the Problems> The present inventors have conducted intensive studies on polymer compositions that can further enhance the strength and modulus of elasticity of the resin, and have found that a polyester component, a 4,4'-biphenol component, This was achieved by adding isophthalic acid as a fifth component to the terephthalic acid component and the oxybenzoic acid component. Furthermore, surprisingly, it was found that the addition of isophthalic acid alleviated the anisotropy and significantly improved the practical strength of the molded product, leading to the present invention.
そこで、下記、構成単位(I)〜(V)を含有し、かつ
単位(I)、(I+ )、(III )、(IV)、お
よび(V)を合わせた全モル数に対して、単位(■)2
〜15モル%、単位(I+)5〜30モル%、単位(■
)1〜20モル%、IL位(v)3o〜85%であり、
かつ(単位(m )千単位(IV))/!1−位(TI
)=0.8〜1.1 (モル比)であることを特徴とす
る異方性の改良された共重合ポリエステルを提供する。Therefore, the unit contains the following structural units (I) to (V) and is based on the total number of moles of units (I), (I+), (III), (IV), and (V). (■)2
~15 mol%, unit (I+) 5-30 mol%, unit (■
) 1 to 20 mol%, IL position (v) 3o to 85%,
And (unit (m) thousand unit (IV))/! 1st place (TI
) = 0.8 to 1.1 (molar ratio).
(ここで、単位(r)〜(V)の芳香環上の水素原子の
一部か01〜C6の低級アルキル基、アルコキシ基およ
びハロゲン基で置換されていてもよい。)
以下、本発明について詳細に説明する。(Here, some of the hydrogen atoms on the aromatic rings of units (r) to (V) may be substituted with 01 to C6 lower alkyl groups, alkoxy groups, and halogen groups.) The present invention will be explained below. Explain in detail.
本発明の共重合ポリエステルは、下記構成単位(1)〜
(V)を含有する。The copolymerized polyester of the present invention has the following structural units (1) to
Contains (V).
単位(I)は
で表わされ、これを繰り返し単位とするポリエチレンテ
レフタレートあるいはエチレングリコール成分とテレフ
タル酸成分を原料として生成する。共重合ポリエステル
中に与えることかできる。The unit (I) is represented by , and is produced using polyethylene terephthalate as a repeating unit or an ethylene glycol component and a terephthalic acid component as raw materials. It can also be provided in copolymerized polyesters.
単位(I)は単位(I)〜(V)を合わせた全モル数に
対して2〜15モル%存在すべきてあり、2モル%より
少ないと生成する共重合ポリエステルの溶融温度が高く
なるため、製造および成形加工が困難になるうえ、溶融
重合時や溶融成形時に樹脂の着色、熱劣化が起こるのて
好ましくない。 また15モル%を越えると溶融温度が
低下し、製造および成形加工か容易となる利点はあるも
のの、同時に耐熱性が低下する欠点を生ずる。 好まし
い単位(I)の存在量は3〜10モル%である。Unit (I) should be present in an amount of 2 to 15 mol% based on the total number of moles of units (I) to (V) combined, and if it is less than 2 mol%, the melting temperature of the resulting copolymerized polyester will increase. This makes manufacturing and molding difficult, and is undesirable because coloration and thermal deterioration of the resin occur during melt polymerization and melt molding. If it exceeds 15 mol %, the melting temperature decreases, which has the advantage of making manufacturing and molding easier, but it also has the disadvantage of decreasing heat resistance. The preferred amount of unit (I) is 3 to 10 mol%.
第1図に、単位(I)の存在量をこの範囲内とする理由
を示した。FIG. 1 shows the reason why the amount of unit (I) is within this range.
すなわち、後に実施例2.3で詳述するように、共重合
ポリエステルとして、イソフタル酸含有量が2モル%(
組成A)と5モル%(組成り)の
組成A;
組成り。That is, as will be detailed later in Example 2.3, the copolymerized polyester has an isophthalic acid content of 2 mol% (
Composition A) and 5 mol % (composition) of composition A; composition.
を合成し、単位(I)の存在量であるx、yを変えた樹
脂の射出成形温度と熱変形温度を測定し、横軸を
の含有率(モル%)として、第1図に示した。The injection molding temperature and heat distortion temperature of the resins were synthesized and the amounts of x and y of unit (I) were changed, and the horizontal axis is the content (mol%), as shown in Figure 1. .
範囲は、2モル%〜15モル%てあれば射出成形温度と
熱変形温度が低下し、製造および成形は加工が容易であ
る。If the range is 2 mol % to 15 mol %, the injection molding temperature and heat distortion temperature will be lowered, and manufacturing and molding will be easier.
単位(II )は
−(−シ(Σ(Σ0+
て表わされ、これは4.4′−ビフェノールおよびその
誘導体を原料として共重合ポリエステル中に与えること
ができる。The unit (II) is represented by -(-si(Σ(Σ0+), which can be provided in the copolyester using 4,4'-biphenol and its derivatives as raw materials.
単位(11)は単位(1)〜(V)を合わせた全モル数
に対して、5〜30モル%存在すべきてあり、5モル%
より少ない場合および30モル%を越える場合は、得ら
れる共重合ポリエステルの機械的強度が減少する。 好
ましい単位(II)の存在量は7〜20モル%である。The unit (11) should be present at 5 to 30 mol%, based on the total number of moles of units (1) to (V) combined, and 5 mol%
When the amount is less than 30 mol %, the mechanical strength of the resulting copolyester decreases. The preferred amount of unit (II) present is 7 to 20 mol%.
単位(U+ )は
て表わされ、これはテレフタル酸およびその誘導体を原
料とすることにより、最終共重合ポリエステル中に与え
ることができる。The unit (U+) is represented by 2, and can be provided in the final copolymerized polyester by using terephthalic acid and its derivatives as raw materials.
単位(II+ )は単位(II+ )と単位(IV)(
7)和が、
(単位(Ill )千単位(■))/単位(II)−〇
8〜1.1(モル比)
となる範囲で存在すべきであり、この範囲以外では生成
する共重合ポリエステルに耐熱性の低下、樹脂の着色、
機械的強度の低下が起こるので好ましくない。Unit (II+) is unit (II+) and unit (IV) (
7) The sum should be within the range of (units (Ill) thousand units (■))/units (II) - 8 to 1.1 (molar ratio), and outside this range the copolymerization that occurs Decrease in heat resistance of polyester, discoloration of resin,
This is not preferable because it causes a decrease in mechanical strength.
第2図に単位(Ill )と単位(IV )の和の存在
量を単位(rr )に対してこの範囲内とする理由を示
した。FIG. 2 shows the reason why the abundance of the sum of the unit (Ill) and the unit (IV) is kept within this range with respect to the unit (rr).
すなわち後に実施例6て詳述するように、共重合ポリエ
ステルとして、
“0(Σ’jj”70
を合成し、単位(Ill )の存在量であるZを変えた
樹脂のアイゾツト衝撃強度と熱変形温度をM、II定し
、横軸を、
(単位(Ill )千単位(1)/単位(II)=モし
ζΣ(Σ0+
(Z+3)/11.5 (モル比)
として第2図に示した。 すなわち、この範囲内に各成
分の存在量があるとアイゾツト衝撃強度か向上し、熱変
形温度も上がる。That is, as will be described later in detail in Example 6, the Izot impact strength and thermal deformation of resins in which "0(Σ'jj"70) was synthesized as a copolymerized polyester and Z, which is the amount of units (Ill) present, were The temperature is set as M and II, and the horizontal axis is shown in Figure 2 as (units (Ill) thousand units (1)/units (II) = ζΣ(Σ0+ (Z+3)/11.5 (molar ratio)). That is, if the amount of each component is within this range, the Izot impact strength will improve and the heat distortion temperature will also increase.
単位(IV )は
て表わされ、これはイソフタル酸およびその話導体を原
料とすることにより最終共重合ポリエステル中に与える
ことができる。The unit (IV) is represented by 1 and can be provided in the final copolymerized polyester by starting from isophthalic acid and its conductor.
単位(IV )は単位(1)〜(V)を合わせた全モル
数に対して、1〜20モル%存在すべきてあり、単位(
rv )か1モル%未満の場合は曲げ強度、曲げ弾性率
の向上および異方性の緩和が十分てなく、また20モル
%を越えると溶融温度が下がる利点はあるものの、それ
以上に熱変形温度の低下を起こすので好ましくない。The unit (IV) should be present in an amount of 1 to 20 mol% based on the total number of moles of the units (1) to (V).
If it is less than 1 mol%, the bending strength, bending modulus and relaxation of anisotropy will not be sufficiently improved, and if it exceeds 20 mol%, although there is an advantage of lowering the melting temperature, thermal deformation will be greater than that. This is not preferable because it causes a drop in temperature.
単位(IV )の存在量は3〜10モル%、さらに好ま
しい量は3〜5モル%である。The amount of unit (IV) present is 3 to 10 mol%, more preferably 3 to 5 mol%.
第3〜第・6図に単位(IV )の存在量をこの範囲内
とする理由を示した。The reason for keeping the amount of unit (IV) within this range is shown in FIGS. 3 to 6.
すなわち、後に実施例4.5て詳述するように共重合ポ
リエステルとして、
組成C5
Uす
組成り:
を合成し、単位(IV )の存在量であるdおよびmを
変えた樹脂の、溶融温度と熱変形温度を、また組成Cの
樹脂の曲げ強度、実用強度および成形収縮率を測定し、
横軸を単位(IV)の存在量として第3〜第6図に示し
た。 つまり、単位(IV )が前記範囲にあると溶融
温度は下がリ、曲げ強度、曲げ弾性率は向上し、成形収
縮率は小さくなる。That is, as will be detailed later in Example 4.5, as a copolymerized polyester, the following composition was synthesized, and the melting temperature of the resin was changed by changing the amounts of d and m of the unit (IV). and the heat distortion temperature, and the bending strength, practical strength and molding shrinkage of the resin of composition C,
The abscissa axis is shown in FIGS. 3 to 6 as the abundance of unit (IV). That is, when the unit (IV) is within the above range, the melting temperature is lowered, the bending strength and the bending elastic modulus are improved, and the molding shrinkage rate is reduced.
単位(V)は、
て表わされ、これはパラヒドロキシ安息香酸およびその
誘導体を原料とすることにより、共重合ポリエステル中
に与えることがてぎる。The unit (V) is represented by the following formula, and can be provided in the copolyester by using parahydroxybenzoic acid and its derivatives as raw materials.
単位(V)は単位(I)〜(V)を合わせた全モル数に
対して、30〜85モル%存在ずへきてあり、単位(V
)が30モル%に満たない場合および85モル%を越え
る場合は機械的強度が著しく低下する。 好ましい単位
(V)の存在量は40′〜80モル%、さらに好適には
55〜73モル%である。The unit (V) is present in an amount of 30 to 85 mol% based on the total number of moles of units (I) to (V).
) is less than 30 mol% or exceeds 85 mol%, the mechanical strength is significantly reduced. The amount of unit (V) present is preferably 40' to 80 mol%, more preferably 55 to 73 mol%.
第7図に単位(V)の存在量をこの範囲内とする理由を
示した。FIG. 7 shows the reason why the amount of unit (V) is kept within this range.
すなわち後に実施例7て詳述するように共重合ポリエス
テルとして、
+0′−C>律。That is, as will be described later in detail in Example 7, as a copolymerized polyester, +0'-C> rule.
○
を合成し、単位(V)の存在量であるfを変えた樹脂の
曲げ強度とアイゾツト衝撃強度を測定し、横軸を単位(
V)の存在量として第7図に示した。○ was synthesized, and the bending strength and Izot impact strength of the resin were measured by changing f, which is the abundance of unit (V), and the horizontal axis was expressed as unit (
The abundance of V) is shown in FIG.
この範囲に単位(V)の存在量かあると、曲げ強度とア
イゾツト衝撃強度は、ともに向上する。When the amount of unit (V) is within this range, both the bending strength and the isot impact strength are improved.
単位(1)〜(V)は芳香環上の水素原子の一部か、C
5〜C6の低級アルキル基、アルコキシ基、およびハロ
ゲン基で置換されていてもよい。Units (1) to (V) are part of the hydrogen atom on the aromatic ring, or are C
It may be substituted with a 5-C6 lower alkyl group, an alkoxy group, or a halogen group.
具体的には、単位(Iりでは、芳香環上の水素原子かメ
チル基で置換された3、3′、5.5′−テトラメチル
−4,4′−ジヒドロキシビフェニル、同様に単位(I
ll )ではハロゲン基て置換されたジクロロテレフタ
ル酸やジブロモテレフタル酸、単位(TV)では、メチ
ル基やt−ブチル基で置換された4−メチル4・ソフタ
ル酸やt−ブチルイソフタル酸、単位(V)ではメトキ
シ基やハロゲン基で置換された4−ヒドロキシ−3−メ
トキシ安息香酸や4−ヒドロキシ−3−クロル安息香酸
等がある。Specifically, the unit (I) is a 3,3',5.5'-tetramethyl-4,4'-dihydroxybiphenyl substituted with a hydrogen atom or a methyl group on the aromatic ring;
ll) is dichloroterephthalic acid or dibromo terephthalic acid substituted with a halogen group, unit (TV) is 4-methyl 4-sophthalic acid or t-butyl isophthalic acid substituted with a methyl group or t-butyl group, and unit ( Examples of V) include 4-hydroxy-3-methoxybenzoic acid and 4-hydroxy-3-chlorobenzoic acid substituted with a methoxy group or a halogen group.
重合方法は特に制限はなく、共重合ポリエステル中に単
位(I)〜(V)が本発明の組成比で存在するような重
合法であればいかなるものでもよい。The polymerization method is not particularly limited, and any polymerization method may be used as long as the units (I) to (V) are present in the composition ratio of the present invention in the copolymerized polyester.
単位(I)に対応するポリエチレンテレフタレート、単
位(II )に対応するビフェノール、単位(III
)に対応するテレフタル酸、単位(IV )に対応する
イソフタル酸、単位(V)に対応するパラヒドロキシ安
息香酸に触媒を加えて加熱し生成する水を除去しながら
重合させる直接重合法:
直接重合法に用いる原料のカルボキシル基をあらかしめ
フェノール誘導体でエステル化した原料を用いて加熱し
、生成するフェノール誘導体を除去しながら重合させる
方法。Polyethylene terephthalate corresponding to unit (I), biphenol corresponding to unit (II), unit (III)
Direct polymerization method in which a catalyst is added to terephthalic acid corresponding to unit (IV), isophthalic acid corresponding to unit (IV), and parahydroxybenzoic acid corresponding to unit (V), and polymerization is performed while heating and removing the generated water: Direct polymerization A method in which the carboxyl groups of legally used raw materials are roughened and esterified with phenol derivatives, and the raw materials are heated and polymerized while removing the phenol derivatives produced.
直接重合法に用いる原料の芳香族ヒドロキシル基を有機
酸でアシル化した原料を用いて加熱し、生成する有機酸
を除去しながら重合させる方法;
直接重合法に用いる原料のカルボキシル基を酸ハライド
にした原料を用いて生成するハロゲン化水素を除去しな
がら重合させる方法等はいずれも使用できる。A method in which the aromatic hydroxyl group of the raw material used in the direct polymerization method is acylated with an organic acid, and the raw material is heated and polymerized while removing the generated organic acid; The carboxyl group of the raw material used in the direct polymerization method is converted into an acid halide. Any method of polymerizing while removing hydrogen halide produced using a raw material can be used.
また、溶融重合法、加熱溶液重合法、低温溶液重合法、
界面重合法のいずれの方法でも重合可能である。In addition, melt polymerization method, heated solution polymerization method, low temperature solution polymerization method,
Polymerization is possible by any interfacial polymerization method.
これらの方法のうち、有機酸を除去しながら重合させる
溶融重合法が最も望ましい。Among these methods, the most desirable is the melt polymerization method in which polymerization is performed while removing the organic acid.
代表例として、アシドリシス反応によって重合を行う溶
融重合法について詳しく説明する。As a representative example, a melt polymerization method in which polymerization is performed by acidolysis reaction will be explained in detail.
反応は必要な諸原料、すなわち、ポリエステル、芳香族
ジアシルオキシ化合物、芳香族ジカルボン酸化合物、芳
香族アシルオキシカルボン酸化合物を重合容器に入れ加
熱することにより開始される。The reaction is initiated by placing necessary raw materials, namely polyester, aromatic diacyloxy compound, aromatic dicarboxylic acid compound, and aromatic acyloxycarboxylic acid compound in a polymerization container and heating them.
重合温度は特に制限はないが、−船釣には180〜40
0℃の間て行われる。 180℃より低い温度である
と反応が遅く、また400℃を超えるとポリマーの着色
や分解が激しく起こるので好ましくない。There is no particular limit to the polymerization temperature, but -180 to 40 for boat fishing.
It is carried out between 0°C. If the temperature is lower than 180°C, the reaction will be slow, and if it exceeds 400°C, coloration or decomposition of the polymer will occur, which is not preferable.
好ましい重合温度は200〜360℃の範囲である。The preferred polymerization temperature is in the range of 200-360°C.
反応時の圧力は特に限定はないが、反応初期は大気圧近
辺で行い、重合の進行につれて除々に減圧にする方法が
好ましい。The pressure during the reaction is not particularly limited, but it is preferable to carry out the reaction at around atmospheric pressure at the initial stage and gradually reduce the pressure as the polymerization progresses.
局所過熱によるポリマーの分解防止、および生成有機酸
の除去を容易にするために、反応は攪拌をしながら行う
ことか望ましく、また酸素によるポリマーの酸化分解を
防ぐために反応系の霊囲気は窒素やアルゴン等の不活性
ガス雰囲気であることが望ましい。In order to prevent the decomposition of the polymer due to local overheating and to facilitate the removal of the organic acids produced, it is preferable to carry out the reaction with stirring, and in order to prevent the oxidative decomposition of the polymer due to oxygen, the atmosphere in the reaction system should be filled with nitrogen or An inert gas atmosphere such as argon is desirable.
重合反応は触媒を使わずに行うこともてきるが、重合反
応を促進させるために触媒を用いてもよい。 触媒は、
出発原料である単位(I)のポリエステル中に混入して
いてもよいし、新たに重合段階で加えてもよい。The polymerization reaction can be carried out without using a catalyst, but a catalyst may be used to accelerate the polymerization reaction. The catalyst is
It may be mixed into the polyester of unit (I), which is a starting material, or may be newly added at the polymerization stage.
触媒としては酸化′ケルマニウムのようなゲルマニウム
化合物、蓚酸第1スズ、酢酸第1スズ、ジアルキルスズ
酸化物、ジアリールスズ酸化物のようなスズ化合物、二
酸化チタン、チタンアルコオキシド類、アルコオキシチ
タンケイ酸塩類のようなチタン化合物、三酸化アンチモ
ンのようなアンチモン化合物、酢酸ナトリウム、酢酸カ
リウム、酢酸カルシウム、酢酸亜鉛、酢酸第1鉄のよう
な有機酸の金属塩、BF、やAuCu3のようなルイス
酸類、アジン類、アミド類、塩酸、硫酸などの無機酸な
どがあげられる。Catalysts include germanium compounds such as kermanium oxide, tin compounds such as stannous oxalate, stannous acetate, dialkyltin oxides, diaryltin oxides, titanium dioxide, titanium alkoxides, and alkoxytitanium silicates. Titanium compounds such as salts, antimony compounds such as antimony trioxide, metal salts of organic acids such as sodium acetate, potassium acetate, calcium acetate, zinc acetate, ferrous acetate, Lewis acids such as BF and AuCu3 , azines, amides, and inorganic acids such as hydrochloric acid and sulfuric acid.
本発明の共重合ポリエステルは、重合途中または得られ
た共重合ポリエステル中に充填剤、添加剤などを加えて
もよい。 これらのものとして例えばタルク、炭酸カル
シウム、マイカ、ウオラストナイト、フェライト、希土
類磁石粉のような無機充填剤;ガラス繊維;炭素繊維。Fillers, additives, etc. may be added to the copolymerized polyester of the present invention during polymerization or to the obtained copolymerized polyester. These include, for example, inorganic fillers such as talc, calcium carbonate, mica, wollastonite, ferrite, rare earth magnet powder; glass fiber; carbon fiber.
アスベストm維;酸化防止剤:着色防止剤、安定剤;紫
外・線吸収剤:可塑剤;二硫化モリブデン、シリコンオ
イル、フッ素樹脂、グラファイトのような潤滑剤;テト
ラブロムビスフェノールA、三酸化アンチモンなどの難
燃剤などがあげられる。Asbestos m-fiber; Antioxidant: Anti-coloring agent, stabilizer; Ultraviolet/ray absorber: Plasticizer; Lubricants such as molybdenum disulfide, silicone oil, fluororesin, graphite; Tetrabromo bisphenol A, antimony trioxide, etc. Examples include flame retardants.
本発明の共重合ポリエステルの用途としては、機械的特
性、寸法特性を生かした電気・機械部品用の精密射出成
形品;フェライトや希土類磁石を充填したプラスチック
磁石、溶融紡糸をすることによる高強度高弾性率繊維;
フィルムなどがあげられる。Applications of the copolymerized polyester of the present invention include precision injection molded products for electrical and mechanical parts that take advantage of its mechanical and dimensional properties; plastic magnets filled with ferrite and rare earth magnets, and high-strength products made by melt spinning. Elastic modulus fiber;
Examples include film.
特に本発明の共重合ポリエステルの溶融温度・溶融粘度
の低さと耐熱性(熱変形温度)の高さ、および異方性の
少ない特長を生かし、射出成形材として利用するのが好
ましい。In particular, it is preferable to utilize the copolymerized polyester of the present invention as an injection molding material by taking advantage of its low melting temperature, low melt viscosity, high heat resistance (heat distortion temperature), and low anisotropy.
次に、本発明の共重合ポリエステルと公知文献に記載の
共重合ポリエステルを比較しながら、本発明の特徴を述
べる。Next, the characteristics of the present invention will be described while comparing the copolymerized polyester of the present invention with copolymerized polyesters described in known literature.
単位(I)を含まない共重合ポリエステルは特公昭47
−47870に公知であるが、このポリエステルは第3
図の組成Eで代表例を示したように、溶融温度が350
℃を越える欠点をもつ。Copolyester containing no unit (I) was published in Japanese Patent Publication No. 47.
-47870, this polyester is
As shown in the representative example with composition E in the figure, the melting temperature is 350
It has the disadvantage of exceeding ℃.
すなわち、溶融重合の場合、反応温度が350℃を越え
ると製造上不利な点が多い。That is, in the case of melt polymerization, there are many disadvantages in production when the reaction temperature exceeds 350°C.
まず第一に有機系の熱媒では350℃以上の加熱は困難
であり、電気ヒーター加熱、硝酸塩などの無機溶融塩を
使用しなくてはならない。First of all, heating above 350° C. is difficult with an organic heating medium, and heating with an electric heater or an inorganic molten salt such as nitrate must be used.
前者は局所過熱によるポリマーの着色・分解の原因とな
るし、後者は取扱いが難しい。 第二に、ポリエステル
の着色・分解か350℃を境に急激に起こることである
。 これを防ぐために比較的低温てプレポリマーを合
成し、これを不活性ガスまたは減圧下で同相重合する方
法が良く行われるが、これも設備が複雑になる欠点があ
る。The former causes coloring and decomposition of the polymer due to local overheating, and the latter is difficult to handle. Second, coloring and decomposition of polyester occur rapidly at 350°C. In order to prevent this, a method is often used in which a prepolymer is synthesized at a relatively low temperature and the prepolymer is polymerized in the same phase under an inert gas or reduced pressure, but this method also has the disadvantage of complicating the equipment.
従って、共重合ポリエステルの溶融温度か350℃以下
であることは製造設備の面、良成形品を得る面において
重要なことである。 単位(I)は溶融温度を下げるた
めに必須の成分である。Therefore, it is important for the melting temperature of the copolyester to be 350° C. or lower in terms of manufacturing equipment and obtaining good molded products. Unit (I) is an essential component for lowering the melting temperature.
本発明の共重合ポリエステルは、350℃以下で溶融す
るため、ポリエチレンテレフタレートなどに使われる一
般的な溶融重合用製造設備て製造でき、しかもほとんど
白色の外観の優れた樹脂である。Since the copolyester of the present invention melts at 350° C. or lower, it can be produced using general melt polymerization manufacturing equipment used for polyethylene terephthalate, etc., and is an almost white resin with an excellent appearance.
単位(IV)を含まない共重合ポリエステルは特願昭6
2−332516に公知であるが、このポリエステルは
第4図に横軸Oて示したように射出成形品のMD力方向
TD力方向強度が大きく異なり、TD力方向強度が低い
欠点なもつ。Copolyester containing no unit (IV) is patented in 1986.
2-332516, but this polyester has the drawback that the strength in the MD force direction and the TD force direction of the injection molded product differs greatly as shown by the horizontal axis O in FIG. 4, and the strength in the TD force direction is low.
すなわち、成形品の外力による破壊は最も弱い所から起
こるのが一般的であり、このように異方性が大きいと配
向方向が割れやすく用途が極めて限定されてしまう。
成形品の実用強度を向上させるためにはTD力方向強度
、弾性率の向上が不可欠である。In other words, breakage of a molded product due to external force generally occurs from the weakest point, and when the anisotropy is large in this way, the orientation direction is likely to break, and its uses are extremely limited.
In order to improve the practical strength of molded products, it is essential to improve the strength in the TD force direction and the elastic modulus.
本発明の共重合ポリエステルは第5成分としてイソフタ
ル酸を加えることにより第4図横軸1〜20モル%で示
すようにイソフタル酸成分0の樹脂をさらに高強度・高
弾性にすることができ、特にTD力方向強度の向上が著
しく、異方性を緩和することができた。 これは第6図
に示したように、成形収縮率が小さくなったことによっ
ても確認できた。 またTD力方向強度が高くそれに併
い第5図に示したように実用強度が大幅に向上した。By adding isophthalic acid as a fifth component to the copolymerized polyester of the present invention, it is possible to further increase the strength and elasticity of the resin containing no isophthalic acid component, as shown by 1 to 20 mol% on the horizontal axis in FIG. In particular, the strength in the TD force direction was significantly improved, and the anisotropy could be alleviated. This was also confirmed by the decrease in molding shrinkage as shown in FIG. In addition, the strength in the TD force direction was high, and in addition, as shown in FIG. 5, the practical strength was significantly improved.
第1および第3図に示したように単位
(■)、および単位(■)はいずれも溶融温度を下げる
手段として有効である。 しかし単位(IV )は単
位(I)に比べて含有量当たりの溶融温度の低下が少な
いうえに、耐熱性(熱変形温度)の低下が大きい。 ま
た 第5図に示したように単位(IV )を加えること
による実用強度の向上は、はぼ3モル%で満たされるこ
とから、単位(IV )を3モル%程度に固定し、単位
(1)を6モル%以上とすることにより350℃以下で
合成が可能となり、製造、設備の面、良成形品を得る面
等において最も理想的なポリエステルの組成であるとい
える。As shown in FIGS. 1 and 3, both the unit (■) and the unit (■) are effective as means for lowering the melting temperature. However, unit (IV) has a smaller decrease in melting temperature per content than unit (I), and also has a large decrease in heat resistance (heat distortion temperature). In addition, as shown in Figure 5, since the improvement in practical strength by adding the unit (IV) is satisfied by approximately 3 mol%, the unit (IV) is fixed at about 3 mol%, and the unit (1 ) is 6 mol % or more, synthesis can be performed at 350° C. or lower, and this can be said to be the most ideal polyester composition in terms of manufacturing, equipment, and obtaining good molded products.
〈実施例〉 以下に実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.
まず試験方法について説明する。First, the test method will be explained.
(1)射出成形
■山域精機製作所製5AV−60−52型射出成形機を
用いて、金型温度70℃、射出圧力250 kg/cm
2、シリンダー温度はこの射出圧力で金型内に樹脂が十
分溝たされる温度に設定して、5 x 1/2 x 1
78インチの試験片を得た。(1) Injection molding ■ Using a 5AV-60-52 injection molding machine manufactured by Yamaguchi Seiki Seisakusho, mold temperature 70°C, injection pressure 250 kg/cm
2. Set the cylinder temperature to a temperature at which the resin is sufficiently grooved in the mold with this injection pressure, and make 5 x 1/2 x 1
A 78 inch test piece was obtained.
射出成形温度とはこの時のシリンダー温度をいう。The injection molding temperature refers to the cylinder temperature at this time.
また、120xl 20X2mm (ファンゲート)の
平板を、金型温度130℃、射出圧力150 kg/c
m2、シリンダー温度は5 X 1/2 X 1/8イ
ンチの試験片を成形した時よりも5℃高くして射出成形
した。In addition, a 120xl 20x2mm (fan gate) flat plate was molded at a mold temperature of 130°C and an injection pressure of 150 kg/c.
m2, and the cylinder temperature was 5° C. higher than when the 5 x 1/2 x 1/8 inch test piece was molded.
(2)物性評価
熱変形温度(18、6kg/cm2)はASTMD−6
48に、アイゾツト衝撃強度(ノツチ付)はASTM
D−256に、成形収縮率はASTM D−955
に準じて、5×l/2×l/8インチの試験片を用いて
測定した。(2) Physical property evaluation Heat distortion temperature (18.6 kg/cm2) is ASTM D-6
48, Izotsu impact strength (with notch) is ASTM
D-256, molding shrinkage rate is ASTM D-955
Measurements were made using a 5 x 1/2 x 1/8 inch test piece.
異方性試験は、120xl 20X2mm平板を樹脂の
流れ方向(MD力方向および流れ方向と直角方向(TD
力方向に14mm巾で切り出し、ASTM D−79
0に準じて曲げ試験を行った。The anisotropy test was conducted using a 120xl 20x2mm flat plate in the flow direction of the resin (MD force direction and in the direction perpendicular to the flow direction (TD
Cut out a 14mm width in the force direction, ASTM D-79
A bending test was conducted in accordance with 0.
(3)溶融温度
島原製作所■製高荷式フローテスターCFT−500に
て、φQ、5x1.Ommのノズル、6℃/分の昇温速
度にて、樹脂が1000ボイスの粘度の時の温度を求め
た。 すなわち、溶融温度とは樹脂が、1000ボイズ
の時の温度をいう。(3) Melting temperature φQ, 5x1. The temperature was determined when the resin had a viscosity of 1000 voices using a nozzle of 0 mm and a heating rate of 6° C./min. That is, the melting temperature refers to the temperature at which the resin has 1000 voids.
(4)実用強度
実用強度は■東洋精機製作所製デュポン衝撃強度測定装
置を用いて、120xl 20x2mm平板の中央部に
R=7.9mmの撃芯をあて、200gのおもりを落下
させ、平板にクラックの発生する高さを求め、実用強度
をこの破壊高さ(c m)で表わした。(4) Practical strength Practical strength is ■Using a DuPont impact strength measuring device manufactured by Toyo Seiki Seisakusho, a striking center of R = 7.9 mm is applied to the center of a 120xl 20x2mm flat plate, a 200g weight is dropped, and the flat plate cracks. The height at which this occurred was determined, and the practical strength was expressed in terms of this fracture height (cm).
次に本発明の共重合ポリエステルについて述べる。Next, the copolyester of the present invention will be described.
(実施例1)
トルクメーター・回転計付攪拌装置、アルゴン導入管、
温度計の備えられた重合容器にポリエチレンテレフタレ
ート(フェノール/テトラクロロエタン=50150
(重量比)溶媒中、0.5g/duの濃度、30℃で測
定した対数粘度が0.72)134g (0,7モル)
4.4′−ジアセトキシビフェニル297g(1,1モ
ル)、テレフタル酸149g(0,9モル)、イソフタ
ル酸33g(o、2モル)、バラアセトキシ安息香酸1
278g(7,1モル)を仕込んだ。(Example 1) Stirring device with torque meter/tachometer, argon introduction pipe,
Polyethylene terephthalate (phenol/tetrachloroethane = 50150
(Weight ratio) Concentration of 0.5 g/du in solvent, logarithmic viscosity measured at 30°C is 0.72) 134 g (0.7 mol)
4.4'-diacetoxybiphenyl 297 g (1.1 mol), terephthalic acid 149 g (0.9 mol), isophthalic acid 33 g (o, 2 mol), paraacetoxybenzoic acid 1
278 g (7.1 mol) was charged.
十分にアルゴンで置換した後、約30分をかけて内温な
260℃まで昇温した。 昇温途中で原料が溶融したら
攪拌を始めた。 260℃て1時間、280℃で1時
間、300℃で1時間重合を行った後、除々に圧力を減
じ、最終的に340℃、0.5mmHgで20分間反応
させ重合を完了した。After sufficiently purging with argon, the temperature was raised to an internal temperature of 260° C. over about 30 minutes. When the raw material melted during the temperature rise, stirring was started. After polymerization was carried out at 260°C for 1 hour, 280°C for 1 hour, and 300°C for 1 hour, the pressure was gradually reduced, and the polymerization was finally completed by reacting at 340°C and 0.5 mmHg for 20 minutes.
物性測定を行い、結果を第1、および第3〜第6図に示
した。Physical properties were measured and the results are shown in Figures 1 and 3 to 6.
(実施例2)
仕込み原料および最終合成温度を下表の如くする以外は
実施例1と同様の方法で合成および物性測定を行った。(Example 2) Synthesis and physical property measurements were carried out in the same manner as in Example 1, except that the raw materials and final synthesis temperature were as shown in the table below.
結果を表1および第1図に示した。The results are shown in Table 1 and Figure 1.
表 1
(実施例3〜7)
仕込み原料および最終合成温度を300〜350℃に変
える以外は実施例1と同様の方法で表2に示す各組成の
共重合ポリエステルを合成し、物性測定を行った。 結
果を第1〜第7図に示す。Table 1 (Examples 3 to 7) Copolymerized polyesters having the compositions shown in Table 2 were synthesized in the same manner as in Example 1, except that the raw materials and final synthesis temperature were changed to 300 to 350°C, and the physical properties were measured. Ta. The results are shown in Figures 1 to 7.
(比較例1)
比較例として特公昭47−47870号に公知のポリエ
ステルを、仕込み原料および最終合成温度を380〜4
20℃に変える以外は実施例1と同様の方法で合成し物
性測定した。 合成した共重合ポリエステルの組成を表
2に、結果を第1図に示す。(Comparative Example 1) As a comparative example, a polyester known in Japanese Patent Publication No. 47-47870 was used, and the raw materials and final synthesis temperature were 380 to 4.
It was synthesized in the same manner as in Example 1 except that the temperature was changed to 20°C, and the physical properties were measured. The composition of the synthesized copolyester is shown in Table 2, and the results are shown in FIG.
(比較例2)
比較例として特願昭62−332516号に公知のポリ
エステルを、仕込み原料および最終合成温度を350℃
に変える以外は実施例1と同様の方法で合成し物性測定
した。 合成した共重合ポリエステルの組成を表2に、
結果を第3〜第6図に示す。(Comparative Example 2) As a comparative example, a polyester known in Japanese Patent Application No. 62-332516 was used, and the raw materials and final synthesis temperature were 350°C.
It was synthesized and its physical properties were measured in the same manner as in Example 1, except for changing to . The composition of the synthesized copolyester is shown in Table 2.
The results are shown in Figures 3 to 6.
なお実施例1〜7および比較例1〜6で合成した共重合
ポリエステルは、いずれも偏光顕微鏡(ヒートステージ
装着ニコン偏光顕微鏡POH型)による観察において、
溶融状態で軽く剪断力をかけると光学異方性を示すこと
により、サーモドロ上ピックン夜晶ポリエステルである
ことがわかフた。It should be noted that the copolymerized polyesters synthesized in Examples 1 to 7 and Comparative Examples 1 to 6 were all observed under a polarizing microscope (Nikon polarizing microscope POH type equipped with a heat stage).
When a light shearing force was applied to the material in the molten state, it showed optical anisotropy, which revealed that it was a thermodromic night-crystalline polyester.
特開平1−2’87135 (9) 〒 − 申 申 〒− 申 申 特開平1−287135(11) 。JP 1-2'87135 (9) 〒 - Monkey 〒- Shin JP-A-1-287135 (11).
小0 呈″″″′。Small 0 presentation″″″′.
〈発明の効果〉
本発明の共重合ポリエステルは、優れた耐熱性・機械的
強度・難燃性・耐薬品性・耐溶剤性・外観、低線膨張率
、低成形収縮率、低異方性を有するうえに、射出成形が
容易に行え、また人手しやすい原料を用いて簡単に製造
てきる。<Effects of the Invention> The copolymerized polyester of the present invention has excellent heat resistance, mechanical strength, flame retardance, chemical resistance, solvent resistance, appearance, low linear expansion coefficient, low mold shrinkage rate, and low anisotropy. In addition, injection molding can be easily performed, and it can be easily manufactured using raw materials that are easy to handle.
第1図は、共重合ポリエステルの単位(I)成分量;X
およびyと射出成形温度および熱変形温度との関係を示
すグラフである。
第2図は共重合ポリエステルの
(単位(m)+4位(IV))/JIL位(I+)と熱
変形温度およびアイゾツト衝撃強度との関係を示すグラ
フである。
第3図は、共重合ポリエステルの単位(IV )成分量
;d、mおよびnと溶融温度および熱変形温度との関係
を示すグラフである。
第4図は共重合ポリエステルの単位(IV)成分量、d
と曲げ強度との関係を示すグラフである。
第5図は共重合ポリエステルの単位(IV )成分量;
dとデュポン衝撃強度との関係を示すグラフである。
第6図は共重合ポリエステルの単位(IV )成分量、
dと成形収縮率との関係を示すグラフである。
第7図は共重合ポリエステルの単位(V)成分量、fと
曲げ強度およびアイゾツト衝撃強度との関係を示すグラ
フである。Figure 1 shows the unit (I) component amount of the copolymerized polyester;
It is a graph showing the relationship between y and injection molding temperature and heat distortion temperature. FIG. 2 is a graph showing the relationship between (unit (m) + 4th position (IV))/JIL position (I+) of copolymerized polyester, heat distortion temperature and Izod impact strength. FIG. 3 is a graph showing the relationship between the amounts of unit (IV) components; d, m, and n of the copolymerized polyester, and the melting temperature and heat distortion temperature. Figure 4 shows the amount of unit (IV) component of the copolymerized polyester, d
It is a graph which shows the relationship between and bending strength. Figure 5 shows the amount of unit (IV) component of copolymerized polyester;
It is a graph showing the relationship between d and DuPont impact strength. Figure 6 shows the amount of unit (IV) component of copolymerized polyester,
It is a graph which shows the relationship between d and molding shrinkage rate. FIG. 7 is a graph showing the relationship between the amount of the unit (V) component and f of the copolymerized polyester, and the bending strength and the Izot impact strength.
Claims (1)
単位( I )、(II)、(III)、 (IV)、および(V)を合わせた全モル数に対して、単
位( I )2〜15モル%、単位(II)5〜30モル%
、単位(IV)1〜20モル%、単位(V)30〜85%
であり、かつ{単位(III)+単位(IV)}/単位(II
)=0.8〜1.1(モル比)であることを特徴とする
異方性の改良された共重合ポリエステル。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) ▲数式、化学式、表等があります▼(IV) ▲数式、化学式、表等があります▼(V) (ここで、単位( I )〜(V)の芳香環上の水素原子
の一部がC_1〜C_6の低級アルキル基、アルコキシ
基およびハロゲン基で置換されていてもよい。)(1) Contains the following structural units (I) to (V), and based on the total number of moles of units (I), (II), (III), (IV), and (V), Unit (I) 2-15 mol%, Unit (II) 5-30 mol%
, unit (IV) 1-20 mol%, unit (V) 30-85%
and {unit (III) + unit (IV)}/unit (II
) = 0.8 to 1.1 (molar ratio), a copolymerized polyester with improved anisotropy. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼( IV) ▲Mathematical formulas, chemical formulas, tables, etc.▼(V) (Here, some of the hydrogen atoms on the aromatic rings of units (I) to (V) are C_1 to C_6 lower alkyl groups, alkoxy groups, and halogens. (May be substituted with a group.)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11744388A JPH01287135A (en) | 1988-05-13 | 1988-05-13 | Copolyester having improved anisotropy |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11744388A JPH01287135A (en) | 1988-05-13 | 1988-05-13 | Copolyester having improved anisotropy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH01287135A true JPH01287135A (en) | 1989-11-17 |
Family
ID=14711778
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11744388A Pending JPH01287135A (en) | 1988-05-13 | 1988-05-13 | Copolyester having improved anisotropy |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01287135A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03103462A (en) * | 1989-05-15 | 1991-04-30 | Toray Ind Inc | Flame-retardant liquid crystal polyester composition |
-
1988
- 1988-05-13 JP JP11744388A patent/JPH01287135A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03103462A (en) * | 1989-05-15 | 1991-04-30 | Toray Ind Inc | Flame-retardant liquid crystal polyester composition |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6680002B2 (en) | Liquid crystalline polyester resin composition for a connector | |
| US4983713A (en) | Polyester resin exhibiting optical anisotropy in molten state containing minor amounts of 6-oxy-2-naphthoyl units | |
| JPWO2020204124A1 (en) | Total aromatic polyester and polyester resin composition | |
| JP3086231B2 (en) | Polyester resin and resin composition showing anisotropy when melted | |
| US5089594A (en) | Wholly aromatic polyester of isophthalic acid, terephthalic acid, p-hydroxybenzoic acid, hydroquinone and an arylene diol | |
| JPWO2019188959A1 (en) | Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition and molded article | |
| EP1616894A1 (en) | Liquid-crystalline polyester resin and method for producing it | |
| US5066767A (en) | Wholly aromatic polyesters comprising isophthalic acid, terephthalic acid, p-hydroxybenzoic acid, hydroquinone and an arylene diol | |
| US6838018B2 (en) | Liquid crystalline polyester resin composition and its molded article | |
| JP2847188B2 (en) | Method for producing aromatic polyester | |
| WO2011132390A1 (en) | Thermoplastic resin with high thermal conductivity | |
| EP0337728A2 (en) | Polyester resin exhibiting optical anisotropy in molten state and composition thereof | |
| JP3411683B2 (en) | Wholly aromatic polyester and composition thereof | |
| EP0337729A2 (en) | Polyester resin exhibiting optical anisotropy in molten state and composition thereof | |
| JPH01287135A (en) | Copolyester having improved anisotropy | |
| EP0390915A4 (en) | Wholly aromatic polyesters of isophthalic acid, terephthalic acid, p-hydroxybenzoic acid, hydroquinone and an arylene diol | |
| EP0520612A1 (en) | Heat-resistant polyester resin and resin composition | |
| JP3185414B2 (en) | Aromatic copolyesterimide | |
| JPH0694504B2 (en) | Copolyester amide | |
| JPH0684472B2 (en) | Copolymerized polyesteramide composition containing inorganic filler | |
| WO2003095520A1 (en) | Method of preparing liquid crystalline polyester resin | |
| US4127557A (en) | Reinforced polyarylene esters | |
| JP7446916B2 (en) | Fully aromatic polyester resins, resin compositions containing them, and molded products | |
| JPH01174524A (en) | Copolyester and production of injection molding material using said copolyester | |
| JP2794812B2 (en) | Method for producing aromatic polyester |