[go: up one dir, main page]

JPH01297772A - Defective foreign matter detector - Google Patents

Defective foreign matter detector

Info

Publication number
JPH01297772A
JPH01297772A JP63129206A JP12920688A JPH01297772A JP H01297772 A JPH01297772 A JP H01297772A JP 63129206 A JP63129206 A JP 63129206A JP 12920688 A JP12920688 A JP 12920688A JP H01297772 A JPH01297772 A JP H01297772A
Authority
JP
Japan
Prior art keywords
dimensional
image
inspected
tomographic
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129206A
Other languages
Japanese (ja)
Other versions
JP2937324B2 (en
Inventor
Akihiko Nishide
明彦 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63129206A priority Critical patent/JP2937324B2/en
Publication of JPH01297772A publication Critical patent/JPH01297772A/en
Application granted granted Critical
Publication of JP2937324B2 publication Critical patent/JP2937324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To improve accuracy for the detection of a defect by forming a three- dimensional stereoscopic image by collecting two-dimensional transmission data, and performing the detection of the defect on a formed three-dimensional stereoscopic image. CONSTITUTION:When an object 15 to be inspected is carried to a prescribed position, it is irradiated by an X-ray, and transmission image data is read by a detector 16. The transmission data is extracted from the object to be inspected in plural directions, and the picture data of a horizontal tomographic plane is calculated by a tomographic image re-constitutional processor 4, and is stored in a memory 5. In a defective foreign matter detection measuring instrument 6, the area of a certain defective foreign matter within the range of a certain threshold value for each horizontal tomographic picture data is detected, and the position of the defective foreign matter, etc., is measured.

Description

【発明の詳細な説明】 この発明は欠陥異物を3次元立体像から検出するように
した欠陥異物検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defective foreign matter detection device that detects defective foreign matter from a three-dimensional stereoscopic image.

(従来の技術) 従来、被検査物内部の欠陥異物を検出する手段として、
被検査物の1方向のX線透過画像を2次元的画像処理し
たものから欠陥異物を検出したり、あるいは2.3方向
のX線透過画像を、それぞれ独立して2次元的画像処理
したものから欠陥異物を検出することが用いられている
(Prior art) Conventionally, as a means of detecting defective foreign matter inside an object to be inspected,
Detecting defective foreign objects from two-dimensional image processing of X-ray transmission images in one direction of the inspected object, or two-dimensional image processing of X-ray transmission images in two or three directions independently. It is used to detect defective foreign objects from.

ところが、このような手段では、被検査物内部を2次元
的にしか見ることができないため、欠陥異物の位置が正
確に特定できないばかりか、被検査物の3次元的な形状
によっては検査の死角ができたり、検査しずらい領域が
存在することがあるなと、精度の高い欠陥検出を期待て
きない欠点かあった。
However, with these methods, the interior of the object to be inspected can only be viewed two-dimensionally, which not only makes it impossible to accurately identify the location of defective foreign objects, but also creates blind spots in the inspection depending on the three-dimensional shape of the object. There are some drawbacks, such as the presence of areas that are difficult to inspect, and the high accuracy of defect detection.

(発明が解決しようとする課題) このように従来の欠陥検出装置では、被検査物内部を2
次元的にしか見ることができないことに原因して、欠陥
異物の位置が正確に特定できないばかりか、被検査物の
3次元的な形状によっては検査の死角ができたり、検査
しすらい領域か存在するなとの問題が生じ、精度の高い
欠陥検出を期待できない欠点があった。
(Problem to be solved by the invention) In this way, in the conventional defect detection device, the inside of the inspected object is
Due to the fact that it can only be seen dimensionally, not only can the position of the defective foreign object not be accurately identified, but depending on the three-dimensional shape of the object to be inspected, there may be a blind spot in the inspection or there may be areas that cannot be inspected properly. However, there was a problem that the defects could not be detected, and there was a drawback that highly accurate defect detection could not be expected.

そこで、この発明の1」的とするところは欠陥異物の位
置を正確に特定できるとともに、検査の死角、検査しず
らい領域を無くずことかでき、精度の高い欠陥異物の検
出を期待できる欠陥異物検出装置を提供するにある。
Therefore, the first objective of the present invention is to accurately identify the position of defective foreign objects, eliminate blind spots in inspection and areas that are difficult to inspect, and enable highly accurate detection of defective foreign objects. The present invention provides a foreign object detection device.

[発明の構成] (課題を解決するための手段) この発明は、被検査物と相対的な動きを保ちなから被検
査物に対する複数方向からの2次元の透過画像データを
収集するデータ収集手段、このデータ収集手段より各断
層面ことの1枚の断層画像作成に必要な複数方向からの
データを抽出するとともに加算して断層画像を作成する
断層画像再構成手段、この断層画像再構成手段より得ら
れた連続する断層像を3次元立体像として捉えるととも
に該3次元立体像より欠陥異物を検出する3次元立体像
内異物検出手段、この3次元立体像内異物検出手段より
検出された欠陥異物の情報を出力する出力手段からなっ
ている。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a data collection means that collects two-dimensional transmission image data from a plurality of directions with respect to an object to be inspected while maintaining relative movement to the object to be inspected. , a tomographic image reconstruction means that extracts data from a plurality of directions necessary for creating one tomographic image of each tomographic plane from this data collection means, and adds the data to create a tomographic image; from this tomographic image reconstruction means; A three-dimensional three-dimensional image foreign object detection means that captures the obtained continuous tomographic images as a three-dimensional three-dimensional image and detects defective foreign objects from the three-dimensional three-dimensional image, and a defective foreign object detected by the three-dimensional three-dimensional image foreign object detection means. It consists of an output means for outputting information.

(作用) この結果、被検査物の3次元立体像より欠陥異物の検出
を3次元的に行なうことかできるので、欠陥異物の正確
な位置の特定かできるとともに、検査の死角、検査しず
らい領域を無くすことかできるようになる。
(Function) As a result, it is possible to detect defective foreign objects three-dimensionally from the three-dimensional image of the object to be inspected, so it is possible to pinpoint the exact position of the defective foreign objects, and to avoid blind spots and difficult inspections. It becomes possible to eliminate the area.

(実施例) 以下、この発明の一実施例を図面にしたかい説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は、同実施例の回路構成を示すものである。図に
おいて、]は制御コンピュータで、この制御コンピュー
タ]は、マルチハス2を介してX線透過データ入力イン
ターフェース3、断層画像再構成プロセッサ(画像加算
プロセッサ)4.3次元立体像メモリ(複数断層像記憶
メモリ)5、欠陥異物検出測定装置(2値化ブロセツザ
、領域番号付はプロセッサ)6、欠陥異物情報出力装置
7、X線制御装置8、コンベア制御装置9を制御するよ
うになっている。また、X線透過データ入力インターフ
ェース3、断層画像再構成プロセッサ4.3次元立体像
メモリ5、欠陥異物検出測定装置6′は、画像バス10
を介して画像データのやりとりが行なわれる。
FIG. 1 shows the circuit configuration of the same embodiment. In the figure, ] is a control computer, and this control computer] includes an X-ray transmission data input interface 3, a tomographic image reconstruction processor (image addition processor) 4, a three-dimensional stereo image memory (multiple tomographic image storage), and a It is designed to control a defect/foreign object detection/measuring device (binarization processor, area numbered is processor) 6, defect/foreign object information output device 7, X-ray control device 8, and conveyor control device 9. Further, the X-ray transmission data input interface 3, the tomographic image reconstruction processor 4, the three-dimensional stereoscopic image memory 5, and the defect foreign object detection and measurement device 6' are connected to the image bus 10.
Image data is exchanged via the .

′一方、11はX線発生装置で、このX線発生装置11
は高圧発生装置12からの高電圧が印加されるとX線を
発生ずる。このX線発生装置11に対応して搬送手段と
してベルトコンベア13を配設し、このコンベア13に
より被検査物]4を次々と移送するようにしている。こ
の場合、コンベア]3はコンベア制御装置9により所定
速度で駆動され、被検査物14に対してX線発生装置]
]よりX線が照射される。そして、被検査物14が所定
位置に達すると、位置検出装置]5より出力が発生する
。この位置検出装置15の出力は、X線透過データ入力
インターフェース3に送られる。
'On the other hand, 11 is an X-ray generator; this X-ray generator 11
generates X-rays when a high voltage from the high voltage generator 12 is applied. A belt conveyor 13 is provided as a conveying means in correspondence with the X-ray generating device 11, and the objects to be inspected]4 are conveyed one after another by this conveyor 13. In this case, the conveyor [3] is driven at a predetermined speed by the conveyor control device 9, and the X-ray generator]
] X-rays are irradiated. When the inspected object 14 reaches a predetermined position, an output is generated from the position detection device]5. The output of this position detection device 15 is sent to the X-ray transmission data input interface 3.

被検査物]4を透過されたX線はX線検出装置16によ
り検出される。この場合、X線検出装置16は、第2図
に示すようにベルトコンベア]3の幅方向に沿って配置
されるライン状X線検出器16]を、ベルトコンベア1
3の移動方向に沿って複数個設けたもので、その出力は
X線透過データ入力インターフェース3に送られる。
The X-rays transmitted through the inspected object] 4 are detected by the X-ray detection device 16. In this case, as shown in FIG.
A plurality of them are provided along the moving direction of the X-ray transmission data input interface 3, and the output thereof is sent to the X-ray transmission data input interface 3.

ここで、X線透過データ入力インターフェース3は、X
線検出装置]6の各ライン状X線検出器161からの1
次元のX線透過データが時系列に並べられ、各ラインご
との2次元のX線透過画像データとして゛与えられる゛
。この場合のデータ収集の゛タイミングは、被検査物1
5により被検査物15が検出された時点から、各ライン
状X線検出器161の位置のずれと、得ようとする断層
面数を考慮して行なわれる。断層画像再構成プロセッサ
4は、X線透過データ入力インターフェース3を介して
得られたデータに対して検出器オフセット補正、対数変
換、X線線量補正、検出器感度補正などを行なったのち
に、各ラインの2次元画像の中から、各断層面ごとの1
枚の断層画像を作成するに必要な被検査物]4の複数方
向からの2次元画像を抽出し、これら画像を加算して断
層画像を作成する。このような断層画像は各断層面につ
いて行なわれる。3次元立体像メモリ5は、断層画像再
構成プロセッサ4で作成された連続断層像を3次元立体
像として記憶するものである。欠陥異物検出測定装置6
は、3次元立体像メモリ5の被検査物14の連続断層像
の各々の断層画像に対して、所定のしきい値の範囲内に
あると思われる欠陥異物の領域を2値化して検出し、領
域番号付けを行なって、欠陥異物の位置、外接直方体の
大きさなとを計測するようにしている。欠陥異物情報出
力装置7は、欠陥異物検出測定装置6で得られた欠陥異
物の位置、大きさの情報を出力するものである。
Here, the X-ray transmission data input interface 3
ray detection device] 1 from each line-shaped X-ray detector 161 of 6
The dimensional X-ray transmission data is arranged in time series and is given as two-dimensional X-ray transmission image data for each line. In this case, the data collection timing is as follows:
This is done by taking into consideration the positional shift of each linear X-ray detector 161 from the time when the object 15 to be inspected is detected by 5 and the number of tomographic planes to be obtained. The tomographic image reconstruction processor 4 performs detector offset correction, logarithmic transformation, X-ray dose correction, detector sensitivity correction, etc. on the data obtained via the X-ray transmission data input interface 3, and then performs each 1 for each tomographic plane from the 2D image of the line.
Two-dimensional images of the object to be inspected required to create two tomographic images] 4 from multiple directions are extracted, and these images are added to create a tomographic image. Such tomographic imaging is performed for each tomographic plane. The three-dimensional stereoscopic image memory 5 stores the continuous tomographic images created by the tomographic image reconstruction processor 4 as a three-dimensional stereoscopic image. Defect foreign object detection measuring device 6
For each of the continuous tomographic images of the object to be inspected 14 in the three-dimensional stereoscopic image memory 5, a region of defective foreign matter that is considered to be within a predetermined threshold value is binarized and detected. , area numbering is performed to measure the position of the defective foreign object and the size of the circumscribed rectangular parallelepiped. The defective foreign object information output device 7 outputs information on the position and size of the defective foreign object obtained by the defective foreign object detection and measurement device 6.

次に、このように構成した実施例の動作を説明する。Next, the operation of the embodiment configured as described above will be explained.

この場合、第3図に示すフローチャートに沿って処理が
実行される。まず、ステップA1では、被検査物14が
ベルトコンベア13により移送される。この状態で、X
線発生装置11より被検査物]4に対してX線が照射さ
れる。そして、被検査物14が所定位置に達し位置検出
装置15より出力が発生すると、各ライン状X線検出器
16]からの1次元のX線透過データか時系列に、2次
元のX線透過画像データとしてX線透過データ入力イン
ターフェース3に入力される。この場合、データ収集の
タイミングは、被検査物15により被検査物14が検出
された時点から、各ライン状X線検出器161の位置の
ずれと、得ようとする断層面数を考慮して行なわれる。
In this case, processing is executed according to the flowchart shown in FIG. First, in step A1, the object to be inspected 14 is transported by the belt conveyor 13. In this state,
X-rays are irradiated from the ray generator 11 to the object to be inspected 4. When the inspected object 14 reaches a predetermined position and an output is generated from the position detection device 15, one-dimensional X-ray transmission data from each line-shaped X-ray detector 16] or two-dimensional X-ray transmission data is The image data is input to the X-ray transmission data input interface 3 as image data. In this case, the timing of data collection is determined from the time when the inspection object 14 is detected by the inspection object 15, taking into consideration the positional shift of each linear X-ray detector 161 and the number of tomographic planes to be obtained. It is done.

具体的には、第4図に示すようにX線発生源Xに対して
#]〜#nのライン状X線検出器千61が配置された場
合、被検査物14の断層面1〜mのうち、例えば断層面
lにおける#1の検出器161の#jの検出器コロ1に
対するずれは、Δ1iljで表わされる。
Specifically, as shown in FIG. 4, when line-shaped X-ray detectors 61 of #] to #n are arranged for the X-ray source X, the tomographic planes 1 to m of the object 14 are Among them, for example, the deviation of the #1 detector 161 from the #j detector roller 1 on the tomographic plane l is represented by Δ1ilj.

したがって、断層面iを再構成するためのデータ。Therefore, data for reconstructing tomographic plane i.

は、第5図(a)に示す位置検出装置15の出力が与え
られた時点から、同図(b)に示すように#1〜#nの
ライン状X線検出器16]の2次元X線透過画像データ
が順に取込まれるようになるか、この場合、#jの検出
器161での検出時刻をTとすると、#1の検出器16
]での検出時刻T1はT+Δ1ilj/v、#2の検出
器161での検出時刻T2はT+Δl i2j /v、
−# nの検出器16]での検出時刻TnはT+Δ1j
nj/vとなる。ここで、■はベルトコンベア13の速
度である。また、この場合の断層画像のサイスを幅Ln
、長さLyとすると、各断層像の再構成において少しず
つ使用する透過X線画像が異なるため、画像を幅IX、
長さlyだけ余計に収集するようになる。具体的には、
#にの検出器161においては、 lx =LX 。
From the time when the output of the position detection device 15 shown in FIG. 5(a) is given, the two-dimensional In this case, if the detection time at the #j detector 161 is T, the line transmission image data will be taken in sequentially.
Detection time T1 at #2 detector 161 is T+Δl i2j /v, detection time T2 at #2 detector 161 is T+Δl i2j /v,
−#n detector 16] detection time Tn is T+Δ1j
It becomes nj/v. Here, ■ is the speed of the belt conveyor 13. In addition, the size of the tomographic image in this case is the width Ln
, the length Ly, since the transmission X-ray images used in the reconstruction of each tomographic image are slightly different, the image width IX,
An additional length ly will be collected. in particular,
In the detector 161 at #, lx = LX.

1y=Ly+Δ1 mkj −Δ11kj となる。1y=Ly+Δ1mkj−Δ11kj.

次いで、ステップA2に進む。このステップA2では、
各ライン状X線検出器]61からの2次元透視画像デー
タ(幅1x\長さly)の中から、各断層面1〜mごと
の1枚の断層画像の再構成に必要な被検査物の複数方向
からの複数枚の2次元画像データ(幅LX、長さLy)
を抽出し、これら画像を加算して断層画像を1枚作成す
る。
Next, proceed to step A2. In this step A2,
Objects to be inspected necessary for reconstructing one tomographic image for each tomographic plane 1 to m from the two-dimensional fluoroscopic image data (width 1x\length ly) from each line-shaped X-ray detector] 61 Multiple two-dimensional image data from multiple directions (width LX, length Ly)
are extracted and these images are added to create one tomographic image.

これをm枚分について実施する。This is carried out for m pieces.

次に、ステップA3に進む。このステップA3では、断
層画像再構成プロセッサ4より得られた連続断層像が3
次元立体像としてメモリ5に書込まれる。
Next, proceed to step A3. In this step A3, three consecutive tomographic images obtained by the tomographic image reconstruction processor 4 are
It is written into the memory 5 as a dimensional stereoscopic image.

次に、ステップA4に進む。このステップA4では、3
次元立体像メモリ5に書込まれた被検査物14の連続断
層像の各々の断層画像に対して、欠陥異物検出測定装置
6により、あるしきい値の範囲内にあると思われる欠陥
異物の領域を2値化により検出し、この検出された領域
の領域番号イτjけ、外接直方体位置計測により欠陥異
物の位置、外接直方体の大きさか計測される。
Next, the process advances to step A4. In this step A4, 3
For each of the continuous tomographic images of the inspected object 14 written in the dimensional stereoscopic image memory 5, the defective foreign object detection measuring device 6 detects defective foreign objects that are considered to be within a certain threshold range. The area is detected by binarization, and the area number τj of the detected area is measured, and the position of the defective foreign object and the size of the circumscribed rectangular parallelepiped are measured by measuring the position of the circumscribed rectangular parallelepiped.

そして、ステップA5に進む。このステップA5では、
欠陥異物の位置および大きさの情報か欠陥異物情報出力
装置7により出力される。
Then, the process advances to step A5. In this step A5,
Information on the position and size of the defective foreign object is output by the defective foreign object information output device 7.

したかって、このようにすれば被検査物の内部の様子を
含めた3次元立体像が再構成され、この3次元立体像に
基づいて欠陥異物の検出を3次元的に行なうことができ
るので、従来の被検査物内部を2次元的にしか見ること
ができないため、欠陥異物の位置が正確に特定できない
ばかりか、被検査物の形状によっては検査の死角ができ
たり、検査しずらい領域か存在することがあるなど、精
度の高い欠陥異物検出を期待てきなかったものに比べ、
これらの欠点を一掃すべく欠陥異物の位置を正確に特定
できるとともに、検査の死角、検査しずらい領域などを
無くすことができ、精度の高い欠陥異物の検出が期待て
きるようになる。
Therefore, in this way, a three-dimensional stereoscopic image including the internal state of the object to be inspected is reconstructed, and defective foreign objects can be detected three-dimensionally based on this three-dimensional stereoscopic image. Conventional methods allow only a two-dimensional view of the interior of the inspected object, which not only makes it impossible to accurately identify the location of defective foreign objects, but also creates blind spots or areas that are difficult to inspect depending on the shape of the inspected object. Compared to those that have not been expected to detect defective foreign objects with high accuracy,
In order to eliminate these defects, the position of the defective foreign object can be accurately specified, and blind spots and areas that are difficult to inspect can be eliminated, and highly accurate detection of the defective foreign object can be expected.

なお、この発明は上記実施例にのみ限定されず、要旨を
変更しない範囲で適宜変形して実施できる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications without changing the gist.

例えば、上述した実施例ではライン状X線検出器を用い
ているが、蛍光板、X線イメージインテンシファイアな
どのエリア状X線検出器を用いてテレビカメラから画像
を入力して、ビデオ信号の各水平垂直信号について、上
述と同様な断層画像再構成、3次元異物検出を用いても
同様な効果が得られる。また、上述の実施例では、被検
査物を移動させてデータ収集を行なっているが、被検査
物を固定してデータ収集系を移動させたり、被検査物お
よびデータ収集系を共に移動させてもよい、要は相対的
に両者が移動すればよい。さらに、上述では、ライン状
X線検出器は直線上のものが者か用いられ、断層平面」
二にデータを置換える時に、特にデータ間隙の補正をし
ていないが、ライン状X線検出器が円弧状あるいは曲線
状の場合は、断層平面上にデータを置換える場合、デー
タ間隙の補正を中央部、両端部について行なうようにす
ればよい。さらに、上述の実施例では、X線発生装置1
台、ライン状X線検出器n台を用いたが、両者ともにn
台あるいはX線発生装置を2〜n−1台としても上述と
同様な効果が得られる。
For example, although the above embodiment uses a line-shaped X-ray detector, an area-shaped X-ray detector such as a fluorescent screen or an X-ray image intensifier may be used to input images from a television camera to generate a video signal. Similar effects can be obtained by using tomographic image reconstruction and three-dimensional foreign object detection similar to those described above for each horizontal and vertical signal. In addition, in the above embodiment, data collection is performed by moving the object to be inspected, but it is also possible to fix the object to be inspected and move the data collection system, or to move the object to be inspected and the data collection system together. The point is that both should move relatively. Furthermore, in the above description, the line-shaped X-ray detector is used only when it is on a straight line, and the line-shaped X-ray detector is used only on the tomographic plane.
Second, when replacing data, data gaps are not particularly corrected, but if the linear X-ray detector is arcuate or curved, data gaps should be corrected when replacing data on a tomographic plane. This may be done for the center and both ends. Furthermore, in the above-mentioned embodiment, the X-ray generator 1
n line X-ray detectors were used, but both
The same effect as described above can be obtained even if the number of X-ray generators is 2 to n-1.

[発明の効果] この発明によれば被検査物と相対的な動きを保ちなから
被検査物に対する複数方向からの2次元の透過画像デー
タを収集するデータ収集手段、このデータ収集手段より
各断層面ごとの1枚の断層画像作成に必要な複数方向か
らのデータを抽出するととともに加算して断層画像を作
成する断層画像再構成手段、この断層画像再構成手段よ
り得られた連続断層像を3次元立体像として捉えるとと
もに該3次元立体像より欠陥異物を検出する3次元立体
像内異物検出手段、この3次元立体像内異物検出手段よ
り検出された欠陥異物の情報を出力する出力手段からな
っている。これにより、被検査物の3次元立体像より欠
陥異物の検出を3次元的に行なうことができるので、欠
陥異物の位置を正確に特定できるとともに、検査の死角
、検査しずらい領域を無くすことができ、精度の高い欠
陥異物の検出を期待できる。
[Effects of the Invention] According to the present invention, there is a data collection means for collecting two-dimensional transmission image data of the object to be inspected from a plurality of directions while maintaining relative movement with the object to be inspected, A tomographic image reconstruction means that extracts data from multiple directions necessary for creating one tomographic image for each plane and adds them to create a tomographic image, and sequential tomographic images obtained by this tomographic image reconstruction means are It consists of a three-dimensional three-dimensional image foreign object detection means for capturing a three-dimensional three-dimensional image and detecting a defective foreign object from the three-dimensional three-dimensional image, and an output means for outputting information on the defective foreign object detected by the three-dimensional three-dimensional image foreign object detection means. ing. As a result, it is possible to detect defective foreign objects three-dimensionally from a three-dimensional image of the object to be inspected, so the position of the defective foreign objects can be accurately identified, and blind spots and areas that are difficult to inspect can be eliminated. can be expected to detect defective foreign objects with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の回路構成を示すブロック
図、第2図は同実施例の要部を示す斜視図、第3図は同
実施例の動作を説明するだめのフローチャート、第4図
および第5図は同実施例を説明するための図である。 1・・・制御コンピュータ、3・・・X線透過データ入
力インターフェース、4・・・断層画像再構成プロセッ
サ(画像加算プロセッサ)、5・・3次元立体像メモリ
(複数断層像記憶メモリ)、6・・・欠陥異物検出測定
装置(2値化プロセツサ、領域番号材はプロセッサ)、
7・・欠陥異物情報出力装置、8・・・X線制御装置、
9・・・コンベア制御装置、11・・・X線発生装置、
12・・・高圧発生装置、13・・・ベルトコンベア、
14・・被検査物、15・・・位置検出装置、16・・
・X線検出装置、161・・・ライン状X線検出器。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a block diagram showing the circuit configuration of an embodiment of the present invention, FIG. 2 is a perspective view showing the main parts of the embodiment, FIG. 3 is a flowchart for explaining the operation of the embodiment, and FIG. 4 and 5 are diagrams for explaining the same embodiment. 1... Control computer, 3... X-ray transmission data input interface, 4... Tomographic image reconstruction processor (image addition processor), 5... Three-dimensional stereo image memory (multiple tomographic image storage memory), 6 ...Defect foreign object detection measurement device (binarization processor, area number material is processor),
7... Defect foreign matter information output device, 8... X-ray control device,
9... Conveyor control device, 11... X-ray generator,
12... High pressure generator, 13... Belt conveyor,
14...Object to be inspected, 15...Position detection device, 16...
- X-ray detection device, 161... line-shaped X-ray detector. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 被検査物と相対的な動きを保ちながら被検査物に対する
複数方向からの2次元の透過画像データを収集するデー
タ収集手段と、このデータ収集手段より各断層面ごとの
1枚の断層画像作成に必要な複数方向からのデータを抽
出するとともに加算して断層画像を作成する断層画像再
構成手段と、この断層画像再構成手段より得られた連続
する断層像を3次元立体像として捉えるとともに該3次
元立体像より欠陥異物を検出する3次元立体像内異物検
出手段と、この3次元立体像内異物検出手段より検出さ
れた欠陥異物の情報を出力する出力手段とを具備したこ
とを特徴とする欠陥異物検出装置。
A data collection means that collects two-dimensional transmitted image data of the object to be inspected from multiple directions while maintaining relative movement to the object to be inspected, and a tomographic image for each tomographic plane is created from this data acquisition means. A tomographic image reconstruction means that extracts and adds data from multiple directions to create a tomographic image; The present invention is characterized by comprising a three-dimensional three-dimensional image foreign object detection means for detecting a defective foreign object from a three-dimensional three-dimensional image, and an output means for outputting information on the defective foreign object detected by the three-dimensional three-dimensional image foreign object detection means. Defect foreign object detection device.
JP63129206A 1988-05-26 1988-05-26 Defective foreign matter detection device Expired - Fee Related JP2937324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129206A JP2937324B2 (en) 1988-05-26 1988-05-26 Defective foreign matter detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129206A JP2937324B2 (en) 1988-05-26 1988-05-26 Defective foreign matter detection device

Publications (2)

Publication Number Publication Date
JPH01297772A true JPH01297772A (en) 1989-11-30
JP2937324B2 JP2937324B2 (en) 1999-08-23

Family

ID=15003760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129206A Expired - Fee Related JP2937324B2 (en) 1988-05-26 1988-05-26 Defective foreign matter detection device

Country Status (1)

Country Link
JP (1) JP2937324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017304A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd X-ray inspection apparatus and X-ray inspection method
JP2017207488A (en) * 2016-05-17 2017-11-24 東芝機械株式会社 Method to estimate fatigue strength of cast iron material
JP2021173716A (en) * 2020-04-30 2021-11-01 朝日レントゲン工業株式会社 Inspection device and inspection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209313A1 (en) * 2019-04-09 2020-10-15 朝日レントゲン工業株式会社 Image processing device, and image processing method
WO2020209312A1 (en) * 2019-04-09 2020-10-15 朝日レントゲン工業株式会社 Inspecting device and inspecting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136529A (en) * 1980-03-28 1981-10-24 Tokyo Shibaura Electric Co Apparatus for reconstituting image
JPS6120845A (en) * 1984-07-09 1986-01-29 Toshiba Corp Measuring device for singular part area frequency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136529A (en) * 1980-03-28 1981-10-24 Tokyo Shibaura Electric Co Apparatus for reconstituting image
JPS6120845A (en) * 1984-07-09 1986-01-29 Toshiba Corp Measuring device for singular part area frequency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017304A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd X-ray inspection apparatus and X-ray inspection method
JP2017207488A (en) * 2016-05-17 2017-11-24 東芝機械株式会社 Method to estimate fatigue strength of cast iron material
JP2021173716A (en) * 2020-04-30 2021-11-01 朝日レントゲン工業株式会社 Inspection device and inspection method

Also Published As

Publication number Publication date
JP2937324B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP4551919B2 (en) Tomographic inspection system and method
AU2002307053B2 (en) X-ray inspection system
US7319737B2 (en) Laminographic system for 3D imaging and inspection
US8811570B2 (en) Tomosynthesis apparatus and method
JP6538811B2 (en) Inspection apparatus and method of inspecting a container
US4678920A (en) Machine vision method and apparatus
EP1422516B1 (en) High speed x-ray inspection apparatus and method
JPH11306335A (en) Method and device for executing three-dimensional computer tomography imaging
CN114004765B (en) Distortion correction method and device for DR perspective image in security inspection equipment
WO2018072571A1 (en) Method, device, and system for scanning image
JP2000292371A (en) X-ray inspection device
JPH01297772A (en) Defective foreign matter detector
EP0971318B1 (en) Device for extrapolation from cone beam projection data
JP3572191B2 (en) X-ray CT scanner
WO2025098079A1 (en) Ct scanning imaging system and method based on single linear scanning channel
KR102702186B1 (en) Inspection apparatus using x-ray penetration and inspection method using x-ray penetration
JPS63256844A (en) X-ray device
JP3219565B2 (en) Defect depth position detection apparatus and method
JP3308629B2 (en) X-ray line sensor fluoroscope
JPH0534131A (en) Image processing method and image processing apparatus
CN1661468B (en) Radiographic equipment and radiation detection signal processing method
JP2936391B2 (en) CT device
JP3854702B2 (en) X-ray inspection system
JPH0743321A (en) X-ray inspection device
JP2799147B2 (en) X-ray CT system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees