JPH01319440A - Method for producing 1,1-dichloro-2,2,2-trifluoroethane - Google Patents
Method for producing 1,1-dichloro-2,2,2-trifluoroethaneInfo
- Publication number
- JPH01319440A JPH01319440A JP63151190A JP15119088A JPH01319440A JP H01319440 A JPH01319440 A JP H01319440A JP 63151190 A JP63151190 A JP 63151190A JP 15119088 A JP15119088 A JP 15119088A JP H01319440 A JPH01319440 A JP H01319440A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- trifluoroethane
- ruthenium
- reaction
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は冷媒、発泡剤、溶剤、トリフルオロ酢酸の原料
、およびフロン124(1−クロロ−1,2゜2.2−
テトラフ)Ixオロエタン)などの原料として有用な化
合物である1、1−ジクロロ−2,2,2−トリフルオ
ロエタン(フロン123)の製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is applicable to refrigerants, blowing agents, solvents, raw materials for trifluoroacetic acid, and Freon 124 (1-chloro-1,2°2.2-
The present invention relates to a method for producing 1,1-dichloro-2,2,2-trifluoroethane (Freon 123), which is a compound useful as a raw material for tetrafluoroethane) and the like.
[従来の技術および課題]
1、1.1−トリクロロ−2,2’、 2− )リフル
オロエタンを還元して1,1−ジクロロ−2,2,2−
トリフルオロエタンを製造する方法としてはプロトン溶
媒中で亜鉛を還元剤として製造する方法が知られている
。 く特開昭58−222038を参照)しかし、副生
成物である塩化亜鉛の処理等の問題があり、大量生産に
は適していない。[Prior art and problems] Reducing 1,1.1-trichloro-2,2', 2-)lifluoroethane to 1,1-dichloro-2,2,2-
A known method for producing trifluoroethane is to produce trifluoroethane in a protic solvent using zinc as a reducing agent. (See Japanese Patent Application Laid-Open No. 58-222038) However, there are problems such as processing of zinc chloride, which is a by-product, and it is not suitable for mass production.
[課題を解決するための手段]
−i的にクロロフルオロエタンを連続的、かつ大量に還
元する方法としては還元触媒の存在下で水素により還元
する方法が挙げられる。この方法?R−113a (1
,1,1−トリクロロ−2,2,2−トリフルオロエタ
ン)の還元によるR−123(1,1−ジクロロ−2,
2,2−トリフルオロエタン)の製造に用いる場合、次
に示すように2つの問題点を有していることが判明した
。第1は触媒の耐酸性である。[Means for Solving the Problems] As a method for reducing chlorofluoroethane continuously and in large amounts, there is a method of reducing it with hydrogen in the presence of a reduction catalyst. This method? R-113a (1
, 1,1-trichloro-2,2,2-trifluoroethane) by reduction of R-123 (1,1-dichloro-2,
It has been found that when used in the production of 2,2-trifluoroethane), there are two problems as shown below. The first is the acid resistance of the catalyst.
すなわち、本反応においては下式に示すように塩化水素
が副生ずる。それゆえ触媒としては耐酸性を有するもの
を使用しなくてはならない、基本的には、例えば白金族
元素、または白金族元素を主体に鉄族元素またはレニウ
ムを添加した合金系を水素化触媒として使用することで
対応可能である。That is, in this reaction, hydrogen chloride is produced as a by-product as shown in the formula below. Therefore, it is necessary to use a catalyst that has acid resistance. Basically, for example, a platinum group element, or an alloy consisting mainly of a platinum group element and an iron group element or rhenium is used as a hydrogenation catalyst. This can be done by using
第2の点は反応選択性の向上である0本反応は逐次反応
であり、例えば代表的な還元触媒であるパラジウムを用
いた場合、R−123がさらに還元されて生ずるR−1
33a、R−143aが大量に生成することを見いだし
た。また、白金族元素の中で最も安価であるルテニウム
を用いた場合、反応選択性は非常に優れるものの反応活
性が必ずしも充分ではないことが分かった。さらにルテ
ニウムは白金族の中では耐食性が劣るため、本反応のよ
うに塩化水素を発生する系には必ずしも好適ではないと
考えられる。The second point is the improvement of reaction selectivity.The present reaction is a sequential reaction.For example, when palladium, which is a typical reduction catalyst, is used, R-123 is further reduced and R-1
It was found that 33a and R-143a were produced in large quantities. Furthermore, it has been found that when ruthenium, which is the cheapest among the platinum group elements, is used, although the reaction selectivity is very excellent, the reaction activity is not necessarily sufficient. Furthermore, since ruthenium has poor corrosion resistance among the platinum group metals, it is considered that it is not necessarily suitable for systems that generate hydrogen chloride, such as in this reaction.
したがって、ルテニウムに、より耐酸性に優れる元素、
またはより水素化活性に優れる元素を添加することによ
り反応性、選択性に優れ、長寿命の触媒が得られると考
えられる。而してルテニウム合金触媒の組成、調製条件
および反応条件の最適化について鋭意検討した結果、本
ルテニウム合金触媒の存在下で1.1.1−トリクロロ
−2,2,2−1−リフルオロエタン原料を水素で還元
することによりR−123が極めて高効率で得られるこ
とを見いだし、本発明を提供するに至ったものである。Therefore, ruthenium has an element with better acid resistance,
Alternatively, it is believed that by adding an element with more excellent hydrogenation activity, a catalyst with excellent reactivity and selectivity and long life can be obtained. As a result of intensive studies on optimizing the composition, preparation conditions, and reaction conditions of the ruthenium alloy catalyst, we found that 1.1.1-trichloro-2,2,2-1-lifluoroethane in the presence of the present ruthenium alloy catalyst. The inventors have discovered that R-123 can be obtained with extremely high efficiency by reducing a raw material with hydrogen, and have come to provide the present invention.
以下、本発明の詳細について実施例とともに説明する。Hereinafter, details of the present invention will be explained together with examples.
一般的に合金触媒においては、合金組成に応じてその成
分元素の特性が出現すると言われており、添加成分の量
は0.01〜90重旦%、特には0゜1〜60重量%が
ルテニウムの特性を活かす意味で好適である。It is generally said that in alloy catalysts, the characteristics of the component elements appear depending on the alloy composition, and the amount of added components is 0.01 to 90% by weight, especially 0.1 to 60% by weight. This is suitable because it takes advantage of the properties of ruthenium.
本発明において、合金触媒の担体としては、例えば、活
性炭、アルミナ、ジルコニア等が好適である。In the present invention, suitable carriers for the alloy catalyst include activated carbon, alumina, zirconia, and the like.
なお、使用に当たってはかかる金属の化合物は少なくと
も一部還元する。In addition, upon use, such metal compounds are at least partially reduced.
R−113a (1,1,1−トリクロロ−2.2.2
−トリフルオロエタン)の還元反応において水素と原料
の割合は大幅に変動させ得る。しかしながら、通常、化
学量論量の水素を使用してハロゲン原子を除去する。出
発物質の全モル数に対して、化学量論量よりかなり多い
量、例えば4モルまたはそれ以上の水素を使用し得る。R-113a (1,1,1-trichloro-2.2.2
-trifluoroethane) in the reduction reaction, the proportions of hydrogen and raw materials can be varied considerably. However, stoichiometric amounts of hydrogen are usually used to remove the halogen atoms. Significantly more than stoichiometric amounts of hydrogen can be used, for example 4 moles or more, based on the total number of moles of starting materials.
反応圧力については常圧、または常圧以上の圧力が使用
し得る。As for the reaction pressure, normal pressure or a pressure higher than normal pressure can be used.
反応温度はO℃〜450℃、好ましくは50℃〜300
℃とし、液相、または気相で反応を行なうことか適当で
ある。The reaction temperature is 0°C to 450°C, preferably 50°C to 300°C.
It is appropriate to carry out the reaction in a liquid phase or a gas phase.
接触時間は、反応を気相で行なう場合には通常0.1〜
300秒、特には5〜30秒である。The contact time is usually 0.1 to 0.1 when the reaction is carried out in the gas phase.
300 seconds, especially 5 to 30 seconds.
[実施例コ 以下に本発明の実施例を示す。[Example code] Examples of the present invention are shown below.
実施例 1 活性炭を純水中に浸漬し細孔内部まで水を含浸させた。Example 1 Activated carbon was immersed in pure water to impregnate the inside of the pores with water.
塩酸を用いてpHを調整した後、塩化ルテニウムと塩化
パラジウムを金属成分の重量比で50: 50の割合
で、活性炭の重量に対し金属成分の全重量で0.5%だ
け溶解した水溶液を少しずつ滴下しイオン成分を活性炭
に吸着させた。純水を用いて洗浄した後、それを150
℃で5時間乾燥した0次に窒素中550℃で4時間乾燥
した後、水素を導入し、5時間、300℃に保持して還
元した。After adjusting the pH using hydrochloric acid, add a small amount of an aqueous solution in which ruthenium chloride and palladium chloride are dissolved in a ratio of 50:50 by weight of the metal components, and only 0.5% of the total weight of the metal components based on the weight of activated carbon. The ionic components were adsorbed onto the activated carbon. After washing with pure water, it was heated to 150
After drying at 550° C. for 4 hours in nitrogen, hydrogen was introduced and the mixture was kept at 300° C. for 5 hours for reduction.
この触媒を300cc充填した内径2.6cm、長さ1
00cmのインコネル600製反応管を塩浴炉中に浸漬
した。Filled with 300cc of this catalyst, the inner diameter is 2.6cm and the length is 1.
A 00 cm Inconel 600 reaction tube was immersed in a salt bath furnace.
水素と1.1.1−トリクロロ−2.2.2− トリフ
ルオロエタンを1: 1のモル比で反応管に導入した。Hydrogen and 1.1.1-trichloro-2.2.2-trifluoroethane were introduced into the reaction tube in a molar ratio of 1:1.
水素、出発物質の流量はそれぞれ、100cc/分、1
00cc/分とした2反応温度は120”Cとした。生
成ガスの分析にはガスクロを用いた。その結果を第1表
No、1に示す。The flow rates of hydrogen and starting material were 100 cc/min and 1
The reaction temperature was 120"C. Gas chromatography was used to analyze the produced gas. The results are shown in Table 1, No. 1.
実施例 2
塩化ルテニウムと塩化白金酸を金属成分の重量比で50
: 50の割合で用いる他は実施例1と同様に触媒を
調製し、反応を行なった。結果を第1表No、2に示す
。Example 2 Ruthenium chloride and chloroplatinic acid at a metal component weight ratio of 50
: A catalyst was prepared in the same manner as in Example 1, except that a ratio of 50% was used, and a reaction was carried out. The results are shown in Table 1 No. 2.
実施例 3
塩化ルテニウムと塩化ロジウムを金属成分の重量比で4
0: 60の割合で用いる他は実施例1と同様にして触
媒を調製し、反応を行った。結果を第1表N003に示
す。Example 3 Ruthenium chloride and rhodium chloride in a metal component weight ratio of 4
A catalyst was prepared and a reaction was carried out in the same manner as in Example 1, except that a ratio of 0:60 was used. The results are shown in Table 1 N003.
実施例 4
塩化ルテニウムと塩化イリジウムを金属成分の重量比で
50: 50の割合で用いる他は実施例1と同様に触
媒を調製し、反応を行なった。結果を第1表N094に
示す。Example 4 A catalyst was prepared and a reaction was carried out in the same manner as in Example 1, except that ruthenium chloride and iridium chloride were used in a weight ratio of 50:50 as metal components. The results are shown in Table 1 N094.
実施例 5
塩化ルテニウムと過レニウム酸カリウムを金属成分の重
量比で60+ 40で用い、還元温度を500℃とす
る他は実施例1と同様にして触媒を調製し反応を行なっ
た。結果を第1表No、5に示す。Example 5 A catalyst was prepared and a reaction was carried out in the same manner as in Example 1, except that ruthenium chloride and potassium perrhenate were used in a metal component weight ratio of 60+40, and the reduction temperature was 500°C. The results are shown in Table 1, No. 5.
比較例 1
ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウムを、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150”Cで5時間乾燥した0
次に窒素中550℃で4時間乾燥した後、水素を導入し
、5時間、300℃に保持して還元した。この触媒を用
いて実施例1と同様にして反応を行ない反応の解析を行
なった。結果を第1表N006に示す。Comparative Example 1 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which palladium chloride was dissolved in an amount of 0.5% of the total weight of the metal components based on the weight of the activated carbon was added little by little to make the ionic components adsorbed onto the activated carbon. After washing with pure water, it was dried at 150"C for 5 hours.
Next, after drying in nitrogen at 550°C for 4 hours, hydrogen was introduced and the mixture was maintained at 300°C for 5 hours for reduction. Using this catalyst, a reaction was carried out in the same manner as in Example 1, and the reaction was analyzed. The results are shown in Table 1 N006.
比較例 2
ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ルテニウムを、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した0次
に窒素中550℃で4時間乾燥した後、水素を導入し、
5時間、300℃に保持して還元した。この触媒を用い
て実施例1と同様にして反応を行ない反応の解析を行な
った。結果を第1表No、7に示す。Comparative Example 2 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which ruthenium chloride was dissolved in an amount of 0.5% of the total weight of the metal components based on the weight of the activated carbon was added little by little to cause the ionic components to be adsorbed onto the activated carbon. After washing with pure water, it was dried at 150 °C for 5 hours. Then, after drying in nitrogen at 550 °C for 4 hours, hydrogen was introduced,
The mixture was maintained at 300° C. for 5 hours for reduction. Using this catalyst, a reaction was carried out in the same manner as in Example 1, and the reaction was analyzed. The results are shown in Table 1 No. 7.
第1表
接触時間: 20秒
但し、
113a: 1,1.1−)ジクロロ−2,2,2−ト
リフルオロエタン123 :1.1−ン゛クロロ−2
,2,2−)リフルオロエタン133a:1−クロロ−
2,2,2−トリフルオロエタン143a:1,1.1
−トリフルオロエタン[発明の効果コ
本発明は、実施例に示すように、反応活性および選択性
の向上に優れた効果を有する。Table 1 Contact time: 20 seconds However, 113a: 1,1.1-)dichloro-2,2,2-trifluoroethane 123: 1.1-dichloro-2
,2,2-)lifluoroethane 133a:1-chloro-
2,2,2-trifluoroethane 143a:1,1.1
-Trifluoroethane [Effects of the Invention] As shown in Examples, the present invention has excellent effects in improving reaction activity and selectivity.
Claims (1)
ロエタン原料を、ルテニウムに白金、ロジウム、イリジ
ウム、パラジウムおよびレニウムから選ばれるいずれか
1つまたは2つ以上の金属を添加してなる水素化触媒の
存在下で水素により還元することを特徴とする1,1−
ジクロロ−2,2,2−トリフルオロエタンの製造方法
。 2、1,1,1−トリクロロ−2,2,2−トリフルオ
ロエタン原料に対して少なくとも化学量論量の水素を使
用して1,1,1−トリクロロ−2,2,2−トリフル
オロエタン原料中の1個の塩素原子を除去する特許請求
の範囲第1項に記載の製造方法。 3、添加成分の濃度が0.01〜90重量%、好ましく
は0.1〜60重量%であるルテニウム合金触媒を用い
る特許請求の範囲第1項または第2項に記載の製造方法
。 4、ルテニウムに白金、ロジウム、イリジウム、パラジ
ウムおよびレニウムから選ばれるいずれか1種または2
種以上の元素を添加してなる触媒が活性炭担体上に担持
されている水素化触媒を用いる特許請求の範囲第1項〜
第3項のいずれか一項に記載の製造方法。 5、ルテニウムに白金、ロジウム、イリジウム、パラジ
ウムおよびレニウムから選ばれるいずれか1種または2
種以上の金属を添加してなる触媒がアルミナ担体上に担
持されている水素化触媒を用いる特許請求の範囲第1項
〜第3項のいずれか一項に記載の製造法。 6、ルテニウムに白金、ロジウム、イリジウム、パラジ
ウムおよびレニウムから選ばれるいずれか1種または2
種以上の金属を添加してなる触媒がジルコニア担体上に
担持されている水素化触媒を用いる特許請求の範囲第1
項〜第3項のいずれか一項に記載の製造法。7、反応を
液相中、または気相中において0℃〜450℃、好まし
くは50℃〜300℃の温度範囲で行なう特許請求の範
囲第1項〜第6項のいずれか一項に記載の製造方法。[Claims] 1,1,1,1-trichloro-2,2,2-trifluoroethane raw material is mixed with ruthenium and one or more selected from platinum, rhodium, iridium, palladium, and rhenium. 1,1- characterized by being reduced by hydrogen in the presence of a hydrogenation catalyst comprising a metal added
Method for producing dichloro-2,2,2-trifluoroethane. 2,1,1,1-trichloro-2,2,2-trifluoroethane using at least a stoichiometric amount of hydrogen relative to the 2,1,1,1-trichloro-2,2,2-trifluoroethane feedstock The manufacturing method according to claim 1, wherein one chlorine atom in the ethane raw material is removed. 3. The manufacturing method according to claim 1 or 2, which uses a ruthenium alloy catalyst having an additive component concentration of 0.01 to 90% by weight, preferably 0.1 to 60% by weight. 4. Ruthenium and one or two selected from platinum, rhodium, iridium, palladium, and rhenium
Claims 1 to 3 use a hydrogenation catalyst in which a catalyst to which more than one element is added is supported on an activated carbon carrier.
The manufacturing method according to any one of paragraph 3. 5. Ruthenium and one or two selected from platinum, rhodium, iridium, palladium and rhenium
4. The production method according to any one of claims 1 to 3, which uses a hydrogenation catalyst in which a catalyst including at least one metal is supported on an alumina carrier. 6. Ruthenium and any one or two selected from platinum, rhodium, iridium, palladium and rhenium
Claim 1 uses a hydrogenation catalyst in which a catalyst to which more than one metal is added is supported on a zirconia carrier.
The manufacturing method according to any one of Items 1 to 3. 7. The method according to any one of claims 1 to 6, wherein the reaction is carried out in a liquid phase or in a gas phase at a temperature range of 0°C to 450°C, preferably 50°C to 300°C. Production method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63151190A JP2581170B2 (en) | 1988-06-21 | 1988-06-21 | Method for producing 1,1-dichloro-2,2,2-trifluoroethane |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63151190A JP2581170B2 (en) | 1988-06-21 | 1988-06-21 | Method for producing 1,1-dichloro-2,2,2-trifluoroethane |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH01319440A true JPH01319440A (en) | 1989-12-25 |
| JP2581170B2 JP2581170B2 (en) | 1997-02-12 |
Family
ID=15513242
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63151190A Expired - Lifetime JP2581170B2 (en) | 1988-06-21 | 1988-06-21 | Method for producing 1,1-dichloro-2,2,2-trifluoroethane |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2581170B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5053564A (en) * | 1989-01-19 | 1991-10-01 | Societe Atochem | Selective hydrogenolysis of perhalogenated ethane derivatives |
| WO1992012113A1 (en) * | 1990-12-26 | 1992-07-23 | E.I. Du Pont De Nemours And Company | Catalytic hydrogenolysis |
| US5434322A (en) * | 1991-10-30 | 1995-07-18 | Daikin Industries, Ltd. | Process for preparing 1,1-dichloro-2,2,2-trifluoroethane |
-
1988
- 1988-06-21 JP JP63151190A patent/JP2581170B2/en not_active Expired - Lifetime
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5053564A (en) * | 1989-01-19 | 1991-10-01 | Societe Atochem | Selective hydrogenolysis of perhalogenated ethane derivatives |
| WO1992012113A1 (en) * | 1990-12-26 | 1992-07-23 | E.I. Du Pont De Nemours And Company | Catalytic hydrogenolysis |
| US5434322A (en) * | 1991-10-30 | 1995-07-18 | Daikin Industries, Ltd. | Process for preparing 1,1-dichloro-2,2,2-trifluoroethane |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2581170B2 (en) | 1997-02-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1337434C (en) | Process for producing 1,1,1,2-tetrafluoroethane | |
| US5136113A (en) | Catalytic hydrogenolysis | |
| KR100761512B1 (en) | Dehydrogenation Process of Dimethylnaphthalene Using Metal Catalyst | |
| JP2531205B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
| JP2814606B2 (en) | Method for producing pentafluoroethane | |
| JPH01319440A (en) | Method for producing 1,1-dichloro-2,2,2-trifluoroethane | |
| JP2531215B2 (en) | Method for producing tetrafluoroethane | |
| JPH01319441A (en) | Method for producing 1,1-dichloro-2,2,2-trifluoroethane | |
| US6218587B1 (en) | Catalytic hydrogenolysis | |
| JP2580696B2 (en) | Method for producing pentafluoroethane | |
| JP2541256B2 (en) | Method for producing tetrafluoroethane | |
| JP2760136B2 (en) | Production method of hydrogen-containing chlorofluorocarbons | |
| JP2581169B2 (en) | Method for producing R-134a | |
| JPH0733342B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
| JP2580695B2 (en) | Method for producing 1,1-dichloro-2,2,2-trifluoroethane | |
| JP2586129B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
| JP2508807B2 (en) | Method for producing R-134a | |
| JP2551051B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
| JPH01242536A (en) | Method for producing tetrafluoroethane | |
| JP2581168B2 (en) | Method for producing R-134a | |
| JPH01132538A (en) | Method for producing tetrafluoroethane | |
| GB2276332A (en) | Catalytic method of replacing halogen in halocarbons | |
| JP2000226346A (en) | Method for producing heptafluorocyclopentane | |
| JPH01319443A (en) | Production of tetrafluoroethane | |
| JPH0383940A (en) | Method for producing 1,1-difluoroethane |