[go: up one dir, main page]

JPH01311250A - Method and device for measuring fluid viscosity - Google Patents

Method and device for measuring fluid viscosity

Info

Publication number
JPH01311250A
JPH01311250A JP14116788A JP14116788A JPH01311250A JP H01311250 A JPH01311250 A JP H01311250A JP 14116788 A JP14116788 A JP 14116788A JP 14116788 A JP14116788 A JP 14116788A JP H01311250 A JPH01311250 A JP H01311250A
Authority
JP
Japan
Prior art keywords
viscosity
fluid
vibrator
resonance frequency
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14116788A
Other languages
Japanese (ja)
Inventor
Masayuki Suda
正之 須田
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14116788A priority Critical patent/JPH01311250A/en
Publication of JPH01311250A publication Critical patent/JPH01311250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the viscosity of fluid continuously by inserting a crystal vibrator into the pipe where the fluid flows and measuring its loss resistance. CONSTITUTION:The AT cut crystal vibrator 1 is fixed on the internal wall surface of the pipe 2 in parallel to the flowing direction 7 of the fluid so that only one surface is brought into contact with the fluid. Then when the fluid flows in the pipe 2, the vibrator 1 receives mechanical resistance based upon the shearing stress between the fluid and the surface of the vibrator 1 and its resistance coefficient is equal to electric resistance, so variation in the viscosity is measured by measuring the loss resistance of the resonance frequency of the vibrator 1 continuously. Further, variation in the resonance frequency reflects upon the variation in the viscosity. Then while the viscosity is varied by varying the temperature, the fluid is made to flow and an impedance measuring instrument 3 is connected to the vibrator 1 to measure the impedance almost at the resonance frequency of the vibrator 1; and a computer 4 computes the loss resistance value and resonance frequency to measure the viscosity of the fluid.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、化学、物理、物理化学、生化学及び、医療
、化学工業における流動状態における液体の粘度を計測
する方法及び装置に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method and apparatus for measuring the viscosity of a liquid in a fluid state in chemistry, physics, physical chemistry, biochemistry, medicine, and the chemical industry.

[発明の概要] この発明の流体粘度計測方法及び装置は、液体が静止状
態でなく流動している状態にあっても粘度の計測が可能
であることを特徴としている。検出器には圧電素子を使
用し、前記圧電素子の片側または両側を液体と接触させ
、圧電素子の共振周波数もしくは損失抵抗を求めること
によって、流体の粘性の計測を行なう。
[Summary of the Invention] The fluid viscosity measuring method and device of the present invention are characterized in that the viscosity can be measured even when the liquid is not in a static state but in a flowing state. A piezoelectric element is used as the detector, and the viscosity of the fluid is measured by bringing one or both sides of the piezoelectric element into contact with the liquid and determining the resonance frequency or loss resistance of the piezoelectric element.

また、本発明の内、流体粘度計測装置の方は、少なくと
も圧電素子と圧電素子の共振周波数を測定する装置もし
くは損失抵抗を測定する装置のいずれかにより構成され
る。
Further, in the present invention, the fluid viscosity measuring device is constituted by at least a piezoelectric element and either a device for measuring the resonance frequency of the piezoelectric element or a device for measuring loss resistance.

[従来の技術] 従来、粘度測定には主として、細管法、回転法、落球法
などが用いられてきた。細管法は試料液体が細管を落下
する速度から粘度を求めるもので、落球法は試料液中に
金属球を入れ、その落下速度から粘度を求めるものであ
る。また、回転法は試料液中で円筒上の金属棒を回転さ
せ、せん断応力を求めることによって粘度を求めるもの
である。この他、ねじれ振動子を用いた粘度測定法も開
発されている。
[Prior Art] Conventionally, the capillary method, rotation method, falling ball method, etc. have been mainly used for viscosity measurement. The capillary method determines the viscosity from the rate at which the sample liquid falls through a capillary tube, and the falling ball method involves placing a metal ball in the sample liquid and determining the viscosity from the rate at which it falls. In addition, the rotation method rotates a cylindrical metal rod in a sample liquid and determines the viscosity by determining the shear stress. In addition, a viscosity measurement method using a torsional oscillator has also been developed.

[発明が解決しようとする課題] 従来の粘度測定法は、サンプルを抽出して測定する方式
であり、流動状態にある液体の粘度を、連続的に計測す
ることは難しかった。よって、例^ば静止状態と流動状
態で粘性の異なる物質(非ニユートン流体)のような試
料の場合の流動状態における粘度を正確に測定すること
は困難であった。また、サンプルとして必要な量も少な
くないため、分析装置のような微量を扱う系には不向き
である。さらに、これらの測定法では測定にある程度時
間を要し、また測定を自動化することも困難であった。
[Problems to be Solved by the Invention] Conventional viscosity measurement methods involve extracting and measuring a sample, and it is difficult to continuously measure the viscosity of a liquid in a flowing state. Therefore, for example, it is difficult to accurately measure the viscosity of a sample in a fluid state, such as a substance (non-Newtonian fluid) whose viscosity differs between a static state and a fluid state. Furthermore, since the amount required as a sample is not small, it is unsuitable for systems that handle trace amounts, such as analytical devices. Furthermore, these measurement methods require a certain amount of time for measurement, and it is also difficult to automate the measurement.

[課題を解決するための手段] 本発明の流体粘度計測方法及び計測装置は、例えばAT
カット水晶振動子を検出器とし、水晶振動子の損失抵抗
あるいは共振周波数を計測することによって、流体の粘
性を計測している。よって水晶振動子を測定対象と接触
させるだけで、粘性の測定が可能である。このため、例
えば液体の流れているパイプの中に水晶振動子を挿入す
れば、液体の粘性を流動している状態のままで測定する
ことが可能である。また、出力が電気信号で得られるた
め、測定や測定データの記録を自動的に行なうことも非
常に容易である。
[Means for Solving the Problems] The fluid viscosity measuring method and measuring device of the present invention, for example, AT
The viscosity of the fluid is measured by using a cut crystal resonator as a detector and measuring the loss resistance or resonance frequency of the crystal resonator. Therefore, viscosity can be measured simply by bringing the crystal oscillator into contact with the object to be measured. Therefore, for example, by inserting a crystal resonator into a pipe through which liquid is flowing, it is possible to measure the viscosity of the liquid while it is flowing. Furthermore, since the output is obtained as an electrical signal, it is very easy to automatically measure and record measurement data.

[作用] 水晶振動子は、圧電効果を利用したデバイスであり、共
振周波数付近の周波数の電圧を印加することによって機
械的な振動を起こす、この振動はきわめて微小であるが
、液体が接した状態で液体と水晶振動子表面との間のせ
ん断応力による抵抗を受ける。この機械的抵抗の抵抗係
数は、水晶振動子の機械的な振動と電気的な振動とを対
応づけて考えると電気的抵抗と同等であると考^ること
ができる。従って、共振周波数における損失抵抗は、振
動子表面の摩擦係数を反映した値と考えられ、この損失
抵抗を連続的に計測することによって、液体の粘性変化
を計測することができる。また、水晶振動子のせん断応
力が水晶振動子の弾性体として振動する力と釣りあうこ
とから、共振周波数もまた流体の粘性変化を反映した値
となる。
[Function] A crystal resonator is a device that utilizes the piezoelectric effect, and it causes mechanical vibrations by applying a voltage with a frequency near the resonant frequency. Although this vibration is extremely small, when it comes in contact with a liquid, it produces mechanical vibrations. is subjected to resistance due to shear stress between the liquid and the surface of the crystal oscillator. The resistance coefficient of this mechanical resistance can be considered to be equivalent to the electrical resistance when considering the correspondence between the mechanical vibration and the electrical vibration of the crystal resonator. Therefore, the loss resistance at the resonance frequency is considered to be a value reflecting the friction coefficient of the surface of the vibrator, and by continuously measuring this loss resistance, changes in the viscosity of the liquid can be measured. Furthermore, since the shear stress of the crystal oscillator balances the force of the quartz crystal oscillator to vibrate as an elastic body, the resonance frequency also takes on a value that reflects changes in the viscosity of the fluid.

従って、共振周波数変化を測定することによっても、流
体の粘性を計測することが可能である。さらに、水晶振
動子の替わりに他の圧電素子、例えばSAWデバイスや
圧電セラミック発振子を用いた場合でも同様に前2の測
定を行なうことが可能である。
Therefore, it is also possible to measure the viscosity of a fluid by measuring changes in the resonance frequency. Furthermore, even if another piezoelectric element, such as a SAW device or a piezoelectric ceramic oscillator, is used in place of the crystal resonator, the above two measurements can be performed in the same manner.

[実施例] 以下、この発明の実施例を図面に基づいて説明する。第
1図は本発明の流体粘度計測装置の模式図を示したもの
である。第1図においてATカット水晶振動子1は片側
だけが液体と接するようにパイプ2の内壁面に液体の流
動方向7と平行に固定されている。またATカット水晶
振動子1は、測定周波数が任意に設定できるインピーダ
ンス測定器3に接続され、インピーダンス測定器3は、
演算、制御を行なうためのコンピュータ4に接続され、
コンピュータ4にはプリンタ5、デイスプレィ6が接続
されている。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows a schematic diagram of the fluid viscosity measuring device of the present invention. In FIG. 1, an AT-cut crystal oscillator 1 is fixed to the inner wall surface of a pipe 2 in parallel to the flow direction 7 of the liquid so that only one side is in contact with the liquid. Further, the AT-cut crystal resonator 1 is connected to an impedance measuring device 3 whose measurement frequency can be set arbitrarily, and the impedance measuring device 3 is
connected to a computer 4 for calculation and control;
A printer 5 and a display 6 are connected to the computer 4.

パイプ中に液体を流し、その液体の粘性を変化させなが
ら、水晶振動子の共振周波数付近でインピーダンス測定
を行なった。粘性は、液体の温度を変化させることによ
り変化させた。温度を変化させると、液体の密度も同時
に変化してしまい、共振周波数及び損失抵抗値に影響を
及ぼすが、液体の温度による密度変化は、粘性変化に比
較して小さいので無視しつる。
Impedance was measured near the resonance frequency of the crystal resonator while flowing a liquid into the pipe and changing the viscosity of the liquid. Viscosity was varied by varying the temperature of the liquid. When the temperature changes, the density of the liquid changes at the same time, affecting the resonance frequency and loss resistance value, but the change in density due to temperature of the liquid is small compared to the change in viscosity, so it can be ignored.

インピーダンス測定は、具体的にはアドミッタンスの虚
数部であるサセプタンスの最大値と最小値をあたえる周
波数の間に共振周波数があることから、サセプタンスの
最大値と最小値を周波数掃引して求め、このあいだの周
波数について等間隔でコンダクタンスとサセプタンスの
測定を行なった。測定値は、コンダクタンス及びサセプ
タンスのデータを円の最小自乗法によって処理し、円の
直径を求め、この逆数を損失抵抗の値とした。また、円
の中心点のサセプタンスの値と同じ値を持つ円上の周波
数をサセプタンスと測定周波数の多項式近似からもとめ
、これを共振周波数とした。
Specifically, in impedance measurement, since there is a resonance frequency between the frequencies that give the maximum and minimum values of susceptance, which is the imaginary part of admittance, the maximum and minimum values of susceptance are found by frequency sweeping and Conductance and susceptance were measured at equal intervals with respect to frequency. As for the measured values, conductance and susceptance data were processed by the circular least squares method to obtain the diameter of the circle, and the reciprocal of this was taken as the value of the loss resistance. In addition, a frequency on the circle having the same value as the susceptance value at the center point of the circle was found from a polynomial approximation of the susceptance and the measurement frequency, and this was taken as the resonant frequency.

同様にして、液体と接していない場合の水晶振動子の共
振周波数も求め、両者の差をΔFとした。
Similarly, the resonance frequency of the crystal resonator when not in contact with the liquid was also determined, and the difference between the two was defined as ΔF.

こうした測定及び演算の処理はコンピュータによって自
動的に行なうことが可能であり、本発明の装置では、1
回の測定を3秒以内に行なうことが可能である。
Such measurement and calculation processing can be automatically performed by a computer, and in the device of the present invention, 1
It is possible to perform multiple measurements within 3 seconds.

次に本装置により、流体の粘性の測定を行なった例につ
いて説明する。
Next, an example in which the viscosity of a fluid was measured using this apparatus will be described.

(パイプ中に水を流した場合の例) パイプの中に水を一定流速で流し、水の温度を20°C
から70°Cまで変化せることにより水の粘性を変化さ
せ、ATカット水晶振動子lの共振周波数及び、損失抵
抗値を測定した。水の粘性に対する水晶振動子の共振周
波数を第2図、水の粘性に対する損失抵抗値を第3図に
示す、水晶振動子の共振周波数および損失抵抗値は、水
の粘性をよく反映したものとなっている。
(Example of flowing water into a pipe) Water is flowed into a pipe at a constant flow rate, and the temperature of the water is 20°C.
The viscosity of water was changed by changing the temperature from 70°C to 70°C, and the resonance frequency and loss resistance value of the AT-cut crystal resonator I were measured. Figure 2 shows the resonant frequency of the crystal resonator with respect to the viscosity of water, and Figure 3 shows the loss resistance value with respect to the viscosity of water.The resonant frequency and loss resistance value of the crystal resonator reflect the viscosity of water well. It has become.

本実施例ではATカット水晶振動子を検出器として用い
た場合を示したが、GTカット水晶振動子を用いた場合
も同様に測定ができることが確認されている。
Although this example shows the case where an AT-cut crystal resonator is used as a detector, it has been confirmed that measurements can be made in the same way when a GT-cut crystal resonator is used.

(SAWデバイスを用いた場合の例) 2つのくし形電極を有するロッシェル塩を用いたSAW
デバイスを検出器として、ヘキサンについて測定を行な
ったところ、同様に粘性に対応した応答が得られた。
(Example using SAW device) SAW using Rochelle salt with two comb-shaped electrodes
When we measured hexane using the device as a detector, a similar response corresponding to viscosity was obtained.

[発明の効果1 本発明の流体粘度計測方法及び計測装置によって、流動
状態における液体の粘性を連続的に測定することが可能
となった。また、これにより静止状態と流動状態で粘性
の異なる物質の流動状態における粘性も測定することが
可能となった。
[Effect of the Invention 1] The fluid viscosity measuring method and measuring device of the present invention make it possible to continuously measure the viscosity of a liquid in a flowing state. This also made it possible to measure the viscosity in the fluid state of substances whose viscosity differs between the static state and the fluid state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流体粘度計測装置の模式図、第2図は
パイプ中に水を流した場合の水の粘性と水晶振動子の共
振周波数の関係を示す図、第3図は前記の場合の水の粘
性と水晶振動子の損失抵抗値の関係を示す図である。 l・・・ATカット水晶振動子 3・・・インピーダンス測定器 4・・・コンピュータ 以上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助清体粘1訂;F
l装置ρ項八図 第1図 具4&周液数 [Hzコ 罎矢糟4几錘R+[nl
Figure 1 is a schematic diagram of the fluid viscosity measuring device of the present invention, Figure 2 is a diagram showing the relationship between the viscosity of water and the resonance frequency of a crystal resonator when water is passed through a pipe, and Figure 3 is a diagram showing the relationship between the viscosity of water and the resonance frequency of the crystal resonator when water is passed through a pipe. FIG. 3 is a diagram showing the relationship between the viscosity of water and the loss resistance value of a crystal resonator in the case of FIG. l... AT-cut crystal oscillator 3... Impedance measuring device 4... Computer and above Applicant Seiko Electronics Co., Ltd. agent Patent attorney Takayuki Hayashi Sukekiyo Body Viscosity 1st edition; F
l Apparatus ρ term 8 Figure 1 Tool 4 & Surrounding liquid number [Hz

Claims (1)

【特許請求の範囲】 (1)圧電素子の少なくとも片面を流動状態にある液体
に接触させ、圧電素子の共振周波数を測定するあるいは
、圧電素子の損失抵抗値を測定することにより、流動状
態にある液体の粘性を計測することを特徴とする流体粘
度計測方法。 (2)前記圧電素子が水晶振動子である特許請求の範囲
第1項記載の流体粘度計測方法。(3)前記水晶振動子
がATカットもしくはGTカット水晶振動子である特許
請求の範囲第2項記載の流体粘度計測方法。 (4)圧電素子の少なくとも片面を流動状態にある液体
に接触させ、少なくとも圧電素子と圧電素子の共振周波
数を測定する回路もしくは、圧電素子の損失抵抗値を測
定する回路とより構成されて流動状態にある液体の粘性
を計測することを特徴とする流体粘度計測装置。 (5)前記圧電素子が水晶振動子である特許請求の範囲
第4項記載の流体粘度計測装置。(6)前記水晶振動子
がATカットもしくはGTカット水晶振動子である特許
請求の範囲第5項記載の流体粘度計測装置。
[Claims] (1) At least one side of the piezoelectric element is brought into contact with a liquid in a flowing state, and the resonant frequency of the piezoelectric element is measured, or the loss resistance value of the piezoelectric element is measured. A fluid viscosity measurement method characterized by measuring the viscosity of a liquid. (2) The fluid viscosity measuring method according to claim 1, wherein the piezoelectric element is a crystal oscillator. (3) The fluid viscosity measuring method according to claim 2, wherein the crystal resonator is an AT cut or GT cut crystal resonator. (4) At least one side of the piezoelectric element is brought into contact with a liquid in a flowing state, and the piezoelectric element is configured to include at least a circuit that measures the resonant frequency of the piezoelectric element or a circuit that measures the loss resistance value of the piezoelectric element, and is in a flowing state. A fluid viscosity measuring device characterized by measuring the viscosity of a liquid. (5) The fluid viscosity measuring device according to claim 4, wherein the piezoelectric element is a crystal oscillator. (6) The fluid viscosity measuring device according to claim 5, wherein the crystal resonator is an AT cut or GT cut crystal resonator.
JP14116788A 1988-06-08 1988-06-08 Method and device for measuring fluid viscosity Pending JPH01311250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14116788A JPH01311250A (en) 1988-06-08 1988-06-08 Method and device for measuring fluid viscosity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14116788A JPH01311250A (en) 1988-06-08 1988-06-08 Method and device for measuring fluid viscosity

Publications (1)

Publication Number Publication Date
JPH01311250A true JPH01311250A (en) 1989-12-15

Family

ID=15285693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14116788A Pending JPH01311250A (en) 1988-06-08 1988-06-08 Method and device for measuring fluid viscosity

Country Status (1)

Country Link
JP (1) JPH01311250A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714022A2 (en) 1994-11-25 1996-05-29 Ngk Insulators, Ltd. Device for measuring viscosity and device for measuring characteristics of fluid
US5877411A (en) * 1996-05-22 1999-03-02 Ngk Insulators, Ltd. Fluid sensor
US5892143A (en) * 1996-05-22 1999-04-06 Ngk Insulators, Ltd. Sensor device with fluid introduction holes
CN102597741A (en) * 2009-08-03 2012-07-18 乌尔蒂莫测量有限责任公司 Method and apparatus for measurement of physical properties of free flowing materials in vessels
WO2013002380A1 (en) * 2011-06-30 2013-01-03 国立大学法人東京大学 Analysis device
US9816848B2 (en) 2014-01-23 2017-11-14 Ultimo Measurement Llc Method and apparatus for non-invasively measuring physical properties of materials in a conduit
US10113994B2 (en) 2013-02-06 2018-10-30 Ultimo Measurement Llc Non-invasive method for measurement of physical properties of free flowing materials in vessels

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714022A2 (en) 1994-11-25 1996-05-29 Ngk Insulators, Ltd. Device for measuring viscosity and device for measuring characteristics of fluid
US5889351A (en) * 1994-11-25 1999-03-30 Ngk Insulators, Ltd. Device for measuring viscosity and device for measuring characteristics of fluid
US5877411A (en) * 1996-05-22 1999-03-02 Ngk Insulators, Ltd. Fluid sensor
US5892143A (en) * 1996-05-22 1999-04-06 Ngk Insulators, Ltd. Sensor device with fluid introduction holes
US6047590A (en) * 1996-05-22 2000-04-11 Ngk Insulators, Ltd. Sensor device with fluid introduction holes
US6490911B1 (en) 1996-05-22 2002-12-10 Ngk Insulators, Ltd. Sensor device with fluid introduction holes
CN102597741A (en) * 2009-08-03 2012-07-18 乌尔蒂莫测量有限责任公司 Method and apparatus for measurement of physical properties of free flowing materials in vessels
WO2013002380A1 (en) * 2011-06-30 2013-01-03 国立大学法人東京大学 Analysis device
CN103649716A (en) * 2011-06-30 2014-03-19 国立大学法人东京大学 Analysis device
JPWO2013002380A1 (en) * 2011-06-30 2015-02-23 国立大学法人 東京大学 Analysis equipment
CN103649716B (en) * 2011-06-30 2016-02-24 国立大学法人东京大学 Analyzer
US10113994B2 (en) 2013-02-06 2018-10-30 Ultimo Measurement Llc Non-invasive method for measurement of physical properties of free flowing materials in vessels
US9816848B2 (en) 2014-01-23 2017-11-14 Ultimo Measurement Llc Method and apparatus for non-invasively measuring physical properties of materials in a conduit

Similar Documents

Publication Publication Date Title
US4783987A (en) System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media
AU748780B2 (en) Sensor array and method for determining the density and viscosity of a liquid
US3382706A (en) Oscillatory element for measuring viscosity
GB2236591A (en) Vibrating element apparatus for fluid density and/or viscosity determination
JPH0470579B2 (en)
US5571952A (en) Electronic viscometer
US5211054A (en) Method and system for analyzing a gelation reaction by utilizing a piezoelectric resonator
Matsiev Application of flexural mechanical resonators to simultaneous measurements of liquid density and viscosity
JPH01311250A (en) Method and device for measuring fluid viscosity
JP2004325257A (en) Analysis method using oscillator
EP0304283B1 (en) Apparatus for measuring a characteristic of a liquid
O’Hara Influence of pressure, temperature, and pore fluid on the frequency-dependent attenuation of elastic waves in Berea sandstone
US20050069864A1 (en) Measurement method and biosensor apparatus using resonator
US8307711B2 (en) Apparatus for inspection of a fluid and method
JP4194935B2 (en) measuring device
WO2007058922A2 (en) Sensor for detecting the adulteration and quality of fluids
JP2004012149A (en) Liquid property measurement device
WO2002016924A1 (en) Acoustic interferometry method and device
GB2369887A (en) Vibration fluid densitometer
JPH0249131A (en) Temperature measuring instrument
US7350403B2 (en) Method and apparatus for determination of food quality and authenticity
RU2029265C1 (en) Method of measuring physical parameters of medium condition
JP3911191B2 (en) Analysis method
JPH0290050A (en) Method and apparatus for measuring characteristic of heat
JPH02226044A (en) Specimen cell