JPH0143885B2 - - Google Patents
Info
- Publication number
- JPH0143885B2 JPH0143885B2 JP57034785A JP3478582A JPH0143885B2 JP H0143885 B2 JPH0143885 B2 JP H0143885B2 JP 57034785 A JP57034785 A JP 57034785A JP 3478582 A JP3478582 A JP 3478582A JP H0143885 B2 JPH0143885 B2 JP H0143885B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- voltage
- dependent
- resistor
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000001419 dependent effect Effects 0.000 claims description 56
- 239000012530 fluid Substances 0.000 claims description 28
- 238000001514 detection method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Details Of Flowmeters (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
本発明は、流体中に設けた温度依存抵抗と流体
との熱の授受から流量を測定する装置に関し、例
えば自動車の吸入空気量、冷却水流量、ガソリン
流量、潤滑油の流量等を測定するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that measures a flow rate by transferring heat between a temperature-dependent resistor provided in a fluid and the fluid, such as an intake air amount of an automobile, a cooling water flow rate, a gasoline flow rate, a lubricating oil flow rate, etc. This is used to measure the flow rate, etc.
従来、流体との熱の授受により流量を測定する
装置としては、自動車の吸入空気量の測定に用い
られている。特公昭49−48893及び特開昭56−
18723の熱線式流量計が知られている。(第1図及
び第2図に示す)これら流量計はヒータ兼温度検
出抵抗(第1図の30、第2図のRH)と流体温
検出抵抗(第1図の18、第2図のRK′)及び2
ケの固定抵抗(第1図の19及び21、第2図の
14及び16)とをブリツジの各辺に設け、ブリ
ツジの分岐点電圧を等しくする様、即ち流体温検
出抵抗の温度とヒータ兼温度検出抵抗の温度との
差が常に一定になる様に誤差増幅器(第1図の2
6、第2図の19)で誤差を増幅しブリツジに印
加する電圧を制御してヒータ兼温度検出抵抗に流
入する電流を制御してヒータ兼温度検出抵抗の自
己加熱を制御してヒータ兼温度検出抵抗に流れる
電流より流量を検出している。 BACKGROUND ART Conventionally, a device that measures a flow rate by transferring heat to and from a fluid has been used to measure the intake air amount of an automobile. Special Publication No. 49-48893 and No. 56-
18723 hot wire flowmeters are known. These flow meters (shown in Figures 1 and 2) include a heater/temperature detection resistor (30 in Figure 1, R H in Figure 2) and a fluid temperature detection resistor (18 in Figure 1, R H in Figure 2). R K ′) and 2
Fixed resistors (19 and 21 in Figure 1, 14 and 16 in Figure 2) are installed on each side of the bridge to equalize the branch point voltage of the bridge, that is, the temperature of the fluid temperature detection resistor and the heater An error amplifier (2 in Figure 1) is installed so that the difference between the temperature of the temperature detection resistor and the
6. In step 19 in Figure 2, the error is amplified, the voltage applied to the bridge is controlled, the current flowing into the heater/temperature detection resistor is controlled, and the self-heating of the heater/temperature detection resistor is controlled, and the heater/temperature detection resistor is controlled. The flow rate is detected from the current flowing through the detection resistor.
従つて第1図及び第2図の構成では、流体温検
出抵抗とヒータ兼温度検出抵抗との温度差を一定
とするには流体温検出抵抗に流れる電流を小さく
して自己発熱をできるだけ抑える必要があるため
に、流体温検出抵抗の対抗値をヒータ兼温度検出
抵抗の抵抗値より大きくする必要が有り、また温
度係数を等しくする必要が有るという欠点があつ
た。 Therefore, in the configurations shown in Figures 1 and 2, in order to keep the temperature difference between the fluid temperature detection resistor and the heater/temperature detection resistor constant, it is necessary to reduce the current flowing through the fluid temperature detection resistor to suppress self-heating as much as possible. Therefore, it is necessary to make the resistance value of the fluid temperature detection resistor larger than the resistance value of the heater/temperature detection resistor, and the temperature coefficients have to be made equal.
また上述の欠点を解消して、同一の形状及び同
一の抵抗値を持つヒータ兼温度検出抵抗及び流体
温検出抵抗を用いて両温度検出抵抗間の温度差と
一定にするものに第3図図示構成の特開昭55−
43447がある。 In addition, to eliminate the above-mentioned drawbacks, a heater/temperature detection resistor and a fluid temperature detection resistor having the same shape and the same resistance value are used to make the temperature difference between the two temperature detection resistors constant, as shown in Figure 3. Composition of JP-A-1985-
There are 43447.
この構成では、オペアンプ12に付加する帰還
抵抗が流体温検出抵抗であるが故に、増幅回路の
ゲインを決定する時に回路のみで決定できずセン
サ部と一体としたアクテイブトリミングが必要で
あり調整コストが大きくなるという問題があつ
た。 In this configuration, since the feedback resistor added to the operational amplifier 12 is a fluid temperature detection resistor, when determining the gain of the amplifier circuit, it cannot be determined by the circuit alone, and active trimming integrated with the sensor section is required, reducing adjustment costs. There was a problem with getting bigger.
又、この種の装置は、出力信号としては一般に
温度特性を考慮してヒータ兼温度検出抵抗に流れ
る電流値を出力とし、電流検出抵抗を設けてその
両端電圧を出力信号とする。しかし出力を大きく
する為には電流検出抵抗を大きくせねばならず、
ヒータ兼温度検出抵抗の感度をupする為にヒー
タ兼温度検出抵抗への印加電圧を大きくせねばな
らず、相反する事象の為に電流検出抵抗はある程
度小さな値となり、装置の出力信号は電流検出抵
抗の出力を増幅する必要が生じる。 Further, in this type of device, the output signal is generally a current value flowing through a heater/temperature detection resistor in consideration of temperature characteristics, and a current detection resistor is provided, and the voltage across the resistor is used as an output signal. However, in order to increase the output, the current detection resistor must be increased.
In order to increase the sensitivity of the heater/temperature detection resistor, it is necessary to increase the voltage applied to the heater/temperature detection resistor, and due to contradictory events, the current detection resistor becomes a somewhat small value, and the output signal of the device changes to the current detection value. It becomes necessary to amplify the output of the resistor.
又、オペアンプ8の各入力信号は、一方は抵抗
回路から出力されるが他方はオペアンプを一段介
している為に周波数特性の同一が得られず制御が
不安定になるといつた問題があつた。 Furthermore, since one input signal of the operational amplifier 8 is outputted from a resistor circuit, and the other input signal is passed through one stage of operational amplifiers, the same frequency characteristics cannot be obtained, resulting in unstable control.
本発明は上述の問題点に鑑みてなされたもの
で、被測定流体が流れる導管中に設けられ通電に
より自己発熱する第1温度依存抵抗と、この第1
温度依存抵抗の熱的影響を受けない前記導管中に
設けられ被測定流体の温度で抵抗の変化する第2
温度依存抵抗とを備え、この両温度依存抵抗を定
電流制御して発生する両温度依存抵抗の両端電圧
信号より被測定流体の流量を測定する流量測定装
置において、前記第1温度依存抵抗に流れる電流
を制御する第1電圧・電流変換器と、前記第2温
度依存抵抗に流れる電流を制御する第2電圧・電
流変換器と、前記第1温度抵抗の両端電圧を所定
の分圧比で分圧する第1のアツテネータと、この
第1アツテネータの出力信号と第2温度依存抵抗
の出力電圧との差を増幅する誤差増幅器と、該誤
差増幅器の出力信号を所定の分圧比で分圧して前
記第1及び第2電圧・電流変換器に出力する第2
アツテネータととから構成することにより、第
1、第2温度依存抵抗に同一形状、同一特性のも
のが使用できコストが安くしかも、電流検出抵抗
が小さくでき、アツテネータのみで簡単に出力が
増大でき精度良く流量を測定できる流量測定装置
を提供する事を目的とする。 The present invention has been made in view of the above-mentioned problems, and includes a first temperature-dependent resistor that is provided in a conduit through which a fluid to be measured flows and that generates heat by itself when energized;
A second resistor, which is provided in the conduit and whose resistance changes with the temperature of the fluid to be measured, is not affected by the thermal influence of the temperature-dependent resistance.
temperature-dependent resistors, and measures the flow rate of the fluid to be measured from voltage signals across both temperature-dependent resistors generated by constant current control of both temperature-dependent resistors, the flow rate flowing through the first temperature-dependent resistor a first voltage/current converter that controls current; a second voltage/current converter that controls current flowing through the second temperature-dependent resistor; and a voltage across the first temperature resistor that divides the voltage across the first temperature resistor at a predetermined voltage division ratio. a first attenuator; an error amplifier for amplifying the difference between the output signal of the first attenuator and the output voltage of the second temperature-dependent resistor; and a second output to the second voltage/current converter.
By configuring the attenuator and the attenuator, the same shape and characteristics can be used for the first and second temperature-dependent resistors, and the cost is low.In addition, the current detection resistor can be made small, and the output can be easily increased using only the attenuator. The purpose of the present invention is to provide a flow rate measuring device that can measure the flow rate well.
本発明の一実施例を図面により説明する。第4
図は本発明の電気結線図で、第5図はそのブロツ
ク図である。1はヒータ兼温度測定用の第1温度
依存抵抗。2は被測定流体の流体温度を検知する
第2温度依存抵抗。3は被測定流体が通過する導
管。第1・第2温度依存抵抗1,2は共に同一形
状・同一電気的特性を有する抵抗で例えば直径が
40μm〜150μmの白金抵抗線を用いた物で、セラ
ミツク等のボビンに巻かれた物でも良いし導管中
に電気的絶縁を程したピン状の支柱に張りめぐら
せた構造を用いる。 An embodiment of the present invention will be described with reference to the drawings. Fourth
The figure is an electrical wiring diagram of the present invention, and FIG. 5 is its block diagram. 1 is a first temperature-dependent resistor that also serves as a heater and measures temperature. 2 is a second temperature-dependent resistor that detects the fluid temperature of the fluid to be measured. 3 is a conduit through which the fluid to be measured passes. Both the first and second temperature dependent resistors 1 and 2 have the same shape and the same electrical characteristics, for example, the diameter is
It uses a platinum resistance wire of 40 μm to 150 μm, and may be wound around a bobbin of ceramic or the like, or may be strung around an electrically insulated pin-shaped support in a conduit.
4は第1・第2温度依存抵抗1,2の各々の端
子電圧より被測定流体の流量を測定する測定回路
である。41は第1電圧電流変換器で、入力電圧
信号に応じた電流iHをJ11から第1温度依存抵抗1
に流し端子J12より吸取るもので、オペアンプOP
2と、抵抗R4,R5及びトランジスタT2とか
ら構成してある。42は第2電圧電流変換器で、
第1電圧電流変換器41と同一の機能を有し、入
力電圧信号に応じた電流iCを端子21より第2温
度依存抵抗2に流し端子J22より吸取るもので、
オペアンプOP1と、抵抗R1,R2,R3及びトラン
ジスタT1とから構成してある。43は第1アツ
テネータで抵抗R6,R7で構成し、第1温度依存
抵抗の両端電圧を分圧する。44は誤差増幅器
で、オペアンプOP3と、入力抵抗R8,R9とから
構成し端子J21とアース間の電圧と、第1アツテ
ネータ43の抵抗R6とR7の接続点Gとアース間
の電圧との差をオペアンプOP3自身の持つオー
プンループゲインで増幅出力する。45は第2ア
ツテネータで抵抗R10,R11とから構成し、誤
差増幅器44の出力電圧を分圧して第1及び第2
電圧電流変換器の各々の入力D及びAに入力す
る。J3は測定回路4の電源入力端子。J4は流量信
号出力端子。J5は測定回路4のアース端子であ
る。 Reference numeral 4 denotes a measuring circuit that measures the flow rate of the fluid to be measured from the terminal voltages of the first and second temperature-dependent resistors 1 and 2, respectively. 41 is a first voltage-current converter, which converts a current iH according to the input voltage signal from J11 to the first temperature-dependent resistor 1.
It sucks from the flowing terminal J 12 , and the operational amplifier OP
2, resistors R4 and R5, and a transistor T2 . 42 is a second voltage-current converter;
It has the same function as the first voltage-current converter 41, and a current i C corresponding to the input voltage signal is passed from the terminal 21 to the second temperature-dependent resistor 2 and absorbed from the terminal J 22 .
It consists of an operational amplifier OP1, resistors R 1 , R 2 , R 3 and a transistor T 1 . A first attenuator 43 is composed of resistors R 6 and R 7 and divides the voltage across the first temperature-dependent resistor. 44 is an error amplifier, which is composed of an operational amplifier OP3 and input resistors R 8 and R 9 , and connects the voltage between terminal J 21 and the ground, and the voltage between the connection point G of the resistors R 6 and R 7 of the first attenuator 43 and the ground. The difference with the voltage is amplified and output using the open loop gain of the operational amplifier OP3. Reference numeral 45 denotes a second attenuator, which is composed of resistors R 1 0 and R 1 1, and divides the output voltage of the error amplifier 44 into the first and second attenuators.
to inputs D and A of each of the voltage-current converters. J 3 is the power input terminal of measurement circuit 4. J 4 is the flow rate signal output terminal. J 5 is the ground terminal of the measuring circuit 4.
上記構成の作動について以下に述べる。第1電
圧電流変換器41に於いて入力端子Dに電圧VD
が印加されていると、オペアンプOP2の出力は
トランジスタT2により電力増幅されて、第1温
度依存抵抗1と抵抗R4の直列回路に電圧VEを印
加する。この時第1温度依存抵抗の抵抗値をRH
とし流れる電流をiHとすると次式が成立する。 The operation of the above configuration will be described below. In the first voltage-current converter 41, a voltage V D is applied to the input terminal D.
is applied, the output of the operational amplifier OP2 is power-amplified by the transistor T2 , and a voltage V E is applied to the series circuit of the first temperature-dependent resistor 1 and the resistor R4 . At this time, the resistance value of the first temperature dependent resistor is R H
If the flowing current is iH , then the following equation holds true.
VE=iH・(RH+R4) …(1) 又抵抗R4の端子Fの電圧VFは次式となる。 V E =i H・(R H +R 4 )...(1) Also, the voltage V F at terminal F of resistor R 4 is given by the following formula.
VF=iH・R4 …(2)
電圧VFがオペアンプOP2の反転入力にフイー
ドバツクする構成であるために次式が成立する。 V F =i H ·R 4 (2) Since the configuration is such that the voltage V F is fed back to the inverting input of the operational amplifier OP2, the following equation holds true.
VD=VF …(3)
式(2)(3)よりVD=iH・R4となり抵抗R4の抵抗値
が定数であれば、第1温度依存抵抗1を流れる電
流iHは第1電圧電流変換器41の入力電圧に比例
する。 V D = V F …(3) From equations (2) and (3), V D = i H・R 4 , and if the resistance value of resistor R 4 is constant, the current i H flowing through the first temperature-dependent resistor 1 is It is proportional to the input voltage of the first voltage-current converter 41.
第2電圧電流変換器42に於いて第1電圧電流
変換器41と同様に第2温度依存抵抗2の抵抗値
をRC、流れる電流をiCとすると次式が成立する。 In the second voltage-current converter 42, similarly to the first voltage-current converter 41, when the resistance value of the second temperature-dependent resistor 2 is R C and the flowing current is i C , the following equation holds true.
VB=iC・(RC+R1+R2) …(4)
(但しVBは端子Bの電圧)
VC=iC・R2,VC=VA …(5)
即ち第2温度依存抵抗2を流れる電流iCは第2
電圧電流変換器42の入力電圧VAに比例する。
また第1、第2電圧電流変換器41,42に於い
てA,C,D,F各点の電圧は等しくなる。そこ
で第1温度依存抵抗の両端電圧を分圧する第1ア
ツテネータの出力電圧(G点とアース間電圧)
VGは次式であたえられる。 V B =i C・(R C +R 1 +R 2 ) …(4) (However, V B is the voltage at terminal B) V C =i C・R 2 , V C =V A …(5) That is, the second temperature The current i C flowing through the dependent resistor 2 is the second
It is proportional to the input voltage V A of the voltage-current converter 42.
Further, the voltages at points A, C, D, and F in the first and second voltage-current converters 41 and 42 are equal. Therefore, the output voltage of the first attenuator that divides the voltage across the first temperature-dependent resistor (voltage between point G and ground)
V G is given by the following formula.
VG=VF+(VE−VF)×K1 …(6)
ここにK1は第2アツテネータの比例定数で次
式である。 V G = V F + (V E −V F )×K 1 (6) where K 1 is the proportionality constant of the second attenuator and is expressed by the following equation.
K1=R7/(R6+R7) …(7)
(1)(2)(3)(4)(5)を用いて(6)式を変形すると、
VG=V0+iH・RH・K1 …(8)
(但しV0=VA=VC=VD=VF)
又、(4)式(5)式より
VB=V0+iC・(RC+R1) …(9)
ここで誤差増幅回路44で電圧VBと電圧VGの
差をオペアンプOP3のオープンループゲインK2
で増幅し、第2アツテネータ45で分圧比K3で
分圧し第1及び第2電圧電流変換器41,42に
入力してフイードバツクするので式(8)式(9)の右辺
が各々等しくなり次式が成立する。 K 1 = R 7 / (R 6 + R 7 ) …(7) Transforming equation (6) using (1)(2)(3)(4)(5), V G =V 0 +i H・R H・K 1 …(8) (However, V 0 = V A = V C = V D = V F ) Also, from equations (4) and (5), V B = V 0 + i C ) ...(9) Here, the error amplification circuit 44 converts the difference between the voltage V B and the voltage V G into the open loop gain K 2 of the operational amplifier OP3.
Since the voltage is amplified by the second attenuator 45, divided by the voltage division ratio K3 , and fed back to the first and second voltage-current converters 41 and 42, the right-hand sides of equations (8) and (9) are equal, and the following equation is obtained: The formula holds true.
K1・iH・RH=iC・(RC+R1) …(10) 式(10)でK1・iH=iCとすると次式が成立する。 K 1・i H・R H = i C・(R C +R 1 )...(10) If K 1・i H = i C in equation (10), the following equation holds true.
RH=RC+R1 …(11)
ここでK1・iH=iCとするには式(2)と式(5)におい
てVF=VCとしてiH・R4=iC・R2となりiC/iH=
R4/R2となるのでK1=R4/R2と選ぶ事で式(11)が
満足する。 R H = R C + R 1 …(11) Here, to set K 1・i H = i C , in equations (2) and (5), set V F = V C and i H・R 4 = i C・R 2 becomes i C /i H =
Since R 4 /R 2 , formula (11) is satisfied by choosing K 1 = R 4 /R 2 .
第1、第2温度依存抵抗1,2の抵抗値RH,
RCを温度係数αを導入して記述すると次式とな
る。 Resistance values R H of the first and second temperature dependent resistors 1 and 2,
When R C is described by introducing a temperature coefficient α, the following equation is obtained.
RH=R0(1+KTa+K・ΔT) …(12)
RC=R0(HKTa) …(13)
但しR0は第1第2温度依存抵抗1,2の0℃
での抵抗値で同一特性のものを使用する。ΔTは
両温度依存抵抗間の温度差。 R H = R 0 (1+KTa+K・ΔT) …(12) R C = R 0 (HKTa) …(13) However, R 0 is 0°C of the first and second temperature dependent resistances 1 and 2.
Use one with the same resistance value and characteristics. ΔT is the temperature difference between both temperature dependent resistors.
そこで式(12)(13)を式(11)に代入して次式を得
る。 Therefore, by substituting equations (12) and (13) into equation (11), we obtain the following equation.
ΔT=R1/(R0・K) …(14)
即ち第1温度依存抵抗1は第2温度依存抵抗2
に比べて温度ΔTだけ常に一定値に上昇制御する
わけである。この時第1温度依存抵抗1を流れる
電流iHが流量に関係する。式(2)より電流iHは電圧
VFに比例し、また第2アツテネータ45の出力
端子K点の電圧VKに等しいので
VK=iH・R4 …(15)
誤差増幅器44の出力電圧VHと電圧VKとの関
係は第2アツテネータの分圧比K3で決まり次式
となる。 ΔT=R 1 /(R 0・K) …(14) That is, the first temperature dependent resistance 1 is the second temperature dependent resistance 2
Compared to , the temperature is always controlled to rise to a constant value by ΔT. At this time, the current i H flowing through the first temperature dependent resistor 1 is related to the flow rate. From equation (2), the current i H is the voltage
Since it is proportional to V F and equal to the voltage V K at the output terminal K point of the second attenuator 45, V K = i H・R 4 (15) Relationship between the output voltage V H of the error amplifier 44 and the voltage V K is determined by the partial pressure ratio K3 of the second attenuator, and is expressed by the following equation.
VK=K3・VH (但しK3=R11/R10+R11;定数) …(16) 式(15)(16)より次式を得る。 V K = K 3 · V H (K 3 = R11/R10 + R11; constant) ...(16) The following equation is obtained from equations (15) and (16).
VH=R4/K3・iH …(17)
即ち第2アツテネータの分圧比K3を調整する
事で本装置の流量に対応した出力信号は任意の大
きさに増幅できる。 V H = R 4 /K 3 ·i H (17) That is, by adjusting the partial pressure ratio K 3 of the second attenuator, the output signal corresponding to the flow rate of this device can be amplified to an arbitrary magnitude.
今本装置が有る安定状態である時に流量が増大
すると第1温度依存抵抗1の自己加熱された熱量
が流体に流出して第1温度依存抵抗1の抵抗値が
減少する。するとE点の電圧VEが小さくなり第
1アツテネータの出力G点の電圧VGも小さくな
る。流体の温度が一定なら第2電圧電流変換器4
2は状態が変化せずB点の電圧VBは変化しない。
したがつて誤差増幅器44の出力は増大し、第2
アツテネータ45の出力電圧VKは大きくなる。
従つて第1、第2電圧電流変換器41,42の入
力信号は増大し、第1及び第2温度依存抵抗に流
れる電流は各々増大する。すると第1温度依存抵
抗1の自己加熱量が増大し第1電圧電流変換器4
1に於けるE点の電圧VEが増大し、第1アツテ
ネータ43の出力が増大する一方第2電圧電流変
換器42のB点電圧VBも大きくなる。しかし電
圧VGの増加量の方が大きく、電圧VBと電圧VGが
等しくなつた状態即ち第1及び第2温度依存抵抗
1,2間の温度差ΔTが設定値に等しくなつた状
態で本装置は安定となる。逆に、ある定常状態か
ら流量が減少した時にも同様に第1温度依存抵抗
1の電流が減少し電圧VHは減少し、温度差ΔTが
設定値に等しくなつた状態で安定となる。 When the flow rate increases when the device is in a stable state, the self-heated heat of the first temperature-dependent resistor 1 flows out into the fluid, and the resistance value of the first temperature-dependent resistor 1 decreases. Then, the voltage V E at point E becomes smaller, and the voltage V G at the output point G of the first attenuator also becomes smaller. If the temperature of the fluid is constant, the second voltage-current converter 4
2, the state does not change and the voltage V B at point B does not change.
Therefore, the output of the error amplifier 44 increases and the second
The output voltage V K of the attenuator 45 increases.
Therefore, the input signals of the first and second voltage-current converters 41 and 42 increase, and the currents flowing through the first and second temperature-dependent resistors each increase. Then, the amount of self-heating of the first temperature-dependent resistor 1 increases, and the first voltage-current converter 4
The voltage V E at point E at point 1 increases, and the output of the first attenuator 43 increases, while the voltage V B at point B of the second voltage-current converter 42 also increases. However, the amount of increase in voltage V G is larger, and when voltage V B and voltage V G become equal, that is, when the temperature difference ΔT between the first and second temperature dependent resistors 1 and 2 becomes equal to the set value. The device becomes stable. Conversely, when the flow rate decreases from a certain steady state, the current in the first temperature-dependent resistor 1 similarly decreases, the voltage V H decreases, and the temperature difference ΔT becomes stable when it becomes equal to the set value.
この様にして第1温度依存抵抗1と第2温度依
存抵抗2間の温度差が一定に保たれ誤差増幅器4
4の出力電圧より流体の流量を求める事ができ
る。 In this way, the temperature difference between the first temperature-dependent resistor 1 and the second temperature-dependent resistor 2 is kept constant, and the error amplifier 4
The flow rate of the fluid can be determined from the output voltage of 4.
尚本実施例に於いて、第1及び第2電圧電流変
換器はオペアンプを用いたボルテージフオロア型
の電圧電流変換で説明したがカレントミラ型等の
他の方式を用いても同様の効果を得る事ができ
る。 In this embodiment, the first and second voltage-current converters are voltage-follower type voltage-current converters using operational amplifiers, but the same effect can be obtained by using other methods such as a current mirror type. You can get it.
さらに流体は気体・液体にかかわらず測定する
事ができる。 Furthermore, fluids can be measured regardless of whether they are gases or liquids.
以上述べたように本発明は被測定流体が流れる
導管中に通電により自己発熱する第1温度依存抵
抗およびこの第1温度抵抗の熱的影響を受けない
導管中に被測定流体の温度で抵抗の変化する第2
温度依存抵抗を設け、この両温度依存抵抗の両端
電圧信号より被測定流体の流量を測定する測定回
路として第1温度依存抵抗に流れる電流を制御す
る第1電圧電流変換器と、第2温度依存抵抗を流
れる電流を制御する第2電圧電流変換器と、第1
温度依存抵抗の両端電圧を分圧する第1アツテネ
ータと、この第1アツテネータの出力信号と第2
温度依存抵抗の出力電圧との差を増幅する誤差増
幅器と、この誤差増幅器の出力信号を分圧して第
1及び第2電圧電流変換器に出力する第2アツテ
ネータとを備えたもので、これによれば、第1及
び第2電圧電源変換器のそれぞれの出力電流値に
適当な重みをつける事で第2温度依存抵抗は自己
加熱せず正確に両温度依存抵抗間の温度差が一定
に保つ事ができ、しかも同一の形状・特性を使用
できる為流体温の急な変化に対して熱応答が等し
くできしかも両温度依存抵抗が定電流駆動である
から電流検出抵抗は小さくできしかも第2アツテ
ネータのみで出力信号を増幅できるので出力増幅
用の増幅器が不用であるからドリフト、温度特性
等の心配がなく高精度に流量を測定できるという
すぐれた効果を奏する。 As described above, the present invention provides a first temperature-dependent resistance that self-heats due to electricity supply in a conduit through which a fluid to be measured flows, and a resistance that increases at the temperature of the fluid to be measured in a conduit that is not thermally affected by this first temperature resistance. changing second
A measurement circuit that includes a temperature-dependent resistor and measures the flow rate of the fluid to be measured from voltage signals across both temperature-dependent resistors; a first voltage-current converter that controls the current flowing through the first temperature-dependent resistor; a second voltage-current converter that controls the current flowing through the resistor;
A first attenuator that divides the voltage across the temperature-dependent resistor, and an output signal of the first attenuator and a second attenuator.
It is equipped with an error amplifier that amplifies the difference between the output voltage of the temperature-dependent resistor and a second attenuator that divides the output signal of the error amplifier and outputs it to the first and second voltage-current converters. According to the above, by assigning appropriate weights to the respective output current values of the first and second voltage power converters, the second temperature-dependent resistor does not self-heat and the temperature difference between the two temperature-dependent resistors is accurately maintained constant. Moreover, since the same shape and characteristics can be used, the thermal response to sudden changes in fluid temperature can be the same, and since both temperature-dependent resistors are constant current driven, the current detection resistor can be small, and the second attenuator Since the output signal can be amplified with just one, there is no need for an amplifier for output amplification, so there is no need to worry about drift, temperature characteristics, etc., and the flow rate can be measured with high precision, which is an excellent effect.
第1図は、本発明の装置に関する従来技術の概
略構成図、第2図は、本発明の装置に関する従来
技術の第2の概略構成図、第3図は、本発明の装
置に関する従来技術の第3の概略構成図、第4図
は本発明の一実施例を示す詳細な電気結線図、第
5図は第4図実施例のブロツク図をそれぞれ示
す。
1……第1温度依存抵抗、2……第2温度依存
抵抗、3……導管、4……測定回路、41……第
1電圧電流変換器、42……第2電圧電流変換
器、43……第1アツテネータ、44……誤差増
幅器、45……第2アツテネータ。
FIG. 1 is a schematic configuration diagram of the prior art related to the device of the present invention, FIG. 2 is a second schematic configuration diagram of the prior art related to the device of the present invention, and FIG. 3 is a schematic configuration diagram of the prior art related to the device of the present invention. The third schematic configuration diagram, FIG. 4 are detailed electrical wiring diagrams showing one embodiment of the present invention, and FIG. 5 is a block diagram of the embodiment shown in FIG. 4, respectively. DESCRIPTION OF SYMBOLS 1... First temperature dependent resistance, 2... Second temperature dependent resistance, 3... Conduit, 4... Measurement circuit, 41... First voltage current converter, 42... Second voltage current converter, 43 ...first attenuator, 44...error amplifier, 45...second attenuator.
Claims (1)
より自己発熱する第1温度依存抵抗と、 この第1温度依存抵抗の熱的影響を受けない前
記導管中に設けられ被測定流体の温度で抵抗の変
化する第2温度依存抵抗とを備え、 この両温度依存抵抗を定電流制御して発生する
両温度依存抵抗の両端電圧信号より被測定流体の
流量を測定する流量測定装置において、 前記第1温度依存抵抗に流れる電流を制御する
第1電圧・電流変換器と、 前記第2温度依存抵抗に流れる電流を制御する
第2電圧・電流変換器と、 前記第1温度抵抗の両端電圧を所定の分圧比で
分圧する第1のアツテネータと、 この第1アツテネータの出力信号と第2温度依
存抵抗の出力電圧との差を増幅する誤差増幅器
と、 該誤差増幅器の出力信号を所定の分圧比で分圧
して前記第1及び第2電圧・電流変換器に出力す
る第2アツテネータと から成る事を特徴とする流量測定装置。[Scope of Claims] 1. A first temperature-dependent resistor that is provided in a conduit through which a fluid to be measured flows and that generates heat by itself when energized; A to-be-measured resistor that is provided in the conduit and is not thermally affected by the first temperature-dependent resistance. a second temperature-dependent resistor whose resistance changes with the temperature of the fluid; and a flow rate measuring device that measures the flow rate of the fluid to be measured from voltage signals across both temperature-dependent resistors generated by constant current control of both temperature-dependent resistors. a first voltage/current converter that controls the current flowing through the first temperature dependent resistor; a second voltage/current converter that controls the current flowing through the second temperature dependent resistor; a first attenuator that divides the voltage at both ends at a predetermined voltage division ratio; an error amplifier that amplifies the difference between the output signal of the first attenuator and the output voltage of the second temperature-dependent resistor; and a predetermined output signal of the error amplifier. a second attenuator that divides the voltage at a partial pressure ratio and outputs the divided voltage to the first and second voltage/current converters.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP57034785A JPS58151516A (en) | 1982-03-04 | 1982-03-04 | Flow rate measuring device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP57034785A JPS58151516A (en) | 1982-03-04 | 1982-03-04 | Flow rate measuring device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS58151516A JPS58151516A (en) | 1983-09-08 |
| JPH0143885B2 true JPH0143885B2 (en) | 1989-09-25 |
Family
ID=12423926
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP57034785A Granted JPS58151516A (en) | 1982-03-04 | 1982-03-04 | Flow rate measuring device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS58151516A (en) |
-
1982
- 1982-03-04 JP JP57034785A patent/JPS58151516A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS58151516A (en) | 1983-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5461913A (en) | Differential current thermal mass flow transducer | |
| US5753815A (en) | Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas | |
| US4487063A (en) | Solid state mass air flow sensor | |
| JP2631481B2 (en) | Mass flow meter and its measurement method | |
| US3942378A (en) | Fluid flow measuring system | |
| US3967188A (en) | Temperature compensation circuit for sensor of physical variables such as temperature and pressure | |
| US4872339A (en) | Mass flow meter | |
| TW432268B (en) | Improved mass flow sensor interface circuit | |
| JP3802443B2 (en) | Flow rate sensor | |
| JP2003523507A (en) | Method and apparatus for balancing resistance | |
| JPS5868618A (en) | Flowmeter | |
| JPH0143885B2 (en) | ||
| JP3153787B2 (en) | Heat conduction parameter sensing method and sensor circuit using resistor | |
| RU2018090C1 (en) | Mass flowmeter | |
| JPH0449893B2 (en) | ||
| KR100262225B1 (en) | A measurement circuit of flow rate | |
| SU970113A1 (en) | Thermal flowmeter | |
| JP3373981B2 (en) | Thermal flow meter | |
| JP3019009U (en) | Mass flow meter | |
| CA1051219A (en) | Temperature sensitive device for measuring the flow velocity of a medium | |
| SU613248A1 (en) | Gas stream speed transducer | |
| KR20020080137A (en) | Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it | |
| JPH0843456A (en) | Ac level detection circuit | |
| JPS62237321A (en) | Thermal type flowmeter | |
| JPH11351936A (en) | Thermal flow sensor and thermal flow detection circuit |