[go: up one dir, main page]

JPH0191417A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0191417A
JPH0191417A JP62247818A JP24781887A JPH0191417A JP H0191417 A JPH0191417 A JP H0191417A JP 62247818 A JP62247818 A JP 62247818A JP 24781887 A JP24781887 A JP 24781887A JP H0191417 A JPH0191417 A JP H0191417A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
conductor
polycrystalline
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62247818A
Other languages
Japanese (ja)
Inventor
Shinpei Iijima
飯島 晋平
Kiyoshi Miyake
三宅 潔
Kunihiro Yagi
矢木 邦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62247818A priority Critical patent/JPH0191417A/en
Publication of JPH0191417A publication Critical patent/JPH0191417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置およびその製造方法に係り、特に
導体あるいは半導体層間の接触抵抗の低減に好適な薄膜
気相成長法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a thin film vapor phase growth method suitable for reducing contact resistance between conductor or semiconductor layers.

〔従来の技術〕[Conventional technology]

従来、LSIのような半導体装置においては回路を構成
するため、半導体基板内部やその表面に種々の配線が施
され、所定の領域において配線相互が接続されている。
2. Description of the Related Art Conventionally, in a semiconductor device such as an LSI, various wirings are provided inside or on the surface of a semiconductor substrate to form a circuit, and the wirings are connected to each other in a predetermined region.

例えば、Si基板を用いて製造される積層容量型のダイ
ナミックRAMにおいては、積層容量を形成するためS
i基板の所定領域に形成されるn型不純物領域の上に多
結晶Siを積み上げる形で被着形成し、容量部の下部電
極とする構造、すなわちSi基板と多結晶Siの接触が
しばしば用いられる。また、例えばエミツタ、ベース、
コレクタから成るバイポーラ型の1、SIにおいては、
エミッタの形成にSi基板上に形成した多結晶Siから
不純物を同相拡散させる方法がしばしば用いられ、ここ
でもSi基板と多結晶Siの接触が利用されている。ま
た、SiとSiの接触を利用する比較的新しい技術とし
ては、シリコン星結晶」二に形成した非晶質Siを後の
熱処理で単結晶化する。いわゆるS○■技術が注目され
ている。これに関しては電子通信学会技術研究報告5S
D83−143.第13頁から第18頁に一例が述べら
れており、非晶質Siを単結晶化する際に問題となる界
面の酸化膜を水素アニールで除去する方法について説明
がなされている。
For example, in a stacked capacitor type dynamic RAM manufactured using a Si substrate, S is used to form the stacked capacitor.
A structure in which polycrystalline Si is stacked and deposited on an n-type impurity region formed in a predetermined region of an i-substrate and is used as the lower electrode of a capacitive part, that is, a structure in which the Si substrate and polycrystalline Si are in contact is often used. . Also, for example, emitsuta, bass,
In bipolar type 1, SI, which consists of a collector,
A method of in-phase diffusion of impurities from polycrystalline Si formed on a Si substrate is often used to form an emitter, and contact between the Si substrate and polycrystalline Si is also utilized here. In addition, a relatively new technology that utilizes contact between Si and Si involves converting amorphous Si formed in a silicon star crystal into a single crystal through subsequent heat treatment. The so-called S○■ technology is attracting attention. Regarding this, the Institute of Electronics and Communication Engineers Technical Research Report 5S
D83-143. An example is given on pages 13 to 18, in which a method for removing an oxide film at the interface, which is a problem when amorphous Si is made into a single crystal, by hydrogen annealing is explained.

以上述べたSiとSiの接触の他にも最近のLSI1造
工程ではSi金属シリサイドやSiと金属など種々の材
料から成る接触が用いられるようになっている。
In addition to the contact between Si and Si described above, contacts made of various materials such as Si metal silicide and Si and metal have been used in recent LSI 1 manufacturing processes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術で基板上に形成される多結晶Siなどの薄
膜は通常和気成長法により形成される。
The thin film of polycrystalline Si or the like formed on the substrate in the conventional technique is usually formed by the Wake growth method.

この気相成長法によって単結晶あるいは多結晶Si上に
多結晶あるいは非晶質Siを形成する場合、湿式エツチ
ングによる基板の前洗浄工程の段階および気相成長装置
に基板を挿入する段階で基板表面には必ず酸化膜が形成
される。従来の技術で用いられていた接触は、たとえば
SiとSiの界面ではなく S i Oxを介在した界
面となっていた。そのSiO2の膜厚はIQ16〜10
16■−8の不純物を含有する比較的低濃度のSi上で
は1.0〜15人程度であるが、IQ”an−’オーダ
ーの高濃度に不純物を含んだSi上では20〜25人の
SiO2が形成され、極端な場合には50人にも達する
場合がある。この界面に存在するSiO2は導通不良の
問題や不純物の同相拡散に対する障壁となって拡散層深
さをばらつかせる問題、さらには密着性不良によりSi
上に形成した膜の剥れを生じさせる問題等の原因となっ
ていた。
When polycrystalline or amorphous Si is formed on single-crystal or polycrystalline Si using this vapor phase growth method, the substrate surface is An oxide film is always formed on the surface. The contact used in the conventional technology was, for example, not an interface between Si and Si, but an interface with SiOx interposed therebetween. The SiO2 film thickness is IQ16-10
On Si with a relatively low concentration of 16-8 impurities, it is about 1.0 to 15 people, but on Si with a high concentration of impurities on the order of IQ"an-', it is 20 to 25 people. SiO2 is formed, and in extreme cases it can reach as many as 50 layers.SiO2 existing at this interface causes problems such as poor conductivity and a barrier to in-phase diffusion of impurities, causing variations in the depth of the diffusion layer. Furthermore, due to poor adhesion, Si
This has caused problems such as peeling of the film formed thereon.

本発明の目的は、界面に存在する酸化物を除去した後に
所望の薄膜を形成し、酸化物の悪影響を除外した接触を
有する構造を備えた半導体装置およびその製造方法を提
供することにある。
An object of the present invention is to provide a semiconductor device having a contact structure in which a desired thin film is formed after removing the oxide present at the interface and eliminates the adverse effects of the oxide, and a method for manufacturing the same.

r問題点を解決するための手段〕 上記目的は、’FJf膜形成装置内に基板を挿入設置し
た後、基板を活性酸素あるいはオゾンに曝露し、その後
、500 ’(’、以上の温度て水素イオンビームを照
射するか、あるいは室温でヘリウムイオンを照射した後
500℃以上の温度まで加熱A、温するかいずれかひと
つの手段による処理を行なった後、連続的に基板を所定
の温度に制御して所望の薄膜を形成することにより、達
成される。
[Means for Solving Problems] The above purpose is to expose the substrate to active oxygen or ozone after inserting the substrate into the FJF film forming apparatus, and then to expose the substrate to active oxygen or ozone at a temperature of 500°C or more. After performing treatment by either ion beam irradiation or helium ion irradiation at room temperature and heating to a temperature of 500°C or higher, the substrate is continuously controlled to a predetermined temperature. This is achieved by forming the desired thin film.

〔作用〕[Effect]

最初に行なう活性酸素あるいはオゾンをJL板に@露す
ることにより、基板表面に吸着している炭素を除去する
。引き続き行なう、水素イオンビームの照射あるいはヘ
リウムイオンを照射した移・力U熱昇温する方法を用い
ることにより基板衣1fljに形成されている酸化物を
除去し、基板の表面を露出させる。さらに連続して薄膜
形成を行なうので1稗゛嘆と基板の間に基板の酸化物を
介在させない界t61を得ることができる。
By first exposing the JL plate to active oxygen or ozone, carbon adsorbed on the substrate surface is removed. Subsequently, by using hydrogen ion beam irradiation or helium ion irradiation, the oxide formed on the substrate coating 1flj is removed, and the surface of the substrate is exposed. Further, since the thin film is continuously formed, a boundary t61 can be obtained in which the oxide of the substrate is not interposed between the film and the substrate.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

MO5型トランジスターを用いた積層容量型ダイナミッ
クRAMのメモリーセル部分に本発明を適用した例につ
いて説明する。第2図に示すように、P型の(100)
面方位を有する比抵抗10Ω・■のSj基板1の表面に
アイソレーション領域となる厚さ500nmの5i02
2およびゲート酸化膜となる厚さ20nmの5iOz3
  を形成した。次に気相成長法により厚さ200nm
の多結晶Si4を形成した。条件としてガスにモノシラ
ン(SiH4)を用い、圧力はQ 、 8 Torr、
温度は620℃とした。次にP OCQ sを原料ガス
とする熱拡散法により多結晶Si4中の濃度が5×10
20(1)−3程度になるようにリン拡散を行なった。
An example in which the present invention is applied to a memory cell portion of a stacked capacitive dynamic RAM using MO5 type transistors will be described. As shown in Figure 2, (100) of P type
5i02 with a thickness of 500 nm to serve as an isolation region on the surface of the Sj substrate 1 with a specific resistance of 10 Ω·■ and a plane orientation.
2 and 5iOz3 with a thickness of 20 nm to serve as the gate oxide film.
was formed. Next, a thickness of 200 nm was obtained using the vapor phase growth method.
Polycrystalline Si4 was formed. As the conditions, monosilane (SiH4) was used as the gas, and the pressure was Q, 8 Torr,
The temperature was 620°C. Next, the concentration in polycrystalline Si4 was reduced to 5 × 10 by thermal diffusion method using P OCQ s as a raw material gas.
Phosphorus diffusion was performed to obtain a ratio of about 20(1)-3.

次にタングステンシリサイド(WSi2)[形成工程に
入るが、ここに本発明の主旨たる8膜形成法を用いた。
Next, a step of forming tungsten silicide (WSi2) was started, in which an eight-film forming method, which is the gist of the present invention, was used.

まず、リン拡散時に多結晶Si4の表面に形成されたリ
ンガラス膜をフッ酸液によりエツチング除去し、水洗、
乾燥工程を経て真空容器内に設置αした。この段階で多
結晶Si4の表面には25人の5iOz膜(図示せず)
が形成されていた。真空容器内を一旦2 X 10”−
7Torrまで真空排気した後、100Torrの圧力
になるように制御してオゾンを10分間導入し、多結晶
Si4表面の炭素成分を除去した。次に真空容器を1×
10−7Torrまで真空排気すると同時にSi基板1
を500℃に昇温させて5 X 10 ”−’Torr
になるように水素を導入し、加速電圧を1kVとして多
結晶Si4の表面に10分間水素イオンビームを照射し
た。これによって多結晶Si4の表面に存在していた厚
さ25人の5if2.を除去した。引き続き2 X 1
0”−7Torrの雰囲気でSi基板1を360℃まで
降温させ、S i H51000cc/min、六弗化
タングステン(WFg)5艶/winを導入し、圧力0
 、2 Torrの条件で厚さ300nmのWSiz膜
5を形成した(第2図(a))。
First, the phosphorus glass film formed on the surface of polycrystalline Si4 during phosphorus diffusion is removed by etching with a hydrofluoric acid solution, washed with water,
After a drying process, it was placed in a vacuum container. At this stage, there are 25 5iOz films (not shown) on the surface of the polycrystalline Si4.
was formed. Once inside the vacuum container, 2 x 10”-
After evacuation to 7 Torr, ozone was introduced for 10 minutes at a pressure of 100 Torr to remove carbon components on the surface of polycrystalline Si4. Next, place the vacuum container 1x
At the same time, the Si substrate 1 is evacuated to 10-7 Torr.
The temperature was raised to 500℃ and the temperature was increased to 5
Hydrogen was introduced so that the hydrogen ion beam was applied to the surface of the polycrystalline Si4 for 10 minutes at an acceleration voltage of 1 kV. As a result, a thickness of 25 5if2. was removed. Continue 2 x 1
The temperature of the Si substrate 1 was lowered to 360°C in an atmosphere of 0''-7 Torr, Si H51000cc/min, tungsten hexafluoride (WFg) 5g/win was introduced, and the pressure was 0.
, 2 Torr, a 300 nm thick WSiz film 5 was formed (FIG. 2(a)).

次にアルゴンの雰囲気中で850℃、20分の熱処理を
行なった。さらにSiH+と酸素を原料ガスとする気相
成長法により厚さ300nmのS i 026  を被
着形成した。次にリソグラフィーと異方性ドライエツチ
ング法を用いて5iO26、WSiz5.多結晶Si4
の3層構造からなるゲート領域を形成した(第2図(b
))。次に、SiH4とN z Oを原料ガスとする低
圧気相成長法により厚さ250nmのS iO27を被
着形成した。条件は、圧力0.8 Torr温度800
℃とした。次に。
Next, heat treatment was performed at 850° C. for 20 minutes in an argon atmosphere. Further, Si 026 was deposited to a thickness of 300 nm using a vapor phase growth method using SiH+ and oxygen as source gases. Next, 5iO26, WSiz5. Polycrystalline Si4
A gate region consisting of a three-layer structure was formed (Fig. 2(b)
)). Next, SiO27 with a thickness of 250 nm was deposited by low pressure vapor phase growth using SiH4 and NzO as source gases. The conditions are pressure 0.8 Torr temperature 800
℃. next.

異方性ドライエツチング法による全面エツチングにより
Si基板1の表面を露出させた。この時、3層構造から
なるゲート領域の側面には5iOz7が残存するように
した(第2図(C))。
The surface of the Si substrate 1 was exposed by etching the entire surface using an anisotropic dry etching method. At this time, 5iOz7 was left on the side surfaces of the gate region having a three-layer structure (FIG. 2(C)).

次にドライエツチング時の汚染を除去するため  、過
酸化水素とアンモニアを主成分とする洗浄液により露出
したSi基板1の表面を5m程度エツチング洗浄した後
、続いてフッ化水素酸により極めて薄い5iOzをエツ
チング除去した。その状態で熱酸化法により厚さ10n
mの5i028を露出しているSi基板1の表面に形成
した。次にイオン打ち込み法によりSi基板1内にヒ素
を導入した。条件は80keV、5X101δ国′″2
とした。
Next, in order to remove contamination during dry etching, the exposed surface of the Si substrate 1 was etched for about 5 m using a cleaning solution mainly containing hydrogen peroxide and ammonia, and then an extremely thin 5iOz layer was etched using hydrofluoric acid. Removed by etching. In that state, a thickness of 10n was formed using thermal oxidation method.
5i028 of m was formed on the exposed surface of the Si substrate 1. Next, arsenic was introduced into the Si substrate 1 by ion implantation. Conditions are 80keV, 5X101δ country'''2
And so.

続いて打ち込み時の表面汚染を除去した後950℃、1
0分間の窒素雰囲気中で熱処理を施し、n型不純物拡散
層からなるソース領域9およびドレイン領域10を形成
した(第2図(d))。
Subsequently, after removing surface contamination during implantation, it was heated at 950°C for 1
A heat treatment was performed in a nitrogen atmosphere for 0 minutes to form a source region 9 and a drain region 10 consisting of an n-type impurity diffusion layer (FIG. 2(d)).

次に積Mjt極の形成工程に入るが、ここにも本発明の
主旨たる簿膜形成法を適用した。まず、ソース9表面に
形成されている5iO18をリソグラフィーによりエツ
チング除去した後、W S j25を形成した場合と同
様に真空容器内に81基板を挿入設置した。この段階で
はSi基板J、の表面には20人の5iOzが形成され
ていた。−旦2X 10”−7Torrまで真空排気し
た後、100Torrの圧力になるように制御してオゾ
ンを10分間導入し、Si基板1表面の炭素成分を除去
した。次に真空容器内を2 X 10−7Torrまで
真空排気すると同時にSi基板1を620℃に昇温させ
て5X10−5Torrになるように水素を導入し、加
速電圧1kVとしてSi基板1の表面に10分間水素イ
オンビームを照射した。これによりSi基板1表面に存
在していた厚さ20人の5iOzを除去した。引き続き
2 X 10−7Torrに真空排気した後、Q 、 
8 TorrになるようにS x Haを導入し、気相
成長法により厚さ350nmの多結晶S i 1−1を
被着形成した。次にリン拡散法により多結晶5511に
不純物を導入し、リソグラフィーとドライエツチング法
により所望のパターンを形成し積層容量部の下部電極と
した(第2図(e))。
Next, the step of forming the multilayer Mjt electrode was started, and the film forming method that is the gist of the present invention was applied here as well. First, 5iO18 formed on the surface of the source 9 was removed by etching by lithography, and then the 81 substrate was inserted and placed in a vacuum container in the same manner as in the case of forming W S j25. At this stage, 20 5iOz particles were formed on the surface of the Si substrate J. - After first evacuation to 2X 10"-7 Torr, ozone was introduced for 10 minutes at a pressure of 100 Torr to remove carbon components on the surface of the Si substrate 1. Next, the inside of the vacuum vessel was evacuated to 2X 10"-7 Torr. Simultaneously, the Si substrate 1 was evacuated to -7 Torr, heated to 620° C., hydrogen was introduced to 5×10 −5 Torr, and the surface of the Si substrate 1 was irradiated with a hydrogen ion beam for 10 minutes at an acceleration voltage of 1 kV. 5iOz with a thickness of 20 layers existing on the surface of the Si substrate 1 was removed by evacuating to 2 x 10-7 Torr.
S x Ha was introduced at a pressure of 8 Torr, and polycrystalline Si 1-1 with a thickness of 350 nm was deposited by vapor phase growth. Next, impurities were introduced into the polycrystal 5511 by phosphorus diffusion, and a desired pattern was formed by lithography and dry etching to form the lower electrode of the laminated capacitor (FIG. 2(e)).

その後、熱酸化法により下部電極とする多結晶5ill
の表面に厚さ20nmのS i 0212  を形成し
キャパシタ絶蒜1摸とした。さらに気相成長法を用いて
Jりさ300nmの多結晶Si 13を被着形成し、リ
ソグラフィーとドライエツチングにより所望のパターン
を形成した。さらに気相成長法により厚さ400nmの
リンガラス】、4を形成し、ホトリソグラフィーとドラ
イエツチング法によりドレイン10の領域上にコンタク
1−ホールを形成した。次にスパッタ法によりSiを1
%含有する厚さ900nmのアルミニウム(AQ)膜1
5を形成し、リソグラフィーとドライエツチング法によ
りAQの配線を形成した(第1図)。以上の工程を終る
ことにより、ひとつのMO8型トランジスターとひとつ
の容量の組み合せからなるメモリーセルを構成した。
After that, polycrystalline 5ill to be used as the lower electrode is processed by thermal oxidation method.
A 20 nm thick S i 0212 was formed on the surface of the capacitor to form a capacitor. Further, polycrystalline Si 13 with a J-ripsis of 300 nm was deposited using a vapor phase growth method, and a desired pattern was formed by lithography and dry etching. Further, a 400 nm thick phosphor glass 4 was formed by vapor phase epitaxy, and a contact hole 1 was formed on the drain 10 region by photolithography and dry etching. Next, 1 Si was added by sputtering method.
Aluminum (AQ) film 1 with a thickness of 900 nm containing %
5 was formed, and AQ wiring was formed by lithography and dry etching (FIG. 1). By completing the above steps, a memory cell consisting of a combination of one MO8 type transistor and one capacitor was constructed.

本実施例によれば、WSix5と多結晶Si4の界面に
5iOzが存在しないため密着性を著しく改善すること
ができ、従来問題となっていたWsiz5 の剥離を防
止できる効果がある。また、多結晶5illとSi基板
1との界面にもSiO2が存在しないため接触抵抗を著
しく改善することができ、積層容量部とトランジスタ一
部での蓄積信号電荷の授受を容易にし、メモリーセルと
しての動作性能を向上させる効果がある。
According to this example, since 5iOz is not present at the interface between WSix5 and polycrystalline Si4, adhesion can be significantly improved, and peeling of Wsiz5, which has been a problem in the past, can be prevented. In addition, since no SiO2 is present at the interface between the polycrystalline 5ill and the Si substrate 1, the contact resistance can be significantly improved, making it easier to transfer the accumulated signal charge between the laminated capacitor section and a part of the transistor. It has the effect of improving the operating performance of.

なお、本実施例では水素イオンビームを用いる方法によ
り極めて薄いS i Oxを除去したが、室温でヘリウ
ムイオンを照射し、その後加熱昇温することによっても
5iOzの除去に対して同様の効果を得ることができ、
5iOzの介在しない界面状態の接触を得ることができ
る。
Note that in this example, extremely thin SiOx was removed by a method using a hydrogen ion beam, but the same effect on removing 5iOz can also be obtained by irradiating helium ions at room temperature and then increasing the temperature. It is possible,
A contact of 5 iOz free interfacial state can be obtained.

また1本実施例ではWSixと多結晶Siの接触および
多結晶SiとSi基板の接触に関して述べたが、本発明
の主旨はこれらの材料に限られるものではなく非晶質S
iや窒化チタンなどの金属窒化物あるいはG a A 
s等の金属化合物、あるいはWなどの金属などを各々相
互に接触させる場合にも実施して効果を発揮するもので
ある。
Furthermore, in this embodiment, the contact between WSix and polycrystalline Si and the contact between polycrystalline Si and a Si substrate have been described, but the gist of the present invention is not limited to these materials.
i, metal nitrides such as titanium nitride, or Ga A
This method is also effective when metal compounds such as S or metals such as W are brought into contact with each other.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導体あるいは半導体の接触において界
面の酸化物を取り除いた接触を得ることができるので、
薄膜の密着性を向上させ半導体装置の製造工程における
製造歩留りを向上させる効果がある。また、接触抵抗を
従来の数〜数十MΩから数にΩまで低減できるので素子
の性能向上に大きな効果がある。
According to the present invention, it is possible to obtain a contact between a conductor or a semiconductor by removing the oxide at the interface.
It has the effect of improving the adhesion of the thin film and improving the manufacturing yield in the manufacturing process of semiconductor devices. Furthermore, since the contact resistance can be reduced from the conventional several to several tens of MΩ to several Ω, there is a great effect on improving the performance of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図(a)〜(e)は本発明の一実施例
を説明するための一連の工程を示す断面第 /I!1 爾 2 図 (久) 第 2 凹 (Cン (幻
FIGS. 1 and 2 (a) to (e) are cross sections showing a series of steps for explaining one embodiment of the present invention. 1 爾 2 Figure (ku) 2nd concave (Cn (phantom)

Claims (1)

【特許請求の範囲】 1、第一の導体あるいは半導体と第二の導体あるいは半
導体との、接触を必要とする半導体装置において第一の
導体あるいは半導体表面に存在する極めて薄い酸化物を
取り除き、該第一の導体あるいは半導体と該第二の導体
あるいは半導体とを接触させたことを特徴とする半導体
装置。 2、上記第一の導体あるいは半導体にはSi基板。 多結晶Si、金属シリサイド、金属の窒化物、金属化合
物、金属を含み、第二の導体あるいは半導体には多結晶
Si非晶質Si、金属シリサイド、金属窒化物、金属を
含むことを特徴とする特許請求の範囲第1項記載の半導
体装置。 3、第一の導体あるいは半導体の少なくとも一部が表面
に露出している基板を、真空装置内に設置した後、導体
あるいは半導体表面に存在している極めて薄い自然成長
酸化膜を除去する処理を行ない、その後基板を所定の温
度に保ち、所望のガスを導入して第二の導体あるいは半
導体を形成する工程を少なくとも含むことを特徴とする
半導体装置の製造方法。
[Claims] 1. In a semiconductor device that requires contact between a first conductor or semiconductor and a second conductor or semiconductor, an extremely thin oxide existing on the surface of the first conductor or semiconductor is removed; A semiconductor device characterized in that a first conductor or semiconductor and the second conductor or semiconductor are brought into contact. 2. The first conductor or semiconductor is a Si substrate. It is characterized in that it contains polycrystalline Si, metal silicide, metal nitride, metal compound, and metal, and the second conductor or semiconductor contains polycrystalline Si, amorphous Si, metal silicide, metal nitride, and metal. A semiconductor device according to claim 1. 3. After placing the substrate in which at least a portion of the first conductor or semiconductor is exposed on the surface in a vacuum apparatus, a process is performed to remove an extremely thin naturally grown oxide film existing on the surface of the conductor or semiconductor. 1. A method for manufacturing a semiconductor device, comprising at least the step of forming a second conductor or semiconductor by holding the substrate at a predetermined temperature and introducing a desired gas.
JP62247818A 1987-10-02 1987-10-02 Semiconductor device and manufacture thereof Pending JPH0191417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62247818A JPH0191417A (en) 1987-10-02 1987-10-02 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62247818A JPH0191417A (en) 1987-10-02 1987-10-02 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0191417A true JPH0191417A (en) 1989-04-11

Family

ID=17169118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62247818A Pending JPH0191417A (en) 1987-10-02 1987-10-02 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0191417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169713A (en) * 1993-12-16 1995-07-04 Nec Corp Method for manufacturing semiconductor device
JP2002512450A (en) * 1998-04-16 2002-04-23 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for manufacturing NAND flash memory device capable of easily obtaining poly 1 contact by removing poly cap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169713A (en) * 1993-12-16 1995-07-04 Nec Corp Method for manufacturing semiconductor device
JP2002512450A (en) * 1998-04-16 2002-04-23 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for manufacturing NAND flash memory device capable of easily obtaining poly 1 contact by removing poly cap

Similar Documents

Publication Publication Date Title
JP2937817B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing MOS semiconductor device
JPH08162433A (en) Ion doping apparatus cleaning method
JPS62177909A (en) Manufacturing method of semiconductor device
JPH03292741A (en) Manufacturing method of semiconductor device
JPH08139278A (en) Method for manufacturing semiconductor device
JPH10335607A (en) Method for manufacturing semiconductor device
JPH0191417A (en) Semiconductor device and manufacture thereof
JP3589801B2 (en) Method of forming oxide film on semiconductor substrate surface
JPH10270434A (en) Method for cleaning semiconductor wafer and method for forming oxide film
JPH07162002A (en) Method for manufacturing semiconductor film and method for manufacturing thin film transistor
JPH05243575A (en) Thin film transistor and manufacture thereof
JP2872425B2 (en) Method for forming semiconductor device
JPH02194620A (en) Crystal growth method of semiconductor thin film
US5021358A (en) Semiconductor fabrication process using sacrificial oxidation to reduce tunnel formation during tungsten deposition
JPS59144174A (en) semiconductor equipment
JP2864658B2 (en) Method for manufacturing thin film transistor
JPH07297151A (en) Method for manufacturing semiconductor device
JPH07161996A (en) Insulated gate type field effect semiconductor device and manufacturing method thereof
JPS6110233A (en) Manufacturing method of semiconductor device
JPH0682652B2 (en) Method for forming silicon thermal oxide film
JPH08335703A (en) Thin film transistor and manufacturing method thereof
JPH08306642A (en) Polysilicon layer formation method of semiconductor element
WO2003079456A1 (en) Method for producing substrate material and semiconductor device including plasma processing
JPH03102875A (en) Semiconductor device and its manufacturing method
JPH0279436A (en) Manufacturing method of semiconductor device