JPH02108972A - Acceleration sensor - Google Patents
Acceleration sensorInfo
- Publication number
- JPH02108972A JPH02108972A JP26317488A JP26317488A JPH02108972A JP H02108972 A JPH02108972 A JP H02108972A JP 26317488 A JP26317488 A JP 26317488A JP 26317488 A JP26317488 A JP 26317488A JP H02108972 A JPH02108972 A JP H02108972A
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- permanent magnet
- acceleration sensor
- present
- impressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Sensors (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
本発明は電磁気的に加速度を検出するセンサに関し、
磁気抵抗素子と永久磁石とを組み合わせた加速度センサ
の高感度化を目的とし、
印加された加速度によって撓む梁,該梁の所定部に支持
された永久磁石,該永久磁石を挟む両側の対称位置に設
けられた少なくとも一対の磁気抵抗素子を具え、
該梁がその長さ方向にほぼ波形に屈曲してなることを特
徴とし構成する。[Detailed Description of the Invention] [Summary] The present invention relates to a sensor that electromagnetically detects acceleration, and aims to increase the sensitivity of an acceleration sensor that combines a magnetoresistive element and a permanent magnet, and has a sensor that deflects due to applied acceleration. A beam, a permanent magnet supported at a predetermined portion of the beam, and at least a pair of magnetoresistive elements provided at symmetrical positions on both sides of the permanent magnet, the beam being bent substantially in a waveform in its length direction. It is characterized by becoming.
本発明は電磁気的に加速度を出するセンサ、特に高感度
化させる構成に関する。The present invention relates to a sensor that generates acceleration electromagnetically, and particularly to a configuration that increases sensitivity.
印加された加速度による重りの変位を検出したり、重り
を支持する片持梁のひずみを検出する従来の加速度セン
サは、感度が低いという欠点があった。そこで、印加さ
れた加速度によって撓む梁の所定位置に永久磁石を取り
付け、該永久磁石の両側にそれを挟む対称位置に少なく
とも2個の磁気抵抗素子を設け、該磁気抵抗素子の出力
を互いに逆磁性で加算する加算部を具えた加速度センサ
が出現した。Conventional acceleration sensors that detect the displacement of a weight due to applied acceleration or the strain of a cantilever beam supporting the weight have a drawback of low sensitivity. Therefore, a permanent magnet is attached to a predetermined position of a beam that bends due to applied acceleration, and at least two magnetoresistive elements are provided on both sides of the permanent magnet at symmetrical positions sandwiching it, and the outputs of the magnetoresistive elements are reversed. An acceleration sensor equipped with an addition section that performs addition using magnetism has appeared.
第7図は本出願人が昭和63年5月7日付けで出願した
加速度センサ(特願昭63−110882号)の基本構
成図(イ)とその加速度検出部の構成例を示す斜視図(
0)である。FIG. 7 is a basic configuration diagram (A) of an acceleration sensor (Patent Application No. 110882-1982) filed by the present applicant on May 7, 1988, and a perspective view (A) showing an example of the configuration of its acceleration detection section.
0).
第7図(イ)において、■は印加された加速度によって
撓む梁、2はN極とS極を有する永久磁石、3−1.3
−、zは2個のバーバーポール型磁気抵抗素子、4−7
と4−tは磁気抵抗素子の出力信号線、5は加算部、5
−1は加算部5の出力信号端子、6は検出部である。In Fig. 7 (a), ■ is a beam that bends due to applied acceleration, 2 is a permanent magnet with N and S poles, 3-1.3
−, z are two barber pole magnetoresistive elements, 4-7
and 4-t are the output signal lines of the magnetoresistive element, 5 is the addition section, 5
-1 is an output signal terminal of the addition section 5, and 6 is a detection section.
検出部6を示す第7図(II)において、7はシリコン
基板、8はシリコン基板7に設けた孔、9〜9−4はシ
リコン基板7の上面に形成された磁気抵抗素子3−+、
3−zと加算部5との接続用パッドであり、非磁性であ
る燐青銅等を使用してなる梁lは、一端をシリコン基板
7に固定し他端に永久磁石2が固着されている。In FIG. 7 (II) showing the detection unit 6, 7 is a silicon substrate, 8 is a hole provided in the silicon substrate 7, 9 to 9-4 are magnetoresistive elements 3-+ formed on the upper surface of the silicon substrate 7,
A beam l, which is a connection pad between 3-z and the adder 5 and is made of non-magnetic phosphor bronze, has one end fixed to the silicon substrate 7 and the other end fixed to the permanent magnet 2. .
このように構成した加速度センサは、磁石2の質量をm
1磁石2に加えられた加速度をG、そのとき当初位置か
ら磁石2が例えば磁気抵抗素子3−2に対し変位した量
をXとしたとき、kを比例常数として加速度Gは
G=kx/m
で与えられる。即ち、磁石2に加速度Gが加えられない
当初位置から、加えられた加速度Gのため梁1は矢印方
向に撓み、磁石2が磁気抵抗素子3=2に近づくと、そ
のことを磁気抵抗素子3−2の出力信号線4−tにおけ
る電圧変動による電気信号の変化から位置変位量として
読み出すことができ、その変位量から加速度の値を知る
ことができる。In the acceleration sensor configured in this way, the mass of the magnet 2 is m
1. When the acceleration applied to magnet 2 is G, and the amount by which magnet 2 is displaced from its initial position relative to, for example, magnetoresistive element 3-2 is X, the acceleration G is G = kx/m, where k is a proportional constant. is given by That is, from the initial position where no acceleration G is applied to the magnet 2, the beam 1 is deflected in the direction of the arrow due to the applied acceleration G, and when the magnet 2 approaches the magnetoresistive element 3 = 2, the magnetoresistive element 3 The amount of positional displacement can be read out from the change in the electrical signal due to the voltage fluctuation on the -2 output signal line 4-t, and the value of acceleration can be determined from the amount of displacement.
そして、加速度の印加方向が逆になって磁石2が磁気抵
抗素子3−0に接近する方向に変位しても、同様にその
ときの加速度の値を知ることができるようになる。Even if the direction of application of acceleration is reversed and the magnet 2 is displaced in a direction approaching the magnetoresistive element 3-0, the value of the acceleration at that time can be similarly known.
以上説明したように、磁気抵抗素子と永久磁石とを組み
合わせた従来の加速度センサは、それ以前のものより大
出力を得ることが容易であり、高精度かつ小型化を実現
した効果がある。そこで、その加速度センサをさらに高
感度にしようとすると、梁を長くするまたは梁を薄くす
ればよいことになるが、梁を長くすることは検出部が大
形化し、梁を薄くするには永久磁石を支持する梁の機械
的強度および製造上の限界があって、実現され難いとい
う問題点があった。As explained above, the conventional acceleration sensor that combines a magnetoresistive element and a permanent magnet can easily obtain a larger output than the previous one, and has the effect of realizing high precision and miniaturization. Therefore, if you want to make the acceleration sensor even more sensitive, you can make the beam longer or thinner. There is a problem in that it is difficult to realize this method due to limitations in the mechanical strength and manufacturing of the beams that support the magnets.
(課題を解決するための手段〕
第1図は本発明による加速度センサの検出部を示す基本
構成例の模式図であり、前出の第7図と共通部分に同一
符号を使用した第1図において、従来の検出部6に相当
する加速度検出部11は、印加された加速度によって撓
むように例えば一端が固着された梁12.梁12の他端
(所定部)に固着された永久磁石2.永久磁石2を挟む
両側の対称位置に設けられた一対の磁気抵抗素子3−1
と3−2を具え、梁12がその長さ方向(図中の矢印方
向)に波形に屈曲してなることを特徴とする。(Means for Solving the Problems) FIG. 1 is a schematic diagram of a basic configuration example showing a detection section of an acceleration sensor according to the present invention, and FIG. , an acceleration detection section 11 corresponding to the conventional detection section 6 includes, for example, a beam 12 fixed at one end so as to be bent by applied acceleration; a permanent magnet fixed to the other end (predetermined portion) of the beam 12; A pair of magnetoresistive elements 3-1 provided at symmetrical positions on both sides of the magnet 2
and 3-2, and is characterized in that the beam 12 is bent in a waveform in its length direction (in the direction of the arrow in the figure).
本発明において、印加された加速度によって撓む梁は、
長さ方向にほぼ波形としたものを利用することによって
、直状のものを利用した従来の梁より印加された加速度
による撓みが大きくなり、そのことで梁に固着した永久
磁石の移動量も大きくなる。そのため、磁気抵抗素子に
対し永久磁石の磁界の変化量が拡大し、印加加速度の検
出感度が向上されるようになる。In the present invention, a beam that is deflected by applied acceleration is
By using beams that are approximately wave-shaped in the length direction, the deflection due to applied acceleration is greater than that of conventional beams that use straight beams, and this also increases the amount of movement of the permanent magnets fixed to the beam. Become. Therefore, the amount of change in the magnetic field of the permanent magnet is increased relative to the magnetoresistive element, and the detection sensitivity of applied acceleration is improved.
以下に、図面を用いて本発明の実施例による加速度セン
サを説明する。EMBODIMENT OF THE INVENTION Below, the acceleration sensor by the Example of this invention is demonstrated using drawing.
第2図は本発明による加速度検出部に使用する梁の基本
構成を示す斜視図である。FIG. 2 is a perspective view showing the basic configuration of a beam used in the acceleration detection section according to the present invention.
第2図(イ)において、片持梁12−1は非磁性かつば
ね性を有する燐青銅等の板材より切り出して成形したも
のであり、例えばシリコン基板に固定する固定部13−
Iと、永久磁石を固着する固着部134との間は長さ方
向に波形に形成し、加速度が印加されたときの撓みによ
る固着永久磁石の移動量は、該波形によって可撓長が長
(なるため、直状の短冊形である従来の梁lより大きく
なる。In FIG. 2(a), the cantilever beam 12-1 is cut out and molded from a plate material such as phosphor bronze that has non-magnetic and spring properties, and is fixed to a silicon substrate, for example.
The space between the I and the fixed part 134 that fixes the permanent magnet is formed in a waveform in the length direction, and the amount of movement of the fixed permanent magnet due to deflection when acceleration is applied is determined by the waveform as long as the flexible length ( Therefore, it is larger than the conventional beam l, which is a straight rectangular shape.
第2図(o)において、片持染工2−2は燐青銅等の板
材より切り出して成形したものであり、シリコン基板等
に固着する固定部13−Iと、永久磁石を固着する固着
部134との間は、片持梁12−1と同じ波形に形成し
、かつ、幅方向の中央に細長い透孔13弓を設けてなる
。このような透孔13−1を設げた梁12−2の撓みは
、梁12−1よりもさらに大きく、しかも捩じれ等に対
する安定性は梁12−1のそれと同等になる。In Fig. 2 (o), the cantilever dyer 2-2 is cut out and molded from a plate material such as phosphor bronze, and includes a fixed part 13-I that is fixed to a silicon substrate, etc., and a fixed part that fixes a permanent magnet. 134 is formed in the same waveform as the cantilever beam 12-1, and an elongated through hole 13 is provided at the center in the width direction. The deflection of the beam 12-2 provided with such a through hole 13-1 is greater than that of the beam 12-1, and the stability against torsion and the like is equivalent to that of the beam 12-1.
第2図(ハ)において、片持梁12−3は燐青銅等の板
材より切り出して成形したものであり、シリコン基板等
に固着する固定部13−1と、永久磁石を固着する固着
部13−2との間は、片持梁12−1と同じ波形に形成
し、かつ、幅方向の中央に細長い透孔13−4および1
3−3を設けてなる。ただし、透孔13−4と一対の透
孔13−3との間の桟部13−6は、梁124の撓みに
対する影響が少ない位置、即ち前記波形のピークと一致
する位置である。このような透孔13、および134を
設けた梁12−3の撓みは、梁12−2とほぼ同等であ
り、かつ、捩じれ等に対する安定性は染工2−2よりも
優れたものとなる。In FIG. 2(c), the cantilever 12-3 is cut out and molded from a plate material such as phosphor bronze, and includes a fixed part 13-1 fixed to a silicon substrate, etc., and a fixed part 13 fixed to a permanent magnet. -2 is formed in the same waveform as the cantilever beam 12-1, and has an elongated through hole 13-4 in the center in the width direction and
3-3 is provided. However, the crosspiece 13-6 between the through-hole 13-4 and the pair of through-holes 13-3 is located at a position that has little influence on the deflection of the beam 124, that is, at a position that coincides with the peak of the waveform. The deflection of the beam 12-3 provided with such through holes 13 and 134 is almost the same as that of the beam 12-2, and the stability against torsion etc. is superior to that of the dyework 2-2. .
第3図は本発明の一実施例による加速度センサの検出部
を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a detection section of an acceleration sensor according to an embodiment of the present invention.
第3図において、本発明による検出部21は従来の検出
部6に相当し、密封ケースを構成するキャップ22とベ
ース23は、珪素鋼等の磁性材料からなり、それらの表
面にはニンケルめっきが施されている。キャップ22に
はケース内に防振オイルを注入し封止される封入口22
−Iが、ベース23にはガラス封止により該ベース23
と電気的絶縁状態で固定された外部端子24−1〜24
−6と固定端子2L、、 24−6が設けられている。In FIG. 3, a detection unit 21 according to the present invention corresponds to the conventional detection unit 6, and a cap 22 and a base 23 that constitute a sealed case are made of a magnetic material such as silicon steel, and their surfaces are coated with nickel plating. It has been subjected. The cap 22 has a sealing port 22 that is sealed by injecting anti-vibration oil into the case.
-I is attached to the base 23 by glass sealing.
and external terminals 24-1 to 24 fixed in an electrically insulated state.
-6 and fixed terminals 2L, 24-6 are provided.
そして、シリコン基板25等を実装したベース23にキ
ャップ22を覆せ、その接合部を溶接等にて封止して磁
気シールドケースを形成したのち、封入口22−1より
該ケース内に防振オイルを注入してから、封入口22−
Iを塞ぐ。Then, the cap 22 is placed over the base 23 on which the silicon substrate 25 and the like are mounted, and the joints are sealed by welding or the like to form a magnetically shielded case, and then the anti-vibration oil is poured into the case from the filling port 22-1. After injecting the filling port 22-
Block I.
これにより、プリント板に実装可能な検出部21が完成
する。This completes the detection section 21 that can be mounted on a printed board.
片持梁12(または12−1,12−z、 12−i)
の一端を支持するシリコン基板25は、角形棒状部25
−Iと25−7との間に梁12を収容する凹所25..
3を有し、角形棒状部25.、、と25.それぞれの一
方の端部上面に形成した一対のバーバーポール型の磁気
抵抗素子3伺と3−2は、永久磁石2を挟む対称位置に
設けられ、例えば4つの抵抗素子をフルブリッジに接続
した構成である磁気抵抗素子3−i、3−zの外部接続
用パッドは、それぞれが対応する外部端子24−8〜2
4−bと接続される。Cantilever beam 12 (or 12-1, 12-z, 12-i)
The silicon substrate 25 supporting one end of the square rod-shaped part 25
-I and the recess 25. which accommodates the beam 12 between 25-7. ..
3, and has a rectangular bar-shaped portion 25. ,, and 25. A pair of barber pole type magnetic resistance elements 3 and 3-2 formed on the upper surface of one end of each are provided at symmetrical positions with the permanent magnet 2 in between, and for example, four resistance elements are connected in a full bridge configuration. The external connection pads of the magnetoresistive elements 3-i and 3-z are connected to the corresponding external terminals 24-8 to 24-2.
Connected to 4-b.
このように構成された検出部21において、梁12の厚
さ方向(図中の矢印方向)に印加される加速度を受けて
梁12は、磁気抵抗素子3−+、3−zの何れかの方向
へ撓むように動作し、印加された加速度によって撓み量
が異なり磁石2を移動させる該動作は、磁気抵抗素子3
−1.3−zを接続した加算部(5)の出力によって検
出される。In the detection unit 21 configured in this way, the beam 12 receives acceleration applied in the thickness direction of the beam 12 (in the direction of the arrow in the figure), and the beam 12 is activated by either of the magnetoresistive elements 3-+ and 3-z. The magnetoresistive element 3
It is detected by the output of the adder (5) to which -1.3-z is connected.
第4図と第5図はそれぞれ本発明の他の実施例に係わる
梁を示す斜視図であり、第4図の片持梁26は固定部1
3−8と固着部13−2との間を複数の山形に屈曲し、
第5図の片持梁27は固定部13−1と固着部13.と
の間をつづら折り状に屈曲したものであり、梁26およ
び27の変形例として前出の梁12−2゜12−3と同
様に、幅方向の中央部に透孔を設けることで撓み量を大
きくすることができる。4 and 5 are perspective views respectively showing beams according to other embodiments of the present invention, and the cantilever beam 26 in FIG.
3-8 and the fixed portion 13-2 are bent into a plurality of chevron shapes,
The cantilever beam 27 in FIG. As a modification of the beams 26 and 27, a through hole is provided in the center in the width direction to reduce the amount of deflection, similar to the beams 12-2 and 12-3. can be made larger.
第6図は本発明による梁の展開長さ増加量と撓みの増加
量との関係を示す図である。FIG. 6 is a diagram showing the relationship between the amount of increase in the developed length of the beam and the amount of increase in deflection according to the present invention.
横軸が本発明による梁の展開長さの増加量(%)で、縦
軸が本発明による梁の撓みの増加N(%)である第6図
において、厚さ0.05mmの燐青銅板から作成した試
料■〜■は、成形長さβを14nu++、幅を1 、5
nv+の一定とし、試料■は従来と同じ直状の短冊形、
試料■は波形が1波長で振幅を2mm、試料■は波形が
2波長で振幅を21.試料■は波形が1波長で振幅を4
n+n+、試料■は波形が2波長で振幅を4ma+とじ
たものである。そして、試料■を基準とし比較した試料
■〜■の撓み量は、展開長さの増加量に比例し増加する
ようになる。In Fig. 6, where the horizontal axis is the increase (%) in the developed length of the beam according to the present invention, and the vertical axis is the increase N (%) in the deflection of the beam according to the present invention, a phosphor bronze plate with a thickness of 0.05 mm is shown. Samples ■ to ■ made from
nv+ is constant, and sample ■ is the same straight rectangular shape as the conventional one.
Sample ■ has a waveform of 1 wavelength and an amplitude of 2 mm, and sample ■ has a waveform of 2 wavelengths and an amplitude of 21 mm. Sample ■ has a waveform of 1 wavelength and an amplitude of 4
n+n+ and sample (2) have a waveform with two wavelengths and an amplitude of 4ma+. Then, the amount of deflection of samples 1 to 2 compared with sample 2 increases in proportion to the amount of increase in the developed length.
なお、前記実施例は印加された加速度によって撓む梁を
片持梁としたが、該片持梁に変えて両端の固定された両
持梁の中央部に永久磁石を固着した加速度検出部に本発
明を適用し、片持梁を利用したものと同等の効果が得ら
れる。In addition, in the above embodiment, the beam that is bent by applied acceleration is a cantilever beam, but instead of the cantilever beam, an acceleration detecting section in which a permanent magnet is fixed to the center of the double-support beam fixed at both ends is used. By applying the present invention, the same effect as using a cantilever beam can be obtained.
以上説明したように本発明による加速度センサは、全体
の大きさを変えることなく、梁の撓みを大きくできるこ
とによって磁気抵抗素子の出力が増大し、従来より高感
度の加速度センサを提供できるようにした効果がある。As explained above, in the acceleration sensor according to the present invention, the output of the magnetoresistive element is increased by increasing the deflection of the beam without changing the overall size, making it possible to provide an acceleration sensor with higher sensitivity than before. effective.
第1図は本発明による加速度センサの検出部の基本構成
例の模式図、
第2図は本発明の加速度センサに使用する梁の基本図、
第3図は本発明の一実施例による加速度センサの検出部
の分解斜視図、
第4図は本発明の他の実施例に係わる梁の斜視図、
第5図は本発明のさらに他の実施例に係わる梁の斜視図
、
第6図は本発明による梁の展開長さと撓み量との関係を
示す図、
第7図は従来の加速度センサ、
図中において、
2は永久磁石、
3−x3−tは磁気抵抗素子、
11.21は加速度検出部、
12.12−、.12−2+ 12−3.26.27は
梁、13−、、13., +3−sは梁に設けた透孔、
を示す。
A\発8月(−ようカロ理蔑七ンブn7李尖出杏p=n
隼木槙入9・]N鍵戎刀第1 図
木を朗め加邊崖七/ブrニイ吏用する梁0苓本図第 Z
区
締出部め分Mや93
第 3 図
本発明の(an實簡j11ン借、層う求f杢口見図第4
図
木イも9月nさ 5CロヂニμnづC方ヒ脅り1ニイ斤
、イつろ歪め竹視図第
図Fig. 1 is a schematic diagram of an example of the basic configuration of the detection section of the acceleration sensor according to the present invention, Fig. 2 is a basic diagram of a beam used in the acceleration sensor of the present invention, and Fig. 3 is an acceleration sensor according to an embodiment of the present invention. FIG. 4 is a perspective view of a beam according to another embodiment of the present invention; FIG. 5 is a perspective view of a beam according to still another embodiment of the present invention; FIG. 6 is a perspective view of a beam according to another embodiment of the present invention; A diagram showing the relationship between the developed length of the beam and the amount of deflection according to the invention. Figure 7 is a conventional acceleration sensor. In the diagram, 2 is a permanent magnet, 3-x3-t is a magnetoresistive element, and 11.21 is an acceleration detection Section, 12.12-, . 12-2+ 12-3.26.27 is a beam, 13-,,13. , +3-s is a through hole provided in the beam,
shows. A\From August (-Yo Karo Rishan 7 N7 Lee Tsinde An p=n
Hayabusa Makiri 9.] N Key Ebito No. 1 Illustrated wood reading Kabegai No. 7 / brunii staff's beam 0 Reimoto Zu No. Z
Figure 3: Exclusion part M and 93 Fig. 3 of the present invention (an actual drawing of the present invention)
Map of the tree is also September.
Claims (2)
_−_1,12_−_2,12_−_3,26,27)
該梁の所定部に支持された永久磁石(2),該永久磁石
を挟む両側の対称位置に設けられた少なくとも一対の磁
気抵抗素子(3_−_1,3_−_2)を具え、 該梁がその長さ方向にほぼ波形に屈曲してなることを特
徴とする加速度センサ。(1) Beam (12, 12
____1, 12_-_2, 12_-_3, 26, 27)
The beam includes a permanent magnet (2) supported at a predetermined portion of the beam, and at least a pair of magnetic resistance elements (3_-_1, 3_-_2) provided at symmetrical positions on both sides of the permanent magnet, An acceleration sensor characterized by being bent in a substantially waveform in the length direction.
長さ方向に長さを有する透孔(13_−_3,13_−
_4,13_−_5)を、幅方向の中央部に形成してな
ることを特徴とする前記特許請求の範囲第1項記載の加
速度センサ。(2) The beam (12_-_2, 12_-_3) has a through hole (13_-_3, 13_-) having a length in the longitudinal direction thereof.
_4, 13_-_5) is formed in the center portion in the width direction.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26317488A JPH02108972A (en) | 1988-10-19 | 1988-10-19 | Acceleration sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26317488A JPH02108972A (en) | 1988-10-19 | 1988-10-19 | Acceleration sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02108972A true JPH02108972A (en) | 1990-04-20 |
Family
ID=17385801
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP26317488A Pending JPH02108972A (en) | 1988-10-19 | 1988-10-19 | Acceleration sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02108972A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0449867U (en) * | 1990-08-31 | 1992-04-27 | ||
| JP2003517612A (en) * | 1999-12-16 | 2003-05-27 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Micromechanical spring structure, especially for yaw rate sensors |
-
1988
- 1988-10-19 JP JP26317488A patent/JPH02108972A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0449867U (en) * | 1990-08-31 | 1992-04-27 | ||
| JP2003517612A (en) * | 1999-12-16 | 2003-05-27 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Micromechanical spring structure, especially for yaw rate sensors |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1320549C (en) | Acceleration sensor | |
| JP4347951B2 (en) | Micromachining magnetic field sensor and manufacturing method thereof | |
| KR100589646B1 (en) | Magnetic flux shaping pole piece for magnetic displacement sensor | |
| CN1101542C (en) | Magnetoresistive sensor for measuring dimension | |
| JPH0238882B2 (en) | ||
| US3878711A (en) | Extensometer | |
| JPS6316268A (en) | Peak-acceleration recorder | |
| JPH02108972A (en) | Acceleration sensor | |
| EP0793102A2 (en) | Sensor device | |
| US5241862A (en) | Integrated accelerometer with single hardstop geometry | |
| JPH0124583Y2 (en) | ||
| US5191794A (en) | Integrated accelerometer with resilient limit stops | |
| US3396328A (en) | Magnetoresistive transducer | |
| RU94036196A (en) | Accelerometer | |
| JPH0499963A (en) | Acceleration sensor | |
| JP3021570B2 (en) | Acceleration sensor | |
| JP4054073B2 (en) | Force rebalance accelerometer including a low stress magnet interface. | |
| JPH05240641A (en) | Inclinometer | |
| US5253524A (en) | Integrated accelerometer with coil interface spacer | |
| JPS63163209A (en) | Acceleration sensor | |
| SU853411A1 (en) | Two component electrodynamic vibration pickup | |
| JPH05828Y2 (en) | ||
| SU1027657A1 (en) | Magnetoresistive displacement pickup | |
| SU1485169A1 (en) | Three-component seismometer | |
| RU2091798C1 (en) | Accelerometer |