JPH02101086A - Production of glycero-sn-3-phosphocholine powder - Google Patents
Production of glycero-sn-3-phosphocholine powderInfo
- Publication number
- JPH02101086A JPH02101086A JP25187088A JP25187088A JPH02101086A JP H02101086 A JPH02101086 A JP H02101086A JP 25187088 A JP25187088 A JP 25187088A JP 25187088 A JP25187088 A JP 25187088A JP H02101086 A JPH02101086 A JP H02101086A
- Authority
- JP
- Japan
- Prior art keywords
- glycero
- phosphorylcholine
- methanol
- natural
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 81
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229940042880 natural phospholipid Drugs 0.000 claims abstract description 25
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011734 sodium Substances 0.000 claims abstract description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 10
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000227 grinding Methods 0.000 claims abstract 2
- 229950004354 phosphorylcholine Drugs 0.000 claims description 62
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 32
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 abstract description 31
- 239000002994 raw material Substances 0.000 abstract description 23
- -1 phosphatidyl chlorine Chemical compound 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 8
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical group CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 abstract description 4
- 239000000460 chlorine Substances 0.000 abstract 1
- 229910052801 chlorine Inorganic materials 0.000 abstract 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 29
- 239000000047 product Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- PYJNAPOPMIJKJZ-UHFFFAOYSA-N phosphorylcholine chloride Chemical compound [Cl-].C[N+](C)(C)CCOP(O)(O)=O PYJNAPOPMIJKJZ-UHFFFAOYSA-N 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000004809 thin layer chromatography Methods 0.000 description 7
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 238000004040 coloring Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 5
- 230000020176 deacylation Effects 0.000 description 5
- 238000005947 deacylation reaction Methods 0.000 description 5
- 125000005639 glycero group Chemical group 0.000 description 5
- 230000003301 hydrolyzing effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004737 colorimetric analysis Methods 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 4
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 4
- 238000005809 transesterification reaction Methods 0.000 description 4
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 3
- NJNWCIAPVGRBHO-UHFFFAOYSA-N 2-hydroxyethyl-dimethyl-[(oxo-$l^{5}-phosphanylidyne)methyl]azanium Chemical group OCC[N+](C)(C)C#P=O NJNWCIAPVGRBHO-UHFFFAOYSA-N 0.000 description 3
- 102100037883 Phospholipase B1, membrane-associated Human genes 0.000 description 3
- 102000015439 Phospholipases Human genes 0.000 description 3
- 108010064785 Phospholipases Proteins 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000006257 total synthesis reaction Methods 0.000 description 3
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 108020002496 Lysophospholipase Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- JLPULHDHAOZNQI-JLOPVYAASA-N [(2r)-3-hexadecanoyloxy-2-[(9e,12e)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC JLPULHDHAOZNQI-JLOPVYAASA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 1
- FTYFBKFEGBSFTE-UHFFFAOYSA-N CCCC(COP([O-])(O)=O)[N+](C)(C)C Chemical class CCCC(COP([O-])(O)=O)[N+](C)(C)C FTYFBKFEGBSFTE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- GUBGYTABKSRVRQ-WFVLMXAXSA-N DEAE-cellulose Chemical compound OC1C(O)C(O)C(CO)O[C@H]1O[C@@H]1C(CO)OC(O)C(O)C1O GUBGYTABKSRVRQ-WFVLMXAXSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- ZGLIQORZYPZFPW-UHFFFAOYSA-K azanium;azane;chromium(3+);tetrathiocyanate Chemical compound N.N.[NH4+].[Cr+3].[S-]C#N.[S-]C#N.[S-]C#N.[S-]C#N ZGLIQORZYPZFPW-UHFFFAOYSA-K 0.000 description 1
- 150000001661 cadmium Chemical class 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- CNORSMPWQQSHKE-UHFFFAOYSA-N propyl 2-(trimethylazaniumyl)ethyl phosphate Chemical class CCCOP([O-])(=O)OCC[N+](C)(C)C CNORSMPWQQSHKE-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical group CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- RCRYHUPTBJZEQS-UHFFFAOYSA-N tetradecanoyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCCCC RCRYHUPTBJZEQS-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、天然リン脂質から直接、天然構造を維持した
グリセロ−3n−3−ホスホリルコリン粉末を製造する
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing glycero-3n-3-phosphorylcholine powder that maintains its natural structure directly from natural phospholipids.
(従来の技術)
天然リン脂質の立体特異性を有するホスファチジルコリ
ン、即ち1,2−ジアシル−3n−グリセロ3−ホスホ
リルコリンを合成するには、この天然構造を維持したグ
リセロ−5n−3−ホスホリルコリンが必要である。何
故なら天然リン脂質はグリセロール骨格第2位に不斉炭
素を有するため光学活性を示すからである。そのため従
来の有機合成法による天然と同一配位の光学対掌体を合
成する場合、通常、対応する立体配位の置換グリセロー
ル、例えば、1.2−0−イソプロピリデン−D−グリ
セロールをD−マンニトールから合成して出発原料とす
る方法が用いられる(M、 B。(Prior art) In order to synthesize phosphatidylcholine, that is, 1,2-diacyl-3n-glycero-3-phosphorylcholine, which has the stereospecificity of natural phospholipids, glycero-5n-3-phosphorylcholine that maintains this natural structure is required. It is. This is because natural phospholipids exhibit optical activity because they have an asymmetric carbon at the second position of the glycerol skeleton. Therefore, when synthesizing an optical antipode with the same coordination as the natural one by conventional organic synthesis methods, usually substituted glycerol with the corresponding stereochemistry, such as 1,2-0-isopropylidene-D-glycerol, is D- A method is used in which mannitol is synthesized as a starting material (M, B).
Jung、 T、J、 Shaw、 J、 Am、 C
hew、 Soc、、 102+6304 (1980
))。これらの出発原料から合成されるリン脂質はプロ
ピル−2−トリメチルアンモニオエチルホスフェート誘
導体である。Jung, T.J., Shaw, J., Am., C.
hew, Soc, 102+6304 (1980
)). The phospholipids synthesized from these starting materials are propyl-2-trimethylammonioethyl phosphate derivatives.
また、天然構造を維持したグリセロ−3n−3−ホスホ
リルコリンを得る手段として、前述した全合成法とは別
に、天然リン脂質において、グリセロ−3n−3−ホス
ホリルコリンと脂肪酸を結合させているエステル結合の
みを特異的に加水分解させる方法も知られている。この
加水分解法には、酵素法と
化学薬品法がある。酵素法では脂質のエステル分解酵素
であるホスホリパーゼやリパーゼ等が使われている。In addition, as a means of obtaining glycero-3n-3-phosphorylcholine that maintains its natural structure, in addition to the above-mentioned total synthesis method, in natural phospholipids, only the ester bond that connects glycero-3n-3-phosphorylcholine and fatty acid can be used. A method for specifically hydrolyzing is also known. This hydrolysis method includes an enzyme method and a chemical method. In the enzymatic method, lipid ester-degrading enzymes such as phospholipase and lipase are used.
化学薬品法による天然構造を有するグリセロ5n−3−
ホスホリルコリンを得る方法としては、下記の報告が知
られている。Glycero 5n-3- with natural structure by chemical method
The following reports are known as methods for obtaining phosphorylcholine.
■H,Brockerhoff、 M、 Yorkow
ski、 Can、 J、 Bi。■H, Brockerhoff, M, York
ski, Can, J, Bi.
chem、、43.1777 (1965)■J、 S
、 Chadha、 Chem、 Phys、 Lip
ids、 al 104■ 実験化学講座、第3巻、“
脂質の化学”7・1、ジアシルグリセロリン脂質、第2
61頁、東京化学同人社
以上の方法は共通して、ホスファチジルコリンを無水エ
ーテル中テトラブチルアンモニウムヒドロキシドで加水
分解し、得られた分解物を濾別後、塩化カドミウム溶液
により、グリセロ−3−ホスホリルコリン−塩化カドミ
ウム複合体とじて結晶状で析出させている。chem, 43.1777 (1965) ■J, S
, Chadha, Chem, Phys, Lip
ids, al 104■ Experimental Chemistry Course, Volume 3, “
Lipid Chemistry” 7.1, Diacylglycerophospholipids, Part 2
Page 61, Tokyo Kagaku Dojinsha The above methods commonly involve hydrolyzing phosphatidylcholine with tetrabutylammonium hydroxide in anhydrous ether, filtering the resulting decomposition product, and then treating it with glycero-3-phosphorylcholine using a cadmium chloride solution. - It is precipitated in crystalline form as a cadmium chloride complex.
(発明が解決しようとする課題)
グリセロール誘導体を出発原料としてプロピル2−トリ
メチルアンモニオエチルホスフェート誘導体に至る全合
成法は、非常に合成段階が多く、また各段階ごとの反応
生成物の精製工程が複雑であり、その最終生成物の収量
が低い。また、このグリセロ−3n−3−ホスホリルコ
リンを原料として合成されるホスファチジルコリンは、
用いた脂肪酸を基準として収率が非常に低い。そのため
、反応生成物のコストが非常に高く、工業的製造法とし
て不適である。(Problems to be Solved by the Invention) The total synthesis method for producing a propyl 2-trimethylammonioethyl phosphate derivative using a glycerol derivative as a starting material has a large number of synthesis steps, and requires a purification process for the reaction product at each step. It is complex and its final product yield is low. In addition, phosphatidylcholine synthesized using this glycero-3n-3-phosphorylcholine as a raw material,
The yield is very low based on the fatty acids used. Therefore, the cost of the reaction product is extremely high, making it unsuitable as an industrial production method.
また、全合成法では反応途中において立体配位が逆配位
に反転するワルデン反転が生じる可能性があり、天然構
造でない立体配位物が混在する危険性を含んでいる。In addition, in the total synthesis method, there is a possibility that Walden inversion, in which the steric configuration is inverted to the opposite configuration, occurs during the reaction, and there is a risk that steric coordinates that do not have a natural structure will be mixed.
天然リン脂質のグリセロ−3n−3−ホスホリルコリン
と脂肪酸を結合させているエステル結合を酵素で特異的
に加水分解する手段には、■リパーゼによる非特異的分
解、■ホスホリパーゼA2とホスホリパーゼA、又はホ
スホリパーゼA2とリゾホスホリパーゼによる段階的分
離、■ホスホリパーゼBによる非特異的分解がある。Means for specifically hydrolyzing the ester bond that binds glycero-3n-3-phosphorylcholine and fatty acid in natural phospholipids with enzymes include: (1) non-specific degradation by lipase, (2) phospholipase A2 and phospholipase A, or phospholipase. There is stepwise separation by A2 and lysophospholipase, and non-specific degradation by phospholipase B.
上記のエステル結合を触媒的に加水分解する酵素群は微
生物、動物の膜結合酵素および動物の分泌酵素から精製
される。しかし、これらの原料から、これらの酵素群を
単離あるいは精製するには、硫安分画、DEAE−セル
ロースおよび電気泳動等の分析的手法を多数組み合わせ
る精製法の処理によってのみ入手される。微少な原料か
ら分析的手法で得られるこれらの酵素群の収量は著しく
低く、またその酵素活性も低く、しばしば保存中に力価
が失活する。そのため、これらの酵素群は生化学実験に
使用されても、グリセロ−3n−3−ホスホリルコリン
の工業的製造法としては不適である。Enzymes that catalytically hydrolyze the ester bonds described above are purified from microbial, animal membrane-bound enzymes and animal secreted enzymes. However, these enzymes can only be isolated or purified from these raw materials by purification methods that combine multiple analytical techniques such as ammonium sulfate fractionation, DEAE-cellulose, and electrophoresis. The yields of these enzymes obtained by analytical methods from small amounts of raw materials are extremely low, and their enzymatic activity is also low, and their potency is often lost during storage. Therefore, even if these enzyme groups are used in biochemical experiments, they are unsuitable for industrial production of glycero-3n-3-phosphorylcholine.
天然リン脂質のグリセロ−8n−3−ホスホリルコリン
と脂肪酸を結合させているエステル結合を化学製品で特
異的に加水分解して天然構造を有するグリセロ−5n−
3−ホスホリルコリンを8周製する方法では、加水分解
剤として高価なテトラブチルアンモニウムヒドロキシド
を無水無極性溶媒中で反応させなくてはならない。特に
、この方法で問題となる工程は、加水分解されたグリセ
ロ−3n3−ホスホリルコリンの回収にカドミウムを使
用して複合体として結晶化させることである。Glycero-5n-, which has a natural structure, is produced by specifically hydrolyzing the ester bond that binds glycero-8n-3-phosphorylcholine of natural phospholipid and fatty acid with a chemical product.
In the method of producing 3-phosphorylcholine eight times, it is necessary to react expensive tetrabutylammonium hydroxide as a hydrolyzing agent in an anhydrous nonpolar solvent. A particularly problematic step in this method is the use of cadmium to recover the hydrolyzed glycero-3n3-phosphorylcholine and crystallize it as a complex.
吸水性の著しいグリセロ−8n−3−ホスホリルコリン
を結晶化させるために使用するこのカドミウムは、生体
中で蓄積されて著しく毒性を生じる重金属である。天然
構造を有するグリセロ−3n3−ホスホリルコリンを用
いて調製される各種ホスファチジルコリンの使用目的が
、医薬品および医薬品原料であるため、それらの各種ホ
スファチジルコリンは生体内に投与される事が明確にな
っており、合成原料中のカドミウム残存は非常に問題で
ある。 また、グリセロ−8n−3−ホスホリルコリン
−塩化カドミウム複合体を用いたホスファチジルコリン
の合成法では、その収率が約50%前後と低い欠点を有
している。Cadmium, which is used to crystallize glycero-8n-3-phosphorylcholine, which has remarkable water absorption, is a heavy metal that accumulates in living organisms and causes significant toxicity. The purpose of use of various phosphatidylcholines prepared using glycero-3n3-phosphorylcholine, which has a natural structure, is as pharmaceuticals and pharmaceutical raw materials. Residual cadmium in raw materials is a serious problem. Furthermore, the method for synthesizing phosphatidylcholine using a glycero-8n-3-phosphorylcholine-cadmium chloride complex has a drawback that the yield is as low as about 50%.
以上述べた如く、天然構造のリン脂質を大量に合成する
には、天然構造を有するグリセロ−3n3−ホスボリル
コリンが安価で多量に確保される必要がある。その使用
目的から安全な原料で、しかもホスファチジルコリン合
成時の反応収率の良い原料という条件を満足させるグリ
セロ−3n−3−ホスホリルコリンの製造法の開発が望
まれている。As described above, in order to synthesize a large amount of phospholipids having a natural structure, it is necessary to secure a large amount of glycero-3n3-phosphoborylcholine having a natural structure at low cost. There is a desire to develop a method for producing glycero-3n-3-phosphorylcholine that satisfies the requirements of using a raw material that is safe for its intended use and that also provides a good reaction yield during the synthesis of phosphatidylcholine.
従って、本発明は、安価で安全な天然構造を有するグリ
セロ−3n−3−ホスホリルコリンを大量に製造する方
法を確立することを目的とする。Therefore, an object of the present invention is to establish a method for producing a large amount of glycero-3n-3-phosphorylcholine having a natural structure that is inexpensive and safe.
(課題を解決するための手段)
本発明のグリセロ−3n−3−ホスホリルコリン粉末の
製造方法は、天然リン脂質をアルコール中で金属ナトリ
ウム又はナトリウムアルコラートで脱アシル化した後、
この脱アシル化物をメタノール中で塩酸酸性とし、次い
でこれをアセトン中に加えて−10〜−30℃で晶析濾
過し、さらに晶析した脱アシル化物をメタノール中でシ
リカを加えて粉末状にすることを特徴とする。(Means for Solving the Problems) The method for producing glycero-3n-3-phosphorylcholine powder of the present invention includes deacylating natural phospholipids with metallic sodium or sodium alcoholate in alcohol, and then
The deacylated product was acidified with hydrochloric acid in methanol, then added to acetone, crystallized and filtered at -10 to -30°C, and the crystallized deacylated product was powdered in methanol by adding silica. It is characterized by
本発明に用いる天然リン脂質の組成は、ホスファチジル
コリン含量90%以上で残りは、リゾホスファチジルコ
リンであることが好ましい。何故ならリゾホスファチジ
ルコリンの脱アシル化処理によりグリセロ−8n−3−
ホスホリルコリンが生じるからである。The composition of the natural phospholipid used in the present invention is preferably such that the phosphatidylcholine content is 90% or more, with the remainder being lysophosphatidylcholine. This is because glycero-8n-3-
This is because phosphorylcholine is produced.
天然リン脂質原料中にホスファチジルコリンを豊富に含
む場合、しばしばホスファチジルコリンやリゾホスファ
チジルコリンと同様のホスホリルコリン骨格を有するス
フィンゴミエリンを併存している。そのため、ホスファ
チジルコリンの濃縮に従って、これらの物質が付随的に
濃縮される。When natural phospholipid raw materials contain abundant phosphatidylcholine, they often coexist with sphingomyelin, which has a phosphorylcholine skeleton similar to phosphatidylcholine and lysophosphatidylcholine. Therefore, following the enrichment of phosphatidylcholine, these substances are concomitantly enriched.
しかし、スフィンゴミエリンは脂肪族物質をスフィンゴ
シン残基や脂肪酸が酸アミド結合した状態で保持してい
るため、本発明で採用されるアルカリ処理に対して安定
であり、しかもクロロホルム可溶であるので、脱アシル
化時のクロロホルム処理により容易に除去される。従っ
て、本発明の天然リン脂質原料にスフィンゴミエリンの
混在は問題がないので幅広い原料を対象と出来る。However, since sphingomyelin retains aliphatic substances in the form of sphingosine residues and fatty acids bonded with acid amide, sphingomyelin is stable against the alkali treatment employed in the present invention, and is soluble in chloroform. Easily removed by chloroform treatment during deacylation. Therefore, there is no problem with the presence of sphingomyelin in the natural phospholipid raw material of the present invention, so a wide range of raw materials can be used.
しかし、ホスホリルコリン骨格を持たない一般リン脂質
は、本発明の脱アシル化条件において加水分解を受は相
応する脱アシル化物を生成し、製造目的であるグリセロ
−3n−3−ホスホリルコリンの純度を低下させるので
、本発明における天然リン脂質原料から可能な限りこれ
を除去することが好ましい。However, general phospholipids that do not have a phosphorylcholine skeleton undergo hydrolysis under the deacylation conditions of the present invention, producing corresponding deacylated products, which lowers the purity of glycero-3n-3-phosphorylcholine, which is the purpose of production. Therefore, it is preferable to remove this as much as possible from the natural phospholipid raw material in the present invention.
本発明に用いられる天然リン脂質は、落花生、大豆、卵
黄等の天然レシチンを原料とし、冷アセトンによる脱脂
処理、含水エタノールによる溶剤分画処理、二価の金属
塩を付加する錯体処理、シリカカラムや連続遠心液々多
段分配等によるクロマトグラフィー処理等をいくつか組
み合わせることによって得ることができる。The natural phospholipids used in the present invention are made from natural lecithins such as peanuts, soybeans, and egg yolks, and are subjected to degreasing treatment with cold acetone, solvent fractionation treatment with aqueous ethanol, complex treatment with addition of divalent metal salts, and silica column treatment. It can be obtained by combining several methods such as chromatography treatment using continuous centrifugation, liquid-liquid multistage distribution, etc.
本発明に用いるアルカリ性エステル交換法による脱アシ
ル化法は、グリセロ−5n−3−ホスホリルコリン製造
に適している。室温3時間以上の反応条件が好ましく、
得られるグリセロ−5−ホスホリルコリンの天然構造に
変化を与えない。The deacylation method using an alkaline transesterification method used in the present invention is suitable for producing glycero-5n-3-phosphorylcholine. Reaction conditions of 3 hours or more at room temperature are preferred;
The natural structure of the resulting glycero-5-phosphorylcholine is not changed.
硫酸や塩酸等の鉱酸を用いた酸性エステル交換法でも脱
アシル化は可能であるが、得られたグリセロ−3n−3
−ホスホリルコリンに関して5n−3のコリンホスフェ
ートのリン酸基と5n−2の水酸基が分子内で縮合した
ように見受けられるコンホメーション変化が観察される
。また、アルカリ性触媒は反応終了後、容易に酸で中和
されるが、この反応はグリセロ−5n−3−ホスホリル
コリンの立体構造に何ら変化を与えず、生成する塩も同
様にグリセロ−3n−3−ホスホリルコリンの立体構造
またはホスファチジルコリン合成時の反応に何らの影響
も与えない。Although deacylation is also possible by acidic transesterification using mineral acids such as sulfuric acid and hydrochloric acid, the resulting glycero-3n-3
- Concerning phosphorylcholine, a conformational change is observed in which the phosphate group of 5n-3 choline phosphate and the hydroxyl group of 5n-2 appear to be condensed within the molecule. In addition, although the alkaline catalyst is easily neutralized with acid after the reaction is completed, this reaction does not change the steric structure of glycero-5n-3-phosphorylcholine, and the resulting salt is also similar to glycero-3n-3. - It does not have any effect on the three-dimensional structure of phosphorylcholine or the reaction during synthesis of phosphatidylcholine.
本発明に用いた金属ナトリウムおよびナトリウムアルコ
ラートによるエステル交換法は、反応の目的物であるグ
リセロ−3n−3−ホスホリルコリンとエステル交換さ
れた脂肪酸誘導体との分離に好ましい条件である。The transesterification method using sodium metal and sodium alcoholate used in the present invention provides favorable conditions for separating the target product of the reaction, glycero-3n-3-phosphorylcholine, from the transesterified fatty acid derivative.
反応の目的物であるグリセロ−3n−3−ホスホリルコ
リンは、水酸基とリン酸基を有するため、水溶性化合物
であり、極性溶媒であるメタノールに可溶であるが、ア
セトン、クロロホルムに不溶であり、当然、無極性溶媒
には不溶である。一方、エステル交換された脂肪酸誘導
体はメタノールに可溶であるが、アルコールエステルで
あるので、アセトン、クロロホルムに可溶である。Glycero-3n-3-phosphorylcholine, which is the target of the reaction, has a hydroxyl group and a phosphoric acid group, so it is a water-soluble compound and is soluble in methanol, which is a polar solvent, but is insoluble in acetone and chloroform. Naturally, it is insoluble in nonpolar solvents. On the other hand, transesterified fatty acid derivatives are soluble in methanol, but since they are alcohol esters, they are soluble in acetone and chloroform.
即ち、天然リン脂質をメタノール中でエステル交換反応
を行うと、出発原料およびいずれの反応生成物も、メタ
ノールに可溶なため、均−系で反応が進行する。反応終
了後の均一溶液にクロロホルムを加える事により、クロ
ロホルム中に脂肪酸誘導体、未反応リン脂質原料および
原料由来の脂質不純物は移行するが、目的物のグリセロ
−3n3−ホスホリルコリンは移行しない。それ故、反
応物の除去にこのクロロホルム処理が適している。That is, when a natural phospholipid is transesterified in methanol, the reaction proceeds homogeneously because the starting materials and any reaction products are soluble in methanol. By adding chloroform to the homogeneous solution after the reaction, fatty acid derivatives, unreacted phospholipid raw materials, and lipid impurities derived from the raw materials migrate into the chloroform, but the target glycero-3n3-phosphorylcholine does not migrate. Therefore, this chloroform treatment is suitable for removing reactants.
次いで、反応の目的物であるグリセロ−5−ホスホリル
コリンはメタノールに可?容なため、グリセロ−3n−
3−ホスホリルコリンを塩酸酸性でメタノール溶液に調
製後、アセトンを加える。Next, can the target product of the reaction, glycero-5-phosphorylcholine, be converted into methanol? glycero-3n-
After preparing a methanol solution of 3-phosphorylcholine with hydrochloric acid, acetone is added.
これによりメタノールは溶解されたアセトンにより、グ
リセロ−5n−3−ホスホリルコリンの溶解能を失い、
溶液外にグリセロ−3n−3−ホスホリルコリンを放出
する。そして、グリセロ−5−ホスホリルコリンはアセ
トンに対して不溶性であるため、結晶として析出する。As a result, methanol loses its ability to dissolve glycero-5n-3-phosphorylcholine due to the dissolved acetone,
Glycero-3n-3-phosphorylcholine is released out of solution. Since glycero-5-phosphorylcholine is insoluble in acetone, it precipitates as crystals.
クロロホルムやアセトンによる溶剤分画処理において、
メタノール中からより効率的にグリセロ−3n−3−ホ
スホリルコリンを晶析させるため、−15℃〜−30℃
で、望ましくは数時間以上、最低2時間以上保持するこ
とが好ましい。また、アセトンによるグリセロ5n−3
−ホスホリルコリン結晶の洗浄および晶析は、望ましく
は4回以上、最低2回以上繰り返すことが好ましい。In solvent fractionation treatment using chloroform or acetone,
In order to more efficiently crystallize glycero-3n-3-phosphorylcholine from methanol, -15°C to -30°C
It is preferable to hold the temperature for at least several hours, preferably at least 2 hours. Also, glycero 5n-3 with acetone
- Washing and crystallization of the phosphorylcholine crystals are desirably repeated four or more times, and preferably at least two times or more.
本発明において、アルカリ性触媒として用いられる金属
ナトリウムおよびナトリウムメチラートやナトリウムエ
チラートのようなナトリウムアルコラートは、原料の天
然リン脂質に対して最大量2重量%で、好ましくは、0
.5重量%を添加する。In the present invention, the metal sodium and sodium alcoholate such as sodium methylate and sodium ethylate used as the alkaline catalyst are used in a maximum amount of 2% by weight, preferably 0% by weight, based on the raw natural phospholipid.
.. Add 5% by weight.
触媒を効率良く用いるためには、触媒の添加に先立って
、天然リン脂質を0.5〜2時間攪拌状態でメタノール
に溶解する。この天然リン脂質のメタノール溶液に触媒
を入れて室温で3時間以上反応させる。反応の進行状態
は薄層クロマトグラフィ−を用いてホスファチジルコリ
ンが検出されなくなった時に終了する。添加した触媒は
、脱アシル化後にグリセロ−3n−3−ホスホリルコリ
ンのメタノール溶液調製時に塩酸、好ましくは16〜2
0%塩酸でP)14.0〜6.0に中和して失活させる
。この際、四級アミンを有するグリセロ−3n−3−ホ
スホリルコリンのホスホリルコリン塩は塩酸塩に変換さ
れて四級アミン塩として安定する。この塩酸塩はホスフ
ァチジルコリン合成時の反応に何らの影響も与えない。In order to use the catalyst efficiently, the natural phospholipid is dissolved in methanol under stirring for 0.5 to 2 hours prior to the addition of the catalyst. A catalyst is added to a methanol solution of this natural phospholipid and allowed to react at room temperature for 3 hours or more. The progress of the reaction is terminated when phosphatidylcholine is no longer detected using thin layer chromatography. The added catalyst is hydrochloric acid, preferably 16 to 2
Neutralize to P)14.0-6.0 with 0% hydrochloric acid to inactivate. At this time, the phosphorylcholine salt of glycero-3n-3-phosphorylcholine having a quaternary amine is converted into a hydrochloride and stabilized as a quaternary amine salt. This hydrochloride has no effect on the reaction during phosphatidylcholine synthesis.
トリアジルグリセロールの場合には、水酸化ナトリウム
や水酸化カリウムのようなアルカリ金属塩を触媒として
、室温で少量のアルコールと12時間以上の反応でエス
テル交換が可能であるが、天然リン脂質は触媒量や反応
時間を増加しても、その反応率は低く、本発明の目的に
は不適である。In the case of triazylglycerol, transesterification is possible by reaction with a small amount of alcohol at room temperature for 12 hours or more using an alkali metal salt such as sodium hydroxide or potassium hydroxide as a catalyst, but natural phospholipids can be transesterified using a catalyst. Even if the amount or reaction time is increased, the reaction rate is low and is unsuitable for the purpose of the present invention.
また、前述のようなアルカリ金属塩を用いて天然リン脂
質原料を高温でケン化分解して脱アシル化する方法は、
生成する脂肪酸塩の水、アルコールおよびアセトンに対
する溶解性がグリセロ−3n3−ホスホリルコリンに近
仙しており、かつ、脱アシル溶媒のクロロホルムに対す
る溶解性が不十分なため、反応生成物のグリセロ−3n
−3−ホスホリルコリンと脂肪酸塩を直ちに分別出来な
い。In addition, the method of deacylating natural phospholipid raw materials by saponification and decomposition at high temperature using an alkali metal salt as described above is as follows.
The solubility of the resulting fatty acid salt in water, alcohol, and acetone is close to that of glycero-3n3-phosphorylcholine, and the solubility in the deacylation solvent chloroform is insufficient, so the reaction product glycero-3n
-3-phosphorylcholine and fatty acid salt cannot be immediately separated.
さらに、ケン化分解法では、天然リン脂質原料のモル数
に相当するモル数のアルカリ金属塩に反応過剰率を付加
してアルカリ金属塩を加える。そのため、反応系中に多
量のアルカリ金属塩が残存する。即ち、反応終了時の過
剰アルカリの中和、さらには、脂肪酸塩の中和による脂
肪酸への変換後の脱脂肪酸に際してグリセロ−5n−3
−ホスホリルコリン中に大量に塩、例えば塩化カリウム
、硫酸ナトリウム等が混在する。この条件で得られるグ
リセロ−3n−3−ホスホリルコリンは晶析が難しく、
しばしば黄褐色の着色があり、ホスファチジルコリン合
成時における反応収率が低い。Furthermore, in the saponification decomposition method, an alkali metal salt is added to the alkali metal salt in a number of moles corresponding to the number of moles of the natural phospholipid raw material, with an excess reaction rate added thereto. Therefore, a large amount of alkali metal salt remains in the reaction system. That is, during the neutralization of excess alkali at the end of the reaction, and furthermore, when removing fatty acids after conversion to fatty acids by neutralizing fatty acid salts, glycero-5n-3
- A large amount of salts such as potassium chloride and sodium sulfate are present in phosphorylcholine. Glycero-3n-3-phosphorylcholine obtained under these conditions is difficult to crystallize;
It often has a yellow-brown coloration, and the reaction yield during phosphatidylcholine synthesis is low.
これに対して、本発明におけるグリセロ−3n −3−
ホスホリルコリンの収率は定量的である。ホスファチジ
ルコリンから産生されるグリセロ−3n3−ホスホリル
コリンの理論収率は、34.0%である。In contrast, glycero-3n-3- in the present invention
The yield of phosphorylcholine is quantitative. The theoretical yield of glycero-3n3-phosphorylcholine produced from phosphatidylcholine is 34.0%.
本発明では、晶析した脱アシル化物をメタノール中でシ
リカを加えて粉末状にするが、使用したホスファチジル
コリン95%とりゾホスファチジルコリン5%からなる
天然リン脂質原料100gから32〜37gのグリセロ
−3n−3−ホスホリルコリン量に相当するシリカ担持
物が得られる。シリカ担持物中のグリセロ−5n−3−
ホスホリルコリン含量は乾燥重量に換算して、少なくと
も50%、そして上限は80%、特に60〜70%が好
ましく、この含量以上では取り扱いや保存が困難となり
、この含量以下では担持物の容量が大きくなり、ホスフ
ァチジルコリン合成時の反応容積や攪拌効果から好まし
くない。In the present invention, the crystallized deacylated product is powdered by adding silica in methanol. From 100 g of the natural phospholipid raw material used, which is composed of 95% phosphatidylcholine and 5% zophosphatidylcholine, 32 to 37 g of glycero-3n- A silica support corresponding to the amount of 3-phosphorylcholine is obtained. Glycero-5n-3- in silica support
The phosphorylcholine content is preferably at least 50%, and the upper limit is 80%, particularly 60 to 70%, in terms of dry weight; above this content, handling and storage become difficult, and below this content, the capacity of the carrier becomes large. , is unfavorable due to the reaction volume and stirring effect during phosphatidylcholine synthesis.
本発明に用いるシリカは無水ケイ酸の99.8%以上の
純度を示すもので、比表面積110±20rrr/gで
化学的に表面をメチル基でコーティングして疎水化し、
平均径が16am程度のものが好ましい。シリカは化学
的に不活性であり、メタノール中でグリセロ−3n−3
−ホスホリルコリンを高濃度、約60%以上を含有して
粉末となる。この際、シリカは少量の添加で嵩容積を減
少させる流動性を向上させるが、添加量を上記濃度以下
になるよう増加すると嵩容積が著しく増加するので好ま
しくない。The silica used in the present invention has a purity of 99.8% or more of silicic anhydride, has a specific surface area of 110 ± 20 rrr/g, and is chemically coated with methyl groups to make the surface hydrophobic.
It is preferable that the average diameter is about 16 am. Silica is chemically inert and glycero-3n-3 in methanol.
- Contains a high concentration of phosphorylcholine, about 60% or more, and becomes a powder. At this time, when silica is added in a small amount, it improves the fluidity to reduce the bulk volume, but if the amount added is increased to below the above concentration, the bulk volume increases significantly, which is not preferable.
さらにシリカの添加によりグリセロ−3n−3−ホスホ
リルコリンの表面をこれが覆い、固結を防止し粉体の流
動性を向上させることができる。Furthermore, by adding silica, it covers the surface of glycero-3n-3-phosphorylcholine, preventing caking and improving the fluidity of the powder.
本発明で得られたグリセロ−3n−3−ホスホリルコリ
ンは薄層クロマトグラフィーによるRf値と発色反応、
GC−MSによる分子量測定、NMRによるスペクトル
解析、ライネッケ塩比色法によるコリン量、モリブドバ
ナドリン酸比色法によるリン量、およびケルプール法に
よる窒素量等から高純度で天然構造を維持していること
が確認された。Glycero-3n-3-phosphorylcholine obtained in the present invention has an Rf value and a color reaction by thin layer chromatography.
Molecular weight measurement by GC-MS, spectrum analysis by NMR, choline content by Reinecke salt colorimetric method, phosphorus content by molybdovanadophosphate colorimetric method, nitrogen content by Kelpur method, etc., show that the product maintains its natural structure with high purity. It was confirmed that there is.
本発明で得られたグリセロ−3n−3−ホスホリルコリ
ンのシリカ担持物は、ホスファチジルコリンの合成の原
料として、取り扱いが非常に容易である。The silica-supported glycero-3n-3-phosphorylcholine obtained in the present invention is very easy to handle as a raw material for the synthesis of phosphatidylcholine.
本発明で得られるグリセロ−5n−3−ホスホリルコリ
ン粉末を用いると、ヘキサメチルリン酸トリアミド存在
下に酸塩化物と反応させる方法、および末剤を塩基性エ
ステル化触媒とクロロホルムの存在下に酸無水物と反応
させる方法等によって、好ましくホスファチジルコリン
を合成することができる。特にヘキサメチルリン酸トリ
アミド存在下での反応は、最少量の酸塩化物で短時間に
高収率で進行させることが出来る。Using the glycero-5n-3-phosphorylcholine powder obtained in the present invention, a method of reacting with an acid chloride in the presence of hexamethylphosphoric acid triamide, and a method of reacting the powder with an acid anhydride in the presence of a basic esterification catalyst and chloroform are possible. Phosphatidylcholine can be preferably synthesized by a method of reacting with a compound. In particular, the reaction in the presence of hexamethylphosphoric triamide can be carried out in a short time and in high yield with a minimum amount of acid chloride.
また、ホスファチジルコリン合成時におけるシリカの除
去は、反応溶液の蒸留クロロホルム溶液での濾過と遠心
分離法によって完全に行われ、ホスファチジルコリン反
応の原料として問題はない。In addition, silica is completely removed during phosphatidylcholine synthesis by filtration of the reaction solution with a distilled chloroform solution and centrifugation, and there is no problem as a raw material for the phosphatidylcholine reaction.
(発明の効果)
本発明によれば、天然リン脂質原料から常温で固体状で
あり、取り扱いが容易な天然の立体構造を有したグリセ
ロ−5n−3−ホスホリルコリンが特別に高価な薬剤、
酵素および毒性の高いカドミウム塩等を使わずに、大量
に安価に、しかも簡便な方法で製造することが出来る。(Effects of the Invention) According to the present invention, glycero-5n-3-phosphorylcholine, which is made from natural phospholipid raw materials and is solid at room temperature and has a natural three-dimensional structure that is easy to handle, can be used as a particularly expensive drug.
It can be produced in large quantities at low cost and by a simple method without using enzymes or highly toxic cadmium salts.
これによって、有害な重金属を含まないホスファチジル
コリンを高収率で製造する事が出来、しかも製造される
ホスファチジルコリンは、天然の立体構造を有している
。また、シリカ担持物として粉末化しであるので、流動
性があり、取り扱いが容易となり、ホスファチジルコリ
ンの合成において作業性の面で有利である。As a result, phosphatidylcholine containing no harmful heavy metals can be produced in high yield, and the produced phosphatidylcholine has a natural three-dimensional structure. In addition, since the silica support is powdered, it has fluidity and is easy to handle, which is advantageous in terms of workability in the synthesis of phosphatidylcholine.
(実施例) 以下、本発明を実施例に基づき具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained based on Examples.
実施例1
塩化カルシウム管を装着した2βのフラスコに市販大豆
ホスファチジルコリン(ホスファチジルコリン94%、
リゾホスファチジル3925%含有)100gを量りと
り、0.511のメタノールを加えた。Example 1 Commercially available soybean phosphatidylcholine (phosphatidylcholine 94%,
100 g (containing 3925% lysophosphatidyl) was weighed out and 0.511 methanol was added.
フラスコ中にマグネチックスクーラーを入れ、1時間攪
拌しながらホスファチジルコリンを溶かし、その後0.
5gに相当するナトリウムメチラート(和光純薬製、2
8%ナトリウムメチラート/メチルアルコール溶液1
、8 +d )を加えた。この反応混合物を室温で3時
間攪拌した。A magnetic cooler was placed in the flask, and the phosphatidylcholine was dissolved while stirring for 1 hour.
Sodium methylate (Wako Pure Chemical Industries, Ltd., 2
8% sodium methylate/methyl alcohol solution 1
, 8 +d) were added. The reaction mixture was stirred at room temperature for 3 hours.
反応の終了は薄層クロマトグラフィーで確認した。展開
溶媒はクロロホルム/メタノール/水の65/25/
4 (vol/vol/vol)組成液を用い、呈色は
硫酸発色で行った。薄層クロマトグラフィー上でRf値
0.3のホスファチジルコリンのスポットが消失し、溶
媒フロントに脂肪酸メチルエステルのスポットと原点の
脱アシル化物のスポットのみが観察された時に終了した
。Completion of the reaction was confirmed by thin layer chromatography. The developing solvent was 65/25/chloroform/methanol/water.
4 (vol/vol/vol) composition liquid was used, and coloring was performed by sulfuric acid coloring. The process was completed when the phosphatidylcholine spot with an Rf value of 0.3 disappeared on thin layer chromatography, and only the fatty acid methyl ester spot and the deacylated product spot at the origin were observed on the solvent front.
反応混合物を70℃の水浴中で減圧留去して、脱溶媒し
、その後、0.57!のクロロホルムを一度に加えて原
料中の不純物と反応生成物である脂肪酸メチルエステル
を溶解した。このフラスコを2時間、−25℃に冷却し
た。クロロホルム層をデカンテーションで除去し、脱ア
シル残渣を100mpのメタノールに溶解し20%塩酸
数滴でpl+ 4.0〜6.0に調整した。そして、こ
のメタノール溶液をII!フラスコ中の0.5βのアセ
トン中に攪拌しながら滴下した。このフラスコを一25
℃で3時間冷却し、その後アセトン層をデカンテーショ
ンで除去した。The reaction mixture was evaporated under reduced pressure in a 70°C water bath to remove the solvent, and then 0.57! of chloroform was added all at once to dissolve impurities in the raw materials and the reaction product fatty acid methyl ester. The flask was cooled to -25°C for 2 hours. The chloroform layer was removed by decantation, the deacylated residue was dissolved in 100 mp methanol, and the pl+ was adjusted to 4.0 to 6.0 with several drops of 20% hydrochloric acid. And this methanol solution II! The mixture was added dropwise to 0.5β acetone in a flask with stirring. This flask is 125
After cooling for 3 hours at <RTIgt;C,</RTI> the acetone layer was removed by decantation.
この残渣を300mffのメタノールに溶かし、この/
8液中に、20gのシリカ(デグノサ社製、商品名Ae
rosil R972)を加え、50℃の水浴中、ロー
タリーエバポレーターで溶媒を除去した。得られた固体
を乳鉢ですりつぶし、デシケータ−中で五酸化リンと共
に高度に減圧して、重量が一定になるまで乾燥させてシ
リカ吸着グリセロ−5n−3−ホスホリルコリンの白色
粉末が55g(グリセロ−5n3−ホスホリルコリン含
量35g)得られた。収率は93%であった。Dissolve this residue in 300 mff of methanol and
8 liquid, 20g of silica (manufactured by Degnosa, trade name Ae)
rosil R972) was added and the solvent was removed on a rotary evaporator in a 50°C water bath. The obtained solid was ground in a mortar and dried under highly reduced pressure with phosphorus pentoxide in a desiccator until the weight became constant. 55 g of white powder of silica-adsorbed glycero-5n-3-phosphorylcholine - Phosphorylcholine content: 35 g) was obtained. The yield was 93%.
このものの分析値は次の通りであった。The analytical values of this product were as follows.
薄層クロマトグラフィー、
移動層:メタノール/水(1/1)
Rf値=0.4ワンスボツト
ドラーゲンドルフ試薬発色ニオレンジ色リン試薬発色:
青色
GC−MS FAB (ポジデイプ)マトリックス
トリエタノールアミン
m/e CM + H) ” 258 、 (M+Na
) ” 28ONMR,白色粉末をD 20に溶かし、
溶液を遠心分離して不溶性のシリカを除いた。Thin layer chromatography, mobile phase: methanol/water (1/1) Rf value = 0.4 once bottled Dragendorff reagent coloring, orange phosphorus reagent coloring:
Blue GC-MS FAB (positive dip) matrix
Triethanolamine m/e CM + H)” 258, (M+Na
) ” 28ONMR, white powder dissolved in D 20,
The solution was centrifuged to remove insoluble silica.
3.1 ppm (s 、 N”(CR3)3)3
.2〜4.3 ppm (m、グリセリン−Hおよび
コリン−H〕
コリン含量、ライネソケ塩比色法
47.1%(理論値41.3%)
リン含量、モリブドバナドリン酸比色法11.9%(理
論値12.3%)
窒素含量、ケルプール法
5.27%(理論値5.54%)
実施例2
塩化カルシウム管を装着した27!のフラスコに市販大
豆ホスファチジルコリン(ホスファチジルコリン94%
、リゾホスファチジルコリン5%含有)100gを量り
とり、0.57!のメタノールを加えた。3.1 ppm (s, N”(CR3)3)3
.. 2-4.3 ppm (m, glycerin-H and choline-H) Choline content, Reinesoke salt colorimetric method 47.1% (theoretical value 41.3%) Phosphorus content, molybdovanadophosphate colorimetric method 11. 9% (theoretical value 12.3%) Nitrogen content, Kelpur method 5.27% (theoretical value 5.54%) Example 2 Commercially available soybean phosphatidylcholine (phosphatidylcholine 94%) was added to a 27! flask equipped with a calcium chloride tube.
, containing 5% lysophosphatidylcholine) was weighed out and 0.57! of methanol was added.
フラスコ中にマグネチソクスクーラーを入れ、1時間攪
拌しながらホスファチジルコリンを溶かし、そのf&1
.ogに相当する棒状ナトリウム(関東化学製、プロテ
クティブ液パラフィン)を加えた。この反応混合物を室
温で3時間攪拌した。Put a magnetic cooler into the flask and dissolve the phosphatidylcholine while stirring for 1 hour.
.. Rod-shaped sodium (manufactured by Kanto Kagaku, Protective Liquid Paraffin) corresponding to 1.0 g was added. The reaction mixture was stirred at room temperature for 3 hours.
反応の終了は薄層クロマトグラフィーで確認した。展開
溶媒はクロロホルム/メタノール/水の65/25/
4 (vol/vol/vol)組成液を用い、呈色
は硫酸発色で行った。薄層クロマトグラフィー上でRf
(!0.35のホスファチジルコリンのスポットが消
失し、溶媒フロントに脂肪酸メチルエステルのスポット
と原点の脱アシル化物のスポットのみが観察された時に
終了した。Completion of the reaction was confirmed by thin layer chromatography. The developing solvent was 65/25/chloroform/methanol/water.
4 (vol/vol/vol) composition liquid was used, and coloring was performed by sulfuric acid coloring. Rf on thin layer chromatography
(!) The process was completed when the phosphatidylcholine spot of 0.35 disappeared and only the fatty acid methyl ester spot and the deacylated product spot at the origin were observed on the solvent front.
反応混合物を70℃の水浴中で減圧留去して、脱溶媒し
、その後、0.57!のクロロホルムを一度に加えて原
料中の不純物と反応生成物である脂肪酸メチルエステル
を溶解した。このフラスコを2時間、−20℃に冷却し
た。クロロホルム層をデカンテーションで除去し、脱ア
シル残渣ヲ100m1のメタノールに溶解し20%塩酸
数滴でpH4,0〜6.0に調整した。そして、このメ
タノール溶液をIIlフラスコ中の0.57!のアセト
ン中に攪拌しながら滴下した。このフラスコを一20℃
で3時間冷却し、その後アセトン層をデカンテーション
で除去した。The reaction mixture was evaporated under reduced pressure in a 70°C water bath to remove the solvent, and then 0.57! of chloroform was added all at once to dissolve impurities in the raw materials and the reaction product fatty acid methyl ester. The flask was cooled to -20°C for 2 hours. The chloroform layer was removed by decantation, and the deacylated residue was dissolved in 100 ml of methanol, and the pH was adjusted to 4.0 to 6.0 with several drops of 20% hydrochloric acid. Then, this methanol solution was placed in a 0.57!II flask. was added dropwise to acetone with stirring. This flask is heated to -20℃.
After cooling for 3 hours, the acetone layer was removed by decantation.
この残渣を300+++#のメタノールに溶かし、この
溶液中に、20gのシリカ(デグソサ社製、商品名^e
rosil R972)を加え、50℃の水浴中、ロー
タリーエバポレーターで溶媒を除去した。得られた固体
を乳鉢ですりつぶし、デシケータ−中で五酸化リンと共
に高度に減圧して、重量が一定になるまで乾燥させてシ
リカ吸着グリセロ−3n’−3−ホスホリルコリンの白
色粉末が52g(グリセロ−5n3−ホスホリルコリン
含量33g)得られた。収率は88%であった。This residue was dissolved in 300+++# methanol, and 20 g of silica (manufactured by Degusosa, trade name ^e) was added to this solution.
rosil R972) was added and the solvent was removed on a rotary evaporator in a 50°C water bath. The obtained solid was ground in a mortar and dried under high vacuum with phosphorus pentoxide in a desiccator until the weight became constant. 52 g of white powder of silica-adsorbed glycero-3n'-3-phosphorylcholine 5n3-phosphorylcholine content: 33 g) was obtained. The yield was 88%.
このものの分析値は実施例1と同様であった。The analytical values of this product were the same as in Example 1.
シリカ吸着グリセロ−5n−3−ホスホリルコリンのホ
スファチジルコリン合成原料としての有効性を下記の参
考例に示した。The effectiveness of silica-adsorbed glycero-5n-3-phosphorylcholine as a raw material for phosphatidylcholine synthesis is shown in the following reference example.
参考例1
29m1lのナス型フラスコにシリカ吸着グリセロ5n
−3−ホスホリルコリン1613mg (グリセロ−5
n3−ホスホリルコリン1g含有:3.9 ミリモル)
を入れ、クロロホルムIQmlを加えて懸濁させた。Reference example 1 5n of silica-adsorbed glycero in a 29ml eggplant-shaped flask
-3-phosphorylcholine 1613mg (glycero-5
Contains 1g of n3-phosphorylcholine: 3.9 mmol)
and suspended by adding chloroform IQml.
この懸濁液をマグネチソクスターラーで30分間攪拌し
た後に、ミリスチン酸無水物4.0g(9,1ミリモル
)およびジメチルアミノピリジン1.11g(9,1ミ
リモル)を加え、室温で5時間攪拌した。反応終了後、
この混合物を乾燥アセトン300+++1中に注ぎ、生
成した沈澱物を遠心分離により単離した。沈澱物をクロ
ロホルムに溶解し、シリカを濾過して除いた後に溶媒を
減圧留去した。1,2−シミリストイルホスファチジル
コリンが2.0g得られ、収率は75.9%であった。After stirring this suspension for 30 minutes with a magnetic stirrer, 4.0 g (9.1 mmol) of myristic acid anhydride and 1.11 g (9.1 mmol) of dimethylaminopyridine were added, and the mixture was stirred at room temperature for 5 hours. . After the reaction is complete,
The mixture was poured into dry acetone 300++1 and the precipitate formed was isolated by centrifugation. The precipitate was dissolved in chloroform, the silica was filtered off, and the solvent was distilled off under reduced pressure. 2.0 g of 1,2-simyristoylphosphatidylcholine was obtained, with a yield of 75.9%.
本物質をFAB−MSで分析した結果、m/e 678
(M + H)+が確認された。As a result of analyzing this substance by FAB-MS, m/e 678
(M + H)+ was confirmed.
参考例2
20−のナス型フラスコにシリカ吸着グリセロ5n−3
−ホスホリルコリン1613mg (グリセロ−3n3
−ホスホリルコリン1g含有;3.9 ミリモル)を入
れ、ヘキサメチルリン酸トリアミド10#+2を加えて
懸濁させた。この懸濁液を、マグネチソクスクーラーで
30分間攪拌した後に、リルオイルクロライド4.6g
(15,3ミリモル)を加え、油浴上で60℃で3時間
攪拌した。反応終了後、この混合物を150艷の氷水中
に注ぎ、ヘキサン抽出した。ヘキサン層を硫酸ナトリウ
ムで乾燥させた後に、残留物をシリカゲルを充填した2
φX 50cm0カラムにのせ、クロロホルム−メタノ
ール系グラジェントで?容離させると2.31 gの1
.2−シリルオイルホスファチジルコリン
あった。本物質をFAB−MSで分析した結果、m/e
782 (M + H )+が確認サレタ。Reference example 2 Silica-adsorbed glycero 5n-3 in a 20- eggplant-shaped flask
-Phosphorylcholine 1613mg (glycero-3n3
-phosphorylcholine (containing 1 g; 3.9 mmol) was added, and hexamethylphosphoric acid triamide 10#+2 was added and suspended. After stirring this suspension in a magnetic cooler for 30 minutes, 4.6 g of rill oil chloride was added.
(15.3 mmol) was added and stirred on an oil bath at 60°C for 3 hours. After the reaction was completed, the mixture was poured into 150 bottles of ice water and extracted with hexane. After drying the hexane layer with sodium sulfate, the residue was packed with silica gel.
Place it on a φX 50cm0 column and use a chloroform-methanol gradient? When separated, 2.31 g of 1
.. There was 2-silyloylphosphatidylcholine. As a result of analyzing this substance by FAB-MS, m/e
782 (M + H)+ is confirmed.
第1図は、実施例において得られたグリセロSn−3−
ホスホリルコリンについて、ファースト・アトム・ボン
バード・イオン化マスクロマトのポジティブ法で分析し
た結果を示す図で、グリセロ−Sn−3−ホスホリルコ
リン( CM+H)”25B, CM+Na) ” 2
80 )が認られる。FIG. 1 shows glycero Sn-3- obtained in Examples.
This is a diagram showing the results of analysis of phosphorylcholine using the positive method of First Atom Bombard Ionization Mass Chromatography.
80) is recognized.
Claims (1)
リウムアルコラートで脱アシル化した後、この脱アシル
化物をメタノール中で塩酸酸性とし、次いでこれをアセ
トン中に加えて−10〜−30℃で晶析濾過し、さらに
晶析した脱アシル化物をメタノール中でシリカを加えて
粉末状にすることを特徴とするグリセロ−Sn−3−ホ
スホリルコリン粉末の製造方法。After deacylating natural phospholipids with sodium metal or sodium alcoholate in alcohol, the deacylated product is acidified with hydrochloric acid in methanol, and then added to acetone and crystallized and filtered at -10 to -30 °C. A method for producing glycero-Sn-3-phosphorylcholine powder, which further comprises powdering the crystallized deacylated product by adding silica in methanol.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25187088A JPH02101086A (en) | 1988-10-07 | 1988-10-07 | Production of glycero-sn-3-phosphocholine powder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25187088A JPH02101086A (en) | 1988-10-07 | 1988-10-07 | Production of glycero-sn-3-phosphocholine powder |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02101086A true JPH02101086A (en) | 1990-04-12 |
Family
ID=17229159
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25187088A Pending JPH02101086A (en) | 1988-10-07 | 1988-10-07 | Production of glycero-sn-3-phosphocholine powder |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02101086A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5637304A (en) * | 1992-03-30 | 1997-06-10 | Flarer S.A. Pharmaceutical Fine Chemicals | Cosmetical or pharmaceutical compositions comprising deacylated glycerophospholipids for topical use |
-
1988
- 1988-10-07 JP JP25187088A patent/JPH02101086A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5637304A (en) * | 1992-03-30 | 1997-06-10 | Flarer S.A. Pharmaceutical Fine Chemicals | Cosmetical or pharmaceutical compositions comprising deacylated glycerophospholipids for topical use |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4329302A (en) | Synthetic phosphoglycerides possessing platelet activating properties | |
| US8658401B2 (en) | Method for preparing high purity L-α glycerylphosphorylcholine | |
| Hermetter et al. | A facile procedure for the synthesis of saturated phosphatidylcholines | |
| US5250719A (en) | Process for the preparation of L-α-glycerylphosphoryl-choline and of L-α-glycerylphosphorylethanolamine | |
| De Haas et al. | Structural identification of isomeric lysolecithins | |
| CN102516292A (en) | Natural L-alpha-glycerophosphocholine (GPC) and preparation method thereof | |
| US5315023A (en) | Process for the preparation of glycerophospholipids | |
| Aneja et al. | The synthesis of a spin-labelled glycero-phospholipid | |
| US4163748A (en) | Propane-1,3-diol phosphatides and method of preparing the same | |
| Paltauf et al. | [12] Preparation of alkyl ether and vinyl ether substrates for phospholipases | |
| JPH02101086A (en) | Production of glycero-sn-3-phosphocholine powder | |
| US4751320A (en) | Phosphoric ester and process for producing same | |
| Robles et al. | Preparation of deacylated phosphoglycerides | |
| JPS6336791A (en) | Production of phospholipid by enzyme | |
| JPS63135395A (en) | Phospholipid derivative and production thereof | |
| US3960905A (en) | Diacylglycerophosphoric acid esters of aminoethanol and methylaminoethanol and method of preparing the same | |
| CA1068291A (en) | Process for preparing 1,2-diacyl-3-glycerylphosphorylcholines | |
| JPH0455433B2 (en) | ||
| JPH0387191A (en) | Production of phosphatidylinositol | |
| JPH08311085A (en) | Process for producing branched dimerized alkyl phosphate basic amino acid salt | |
| GB2058792A (en) | Process for the Preparation of L- alpha -Glycerylphosphoryl Choline | |
| EP1650215A1 (en) | Process for preparing lysophoshatidylcholine | |
| JP2731852B2 (en) | A new method for producing lysophosphatidylcholine. | |
| Roux et al. | Simple preparation of 1, 2-dipalmitoyl-sn-glycero-3-phosphoric acid and deuterated choline derivatives | |
| Baer et al. | SYNTHESIS OF ENANTIOMERIC MIXED-ACID GLYCEROLPHOSPHATIDES: I. l-α-(α′-STEAROYL, β-OLEOYL) CEPHALIN AND l-α-(α′-OLEOYL, β-STEAROYL) CEPHALIN |