[go: up one dir, main page]

JPH02122292A - distance measuring device - Google Patents

distance measuring device

Info

Publication number
JPH02122292A
JPH02122292A JP63276517A JP27651788A JPH02122292A JP H02122292 A JPH02122292 A JP H02122292A JP 63276517 A JP63276517 A JP 63276517A JP 27651788 A JP27651788 A JP 27651788A JP H02122292 A JPH02122292 A JP H02122292A
Authority
JP
Japan
Prior art keywords
light
wave
mode
distance measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63276517A
Other languages
Japanese (ja)
Other versions
JPH0789147B2 (en
Inventor
Satoshi Sugawara
菅原 聰
Haruhisa Takiguchi
治久 瀧口
Hiroaki Kudo
裕章 工藤
Chitose Sakane
坂根 千登勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63276517A priority Critical patent/JPH0789147B2/en
Publication of JPH02122292A publication Critical patent/JPH02122292A/en
Publication of JPH0789147B2 publication Critical patent/JPH0789147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To simplify the structure, to decrease the number of parts and to facilitate the integration by providing a laser generating means by which light sources of two kinds of light beams execute an oscillation simultaneously in a mode TE and TM whose oscillation wavelength is different from each other. CONSTITUTION:Light beams of two kinds of modes emitted from a semiconductor laser 1 are allowed to branch to an exit light and a reference light by a Y branching part 2. The exit light is converged to parallel rays by a collimator lens 3 and an object to be measured is irradiated with the above rays. The reference light is made incident on a TE-TM mode splitter 4. A reflected light from the object to be measured of the exit light is converged to parallel rays by a collimator lens 5, and made incident on a second TE-TM mode splitter 6. The splitter 4 demultiplexes the incident reference light to a TE wave and a TM wave. The splitter 6 demultiplexes the incident reflected light to a TE wave and a TM wave. These reference light and reflected light which are demultiplexed are coupled by a TE wave Y branching part 7 and cause an interference, and made incident on a photodiode 8 and 10. The diodes 8, 10 convert an interference light to an electric signal, and inputs it to a phase difference gauge 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は互いに波長が異なる2種類の光を用いた干渉法
による距離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distance measuring device using interferometry using two types of light having different wavelengths.

(従来の技術) 光を利用した距離測定装置については2種々の方式が提
案されている。その一つに互いに波長が異なる2種類の
光を用いた干渉法によるものがある。第4図に、半導体
レーザを光源として用いた干渉法による従来の距離測定
装置の一例の光学系を示す。
(Prior Art) Two types of distance measuring devices using light have been proposed. One of these methods is an interferometry method that uses two types of light with different wavelengths. FIG. 4 shows an optical system of an example of a conventional distance measuring device using interferometry using a semiconductor laser as a light source.

この距離測定装置は、2個の半導体レーザ20a20b
を有している。2個の半導体レーザ20a、 20bか
らそれぞれ出射される波長λ3.λ2(λ1≠λ2)の
レーザ光の内、波長λ1のレーザ光はλ/2板21を通
して偏光分離プリスム22に入射され、波長λ2のレー
ザ光はミラー23で反則されて上記偏光分離プリズム2
2に入射される。偏光分離プリズム22で合波された波
長λ7.λ2のレーザ光は、ハーフミラ−24にて2分
され、一方は測定対象物に照射され、他方は参照光とし
て偏光分離プリズム25に入射される。測定対象物によ
って反射された反射光はλ/2板26を通して上記偏光
分離プリズム25に入射される。
This distance measuring device uses two semiconductor lasers 20a20b.
have. The wavelength λ3. which is emitted from each of the two semiconductor lasers 20a and 20b. Of the laser beams of wavelength λ2 (λ1≠λ2), the laser beam of wavelength λ1 is incident on the polarization splitting prism 22 through the λ/2 plate 21, and the laser beam of wavelength λ2 is reflected by the mirror 23 and sent to the polarization splitting prism 2.
2. The wavelength λ7. which is multiplexed by the polarization separation prism 22. The laser beam of λ2 is split into two by a half mirror 24, one of which is irradiated onto the object to be measured, and the other is incident on a polarization separation prism 25 as a reference beam. The light reflected by the object to be measured is incident on the polarization separation prism 25 through the λ/2 plate 26.

偏光分離プリズム25に入射された反射光と参照光とは
、波長λ1の光と波長λ2の光とにそれぞれ分波され、
波長λ1の反射光と参照光とが干渉し、波長λ2の反射
光と参照光とが干渉する。波長λ1の干渉光及び波長λ
2の干渉光はフォトダイオード27及びフォトダイオー
ド28で電気信号にそれぞれ変換される。両方の電気信
号は位相差計29に入力される。位相差計29により波
長λ1の干渉光と波長λ2の干渉光との間の位相差が計
測される。
The reflected light and the reference light incident on the polarization splitting prism 25 are split into light with a wavelength λ1 and light with a wavelength λ2, respectively.
The reflected light of wavelength λ1 and the reference light interfere, and the reflected light of wavelength λ2 and the reference light interfere. Interfering light with wavelength λ1 and wavelength λ
The two interference lights are converted into electrical signals by photodiodes 27 and 28, respectively. Both electrical signals are input to a phase difference meter 29. The phase difference meter 29 measures the phase difference between the interference light of wavelength λ1 and the interference light of wavelength λ2.

反射光の光路は、距離測定装置から測定対象物までの距
離の2倍に相当する分だジノ、参照光の光路より長くな
る。その結果2反射光と参照光との間には波長λ1.λ
2のそれぞれについて位相差が生じる。波長λ1の光に
ついての位相差をθ波長λ2の光についての位相差をθ
2とし2反射光と参照光との間の光路差をLとすれば1
次の関係式が成立する。
The optical path of the reflected light is longer than the optical path of the reference light, which corresponds to twice the distance from the distance measuring device to the object to be measured. As a result, there is a wavelength of λ1 between the two reflected lights and the reference light. λ
A phase difference occurs for each of the two. The phase difference for light with wavelength λ1 is θ The phase difference for light with wavelength λ2 is θ
2 and the optical path difference between the reflected light and the reference light is L, then 1
The following relational expression holds true.

位相差計29では(1)式の左辺の値が得られるので(
1)式に基づいて光路差りが求められる。
Since the phase difference meter 29 obtains the value on the left side of equation (1), (
1) The optical path difference is determined based on the formula.

(発明が解決しようとする課題) 第4図の距離測定装置においては、互いに波長が異なる
2光線を得るために2個の半導体レーザが必要とされる
。また、測定対象物からの反射光をその反射光を出射し
た半導体レーザからの参照光と干渉させるための分波手
段として、λ/2板や偏光分離プリスJ、か必要である
。従来の距離測定装置は、このように多数の発光素子や
光学部品を必要とするため、構造が複雑で、コスト高と
なるばかりでなく、集積化が非常に困難である。発光素
子としては通常、ファブリペロ−型の半導体レーザが使
用される。ファブリペロ−型の半導体レーザは温度の変
化等により発振波長が変化しやすいため、これを用いた
従来の距離測定装置では測定精度の面で難点がある。
(Problems to be Solved by the Invention) In the distance measuring device shown in FIG. 4, two semiconductor lasers are required to obtain two light beams having different wavelengths. In addition, a λ/2 plate or a polarization separation prism J is required as a demultiplexing means for causing the reflected light from the object to be measured to interfere with the reference light from the semiconductor laser that has emitted the reflected light. Since conventional distance measuring devices require such a large number of light emitting elements and optical components, they not only have a complicated structure and high cost, but also are extremely difficult to integrate. A Fabry-Perot type semiconductor laser is usually used as the light emitting element. Since the oscillation wavelength of a Fabry-Perot type semiconductor laser tends to change due to changes in temperature, etc., conventional distance measuring devices using this type have a drawback in terms of measurement accuracy.

本発明はこのような現状に鑑みてなされたものであり、
その目的とするところは構造が簡素で部品点数が少なく
、集積化が容易な距離測定装置を提供することになる。
The present invention was made in view of the current situation, and
The purpose is to provide a distance measuring device with a simple structure, a small number of parts, and easy integration.

(課題を解決するための手段) 本発明の距離測定装置は2互いに波長が異なる2種類の
光を用いた干渉法による距離測定装置であって、該2種
類の光の光源が、互いに発振波長が異なるTEモード及
びTMモードで同時に発振するレーザ発生手段を備えて
おり、そのことにより上記目的が達成される。
(Means for Solving the Problems) The distance measuring device of the present invention is a distance measuring device using an interferometry method using two types of light having different wavelengths, in which the light sources of the two types of light have oscillation wavelengths that are different from each other. is provided with a laser generating means that simultaneously oscillates in different TE mode and TM mode, thereby achieving the above object.

本発明の距離測定装置は、好ましくは、互いに発振波長
が異なるTEモード及びTMモードで同時に発振するレ
ーザ発生手段、該レーザ発生手段から出射された光を測
定対象物に照射される光と参照光とに分岐させる手段、
測定対象物からの反射光に含まれるTEモードの光及び
T’Mモードの光を該参照光に含まれるTEモードの光
およびTMモードの光とそれぞれ干渉させ、TEモード
干渉光及びTMモード干渉光を得る手段、該TEモード
干渉光及び該TMモード干渉光を検出する手段、並びに
該検出手段から出力される信号に基づいて該TEモード
干渉光と該TMモード干渉光との間の位相差を検出する
手段を備えている。
The distance measuring device of the present invention preferably includes a laser generating means that simultaneously oscillates in a TE mode and a TM mode having different oscillation wavelengths, and a reference light and a light beam emitted from the laser generating means that irradiates a measurement object. means for branching into
The TE mode light and the T'M mode light contained in the reflected light from the measurement object are respectively interfered with the TE mode light and the TM mode light contained in the reference light to generate TE mode interference light and TM mode interference light. A means for obtaining light, a means for detecting the TE mode interference light and the TM mode interference light, and a phase difference between the TE mode interference light and the TM mode interference light based on the signal output from the detection means. It is equipped with a means to detect.

(実施例) 本発明を実施例について以下に説明する。(Example) The invention will now be described with reference to examples.

第1図に本発明の一実施例の光学系を示す。本実施例に
おいては、光学系は集積化を前提とじたものであり、光
学部品間は光導波路で接続されている。半導体レーザ1
は、所定の注入電流値で。
FIG. 1 shows an optical system according to an embodiment of the present invention. In this embodiment, the optical system is premised on integration, and optical components are connected by optical waveguides. Semiconductor laser 1
is at a given injection current value.

互いに発振波長が異なるT E (Transvers
e−Electric)モード及びT M (Tran
sverse−Magnetic)モードで同時に発振
する分布帰還型(DFB)レーザである。半導体レーザ
1として用いられるDFBレーザは例えば第2図に示す
ような電流−出力特性を示ず。DFBレーリ′は又、従
来の距離測定装置に使用されているファブリペロ−型レ
ーザと比べて。
T E (Transvers) whose oscillation wavelengths are different from each other
e-Electric) mode and T M (Tran
This is a distributed feedback (DFB) laser that simultaneously oscillates in the sverse-magnetic mode. The DFB laser used as the semiconductor laser 1 does not exhibit current-output characteristics as shown in FIG. 2, for example. DFB Rayleigh' is also compared to Fabry-Perot type lasers used in conventional distance measuring devices.

温度等の環境の変化による発振波長の変動が小さいとい
う利点を有している。半導体レーザ1は。
It has the advantage that fluctuations in the oscillation wavelength due to changes in the environment such as temperature are small. The semiconductor laser 1 is.

DFBレーザに限らすTEモード及びTMモードで同時
に発振することが可能なレーザであればよく2例えば分
布反射型(DBR)レーザであってもよい。
The laser may be a DFB laser as long as it can oscillate simultaneously in TE mode and TM mode.For example, a distributed reflection (DBR) laser may be used.

半導体レーザ1から出射された2種類のモードの光は、
光導波路のY分岐部2で出射光と参照光とにそれぞれ分
岐する。出射光はコリメータレンズ3により平行光線に
集束されて、測定対象物へ照射される。参照光は第1の
′Vl”、 −T Mモードスプリッタ4に入射される
。出射光が測定対象物に照射されて生じた反射光は、コ
リメータレンズ5により平行光線に集束されて、第2の
T E−T Mモードスプリンタ6に入射される。
The two modes of light emitted from the semiconductor laser 1 are
The light is branched into an emitted light and a reference light at a Y branch portion 2 of the optical waveguide. The emitted light is focused into parallel light beams by the collimator lens 3 and irradiated onto the object to be measured. The reference light is input to the first 'Vl'', -TM mode splitter 4. The reflected light generated when the output light is irradiated onto the measurement object is focused into a parallel beam by the collimator lens 5, and then is input to the T E-TM mode splinter 6 .

第1のTE−TMモードスプリッタ4は入射された参照
光をTE波とTM波とに分波する。第2のTE−TMモ
ードスプリッタ6は、入射された反射光をTE波とTM
波とに分波する。′rI?、−TMモードスプリンタ4
,6で分波された後の参照先のTE波及び反射光のTE
波は、光導波路のY分岐部7で結合して干渉を起し、T
E波干渉光となってフォトダイオード8に入射される。
The first TE-TM mode splitter 4 splits the incident reference light into a TE wave and a TM wave. The second TE-TM mode splitter 6 splits the incident reflected light into TE waves and TM waves.
It splits into waves. 'rI? , -TM mode sprinter 4
, TE of the reference destination TE wave and reflected light after being demultiplexed by
The waves combine at the Y branch 7 of the optical waveguide and cause interference, resulting in T
The E-wave interference light is incident on the photodiode 8.

参照先のTM波及び反射光のTM波も同様に、光導波路
のY分岐部9で結合して干渉を起こし、TM波干渉光と
なってフォトダイオード10に入射される。
Similarly, the reference TM wave and the reflected TM wave are combined at the Y branch 9 of the optical waveguide to cause interference, and are incident on the photodiode 10 as TM wave interference light.

フォトダイオード8及び10は上記TE波干渉光及びT
M波干渉光をそれぞれ電気信号に変換して。
The photodiodes 8 and 10 receive the TE wave interference light and the T
Convert each M-wave interference light into an electrical signal.

該電気信号を位相差計11に入力する。位相差計11は
、入力電気信号に基づいてTE波干渉光とTM波干渉光
との間の位相差を計測する。
The electrical signal is input to the phase difference meter 11. The phase difference meter 11 measures the phase difference between the TE wave interference light and the TM wave interference light based on the input electrical signal.

反射光と参照光との間には2両者の光路差に対応した位
相差が生している。従って、第2のTETMモードスプ
リソク6で分波された反射光のTE波は参照光のTE波
との間に上記光路差に応じた位相差を有している。同様
に反射光のTM波は参照先のTM波との間に」1記光路
差に応じた位相差を有している。
A phase difference occurs between the reflected light and the reference light corresponding to the optical path difference between the two. Therefore, the TE wave of the reflected light split by the second TETM mode splint 6 has a phase difference between it and the TE wave of the reference light according to the optical path difference. Similarly, the TM wave of the reflected light has a phase difference between it and the reference TM wave according to the optical path difference.

参照光のTE波と反射光ののTE波とが干渉すると、T
E波干渉光は両者の間の位相差に対応する位相θ1を有
することになる。同様に、参照光のTM波と反射光のT
M波とが干渉することにより2両者の間の位相差に対応
する位相差θ2を有するTM波干渉光が生じる。これら
2個の干渉光の位相差(θ1−θ2)は2位相差計11
で検出される。位相差(θ1−θ2)から、上記光路差
が求まることば、既に述べたとおりである。かくして、
距離測定装置から測定対象物までの距離が測定される。
When the TE wave of the reference light and the TE wave of the reflected light interfere, T
The E-wave interference light has a phase θ1 corresponding to the phase difference between the two. Similarly, the TM wave of the reference light and the T wave of the reflected light
The interference with the M wave produces TM wave interference light having a phase difference θ2 corresponding to the phase difference between the two. The phase difference (θ1-θ2) between these two interference lights is measured by two phase difference meters 11.
Detected in As already mentioned, the optical path difference can be found from the phase difference (θ1-θ2). Thus,
The distance from the distance measuring device to the object to be measured is measured.

第3図は、第1図に示した距離測定装置を集積化した光
集積回路の一例の斜視図である。
FIG. 3 is a perspective view of an example of an optical integrated circuit in which the distance measuring device shown in FIG. 1 is integrated.

基板12はL+NbO,、を用いて作製されている。光
導波路13は、フ第1・リソグラフィの手法を用いて基
板12に部分的にTiを選択熱拡散させることにより、
形成されている。TE−TMモードスプリソク4,6は
、近接して平行する光導波路部分13a。
The substrate 12 is made using L+NbO. The optical waveguide 13 is formed by partially selectively thermally diffusing Ti onto the substrate 12 using a first lithography technique.
It is formed. The TE-TM mode splints 4 and 6 are adjacent parallel optical waveguide portions 13a.

13bの内の光導波路部分13b上に、光導波路部分1
3bに大きな負の誘電率を誘起するだめのアルミニウム
14を装荷することより形成されている。TE−TMモ
ードスプリッタ46においては、アルミニウム14の装
荷によりTM波に対しては光導波路部分13bの実効屈
折率が減少するため、光導波路部分13a 、 13b
間でのパワー移行率が極端に小さくなる。その結果、T
M波はアルミニウム14の装荷されていない光導波路部
分13aを進行しTE波はアルミニウム14の装荷され
ている先導波路骨13bを進行することになる。
The optical waveguide portion 1 is placed on the optical waveguide portion 13b of the optical waveguide portion 13b.
3b is loaded with aluminum 14 which induces a large negative dielectric constant. In the TE-TM mode splitter 46, loading of aluminum 14 reduces the effective refractive index of the optical waveguide portion 13b for TM waves;
The power transfer rate between the two becomes extremely small. As a result, T
The M wave travels through the optical waveguide portion 13a that is not loaded with aluminum 14, and the TE wave travels through the leading waveguide bone 13b that is loaded with aluminum 14.

以上のような基板12に、半導体レーザ1.コリメータ
レンズ3,5及びフォトダイオード8.10が取り付け
られている。位相差計Il及びそれとフォトダイオード
8,10との間の結線は第3図には図示していない。第
3図の光集積回路の動作は。
A semiconductor laser 1. is mounted on the substrate 12 as described above. Collimator lenses 3, 5 and photodiodes 8.10 are attached. The phase difference meter Il and the connections between it and the photodiodes 8, 10 are not shown in FIG. The operation of the optical integrated circuit shown in Fig. 3 is as follows.

第1図の距離測定装置と同様である。It is similar to the distance measuring device shown in FIG.

」−述の実施例は、光集積回路もしくはこれを前提とし
た光学系の例であるが2本発明は集積化を行わない場合
にも適用可能である。
Although the embodiments described above are examples of optical integrated circuits or optical systems based on optical integrated circuits, the present invention is also applicable to cases where no integration is performed.

(発明の効果) 本発明の距離測定装置においては、単一のレーザ発生手
段で必要な光が得られるため、レーザ発生手段自体の数
のみならす他に必要とされる光学部品の数も大幅に削減
され、構造が簡素化される。
(Effects of the Invention) In the distance measuring device of the present invention, since the necessary light can be obtained with a single laser generating means, not only the number of laser generating means themselves but also the number of required optical parts can be significantly reduced. structure is simplified.

従って本発明の距離測定装置は集積化が非常に容易であ
る。距離測定装置が集積化されると、振動等の影響を受
けに(くなるため、構成要素間の安定したアラインメン
トが保証され、測定の安定化等に大きな効果が得られる
。また、構成が簡素化された分、測定精度の向上も達成
される。本発明の距離測定装置のレーザ発生手段として
DFBレーザやDBRレーザを用いた場合には、これら
のレーザは従来の距離測定装置において使用されている
ファブリペロ−型半導体レーザに比べて発振波長が温度
等の環境の変化によって容易に変動しないので、安定し
た測定結果が得られる。
Therefore, the distance measuring device of the present invention is very easy to integrate. When the distance measuring device is integrated, it becomes less susceptible to vibrations, etc., which ensures stable alignment between the components, which has a great effect on stabilizing measurements.In addition, the configuration is simple. When a DFB laser or a DBR laser is used as the laser generating means of the distance measuring device of the present invention, these lasers are used in the conventional distance measuring device. Compared to the Fabry-Perot semiconductor laser, the oscillation wavelength does not change easily due to changes in the environment such as temperature, so stable measurement results can be obtained.

↓−則I勿■単痰會凱 第1図は本発明の一実施例の光学系を示す間第2図は第
1図の実施例に使用されているDFBレーザの特性図、
第3図は第1図の実施例を集積化した光集積回路の斜視
図、第4図は従来例の光学系を示す図である。
↓-Rule I Of course■ Simple phlegm Kai Figure 1 shows the optical system of one embodiment of the present invention, while Figure 2 shows the characteristics of the DFB laser used in the embodiment of Figure 1.
FIG. 3 is a perspective view of an optical integrated circuit in which the embodiment of FIG. 1 is integrated, and FIG. 4 is a diagram showing a conventional optical system.

1・・・半導体レーザ、2・・・Y分岐部、4・・・第
1のTE−TMモードスプリッタ、6・・・第2のTE
TMモードスプリッタ、7,9・・・Y分岐部、8゜1
0・・・フォトダイオード、11・・・位相差計。
DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Y branch part, 4... First TE-TM mode splitter, 6... Second TE
TM mode splitter, 7, 9...Y branch, 8゜1
0...Photodiode, 11...Phase difference meter.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 1、互いに波長が異なる2種類の光を用いた干渉法によ
る距離測定装置であって、該2種類の光の光源が、互い
に発振波長が異なるTEモード及びTMモードで同時に
発振するレーザ発生手段である距離測定装置。
1. A distance measuring device using interferometry using two types of light with different wavelengths, the light source of the two types of light being a laser generating means that simultaneously oscillates in a TE mode and a TM mode with different oscillation wavelengths. A distance measuring device.
JP63276517A 1988-10-31 1988-10-31 Distance measuring device Expired - Fee Related JPH0789147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63276517A JPH0789147B2 (en) 1988-10-31 1988-10-31 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63276517A JPH0789147B2 (en) 1988-10-31 1988-10-31 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH02122292A true JPH02122292A (en) 1990-05-09
JPH0789147B2 JPH0789147B2 (en) 1995-09-27

Family

ID=17570575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63276517A Expired - Fee Related JPH0789147B2 (en) 1988-10-31 1988-10-31 Distance measuring device

Country Status (1)

Country Link
JP (1) JPH0789147B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681467A (en) * 1979-12-07 1981-07-03 Hiroshi Takasaki Measuring device for distance of two frequency- perpendicularly polarized lights
JPH01320489A (en) * 1988-06-22 1989-12-26 Daikin Ind Ltd Distance measurement method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681467A (en) * 1979-12-07 1981-07-03 Hiroshi Takasaki Measuring device for distance of two frequency- perpendicularly polarized lights
JPH01320489A (en) * 1988-06-22 1989-12-26 Daikin Ind Ltd Distance measurement method and device

Also Published As

Publication number Publication date
JPH0789147B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
EP0875743B1 (en) A wavemeter and an arrangement for the adjustment of the wavelength of an optical source
US7692796B2 (en) Optical characteristic measuring apparatus
KR920016823A (en) Optical instrumentation for determining surface properties
JP2002505414A (en) Interferometer type measuring device for shape or distance interval, for example, rough surface shape or distance interval
TW201719109A (en) Apparatus for measuring cavity length of optical resonant cavity
JPS62233708A (en) Angle measurement plane mirror interferometer system
US7418025B2 (en) Wavelength monitoring method and apparatus and method of making same
CN118960799A (en) A dual-wave fiber laser self-mixing interferometer online measurement system
US20070103694A1 (en) Interferometry system
KR20250048126A (en) Light Measuring Device
US5189677A (en) Arrangement having two laser diodes for generating light having two wavelengths
US5760903A (en) Light measuring apparatus
US7595886B2 (en) Wavelength monitor using interference signals
JPH02122292A (en) distance measuring device
US8290007B2 (en) Apparatus and method for stabilizing frequency of laser
CN111194528B (en) Wavelength monitoring and/or control device, laser system comprising said device and method of operating said device
WO2014080358A2 (en) Optical sensor arrangement and method for measuring an observable
JP2007121232A (en) Wavelength monitor
JP4604879B2 (en) Wavelength monitor
JP4604878B2 (en) Wavelength monitor
JPH11274643A (en) Variable wavelength semiconductor laser light source
JP2014123669A (en) Light source device, control method, and shape measuring device
JPH09236493A (en) Light wavelength meter
JPH06123661A (en) Optical fiber type distributed temperature sensor and dual wavelength light generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees