JPH02131569A - Microchamber plate, cell detection method using the same, processing method and device, and cells - Google Patents
Microchamber plate, cell detection method using the same, processing method and device, and cellsInfo
- Publication number
- JPH02131569A JPH02131569A JP63283601A JP28360188A JPH02131569A JP H02131569 A JPH02131569 A JP H02131569A JP 63283601 A JP63283601 A JP 63283601A JP 28360188 A JP28360188 A JP 28360188A JP H02131569 A JPH02131569 A JP H02131569A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- cell
- electrodes
- pair
- microchamber plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
- B01J2219/00317—Microwell devices, i.e. having large numbers of wells
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B60/00—Apparatus specially adapted for use in combinatorial chemistry or with libraries
- C40B60/14—Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は細胞融合装置に係わり、特に異種の細胞を1対
1に融合させるのに好適な細胞融合のためのマイクロチ
ャンバプレートおよび粒子判別方法ならびに粒子処理装
置および細胞処理装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cell fusion device, and particularly to a microchamber plate for cell fusion and a particle discrimination method suitable for one-to-one fusion of different types of cells. and a particle processing device and a cell processing device.
従来の装置は文献(昭和62年度精密工学会春季大会学
術講演会論文集p.845〜846)に記載のように格
子状に配列した隔室に異種細胞を1対ずつ供給して、吸
引ノズルで隔室の小さな開口部に吸引固定して、同一融
合条件下で一括して融合を行っていた。The conventional device supplies heterogeneous cells one pair at a time to compartments arranged in a lattice, as described in the literature (1986 Society for Precision Engineering Spring Conference Proceedings, p. 845-846), and then uses a suction nozzle to They were suctioned and fixed into a small opening in the compartment, and fusion was performed all at once under the same fusion conditions.
上記従来技術では、多量の細胞の融合を一括して行うた
め、大きさや細胞膜の厚さや活性度のばらつき等の個体
差のある細胞を全て確実に融合させることが困難であり
、未融合細胞と融合細胞とを選別するための労力を必要
とする問題があった。In the conventional technology described above, since a large number of cells are fused at once, it is difficult to reliably fuse all cells that have individual differences such as variations in size, cell membrane thickness, and activity, and it is difficult to reliably fuse all cells that have individual differences such as variations in size, cell membrane thickness, and activity. There was a problem in that it required a lot of effort to sort out the fused cells.
本発明の目的は、個体差の大きい細胞の状態をそれぞれ
独立に把握し、最適な条件で融合条件を与え、多量の細
胞を確実に融合することにあり、さらに独立に状態を把
握した細胞に遺伝子を導入することにあり、また,さら
に、血液を用いてその形状等の情報から、血液の状態を
把握するなどf・R々の細胞を個々に処理することを可
能とすることにある。The purpose of the present invention is to independently grasp the state of cells with large individual differences, provide optimal fusion conditions, and reliably fuse a large amount of cells. The purpose of this method is to introduce genes, and also to make it possible to individually process the cells of f and R, such as understanding the state of the blood based on information such as its shape using blood.
[課題を解決するための手段]
上記目的を達成するために、それぞれの隔室に独立な電
極を設けて、各電極に独立に電圧等を印加したり、電極
間の抵抗等を測定可能な構造の、粒子や細胞を位置決め
保持するための多数の隔室を有するマイクロチャンバプ
レートを用いた。また,隔室内の粒子や細胞の挙動をそ
れらを挟んでいる電極間の電位として測定することによ
り、粒子や細胞を判別することを可能とした。また、粒
子や細胞を挟んだ電極間に電圧を印加することにより個
々に処理や融合を可能とする装置や細胞融合装置を得た
。[Means for solving the problem] In order to achieve the above purpose, an independent electrode is provided in each compartment, and a voltage etc. can be applied independently to each electrode and resistance etc. between the electrodes can be measured. A structured microchamber plate with multiple compartments to position and hold particles and cells was used. Furthermore, by measuring the behavior of particles and cells within the compartment as the potential between the electrodes that sandwich them, it has become possible to distinguish between particles and cells. We also obtained a device and a cell fusion device that enable individual processing and fusion by applying voltage between electrodes that sandwich particles or cells.
マイクロチャンバプレート上の隔室に設けた一対の電極
は電圧を印加することにより,電極間に存在する一対の
細胞を互いに接触させたり、互いに接触した細胞膜を介
して融合したり、さらには、電極間の電位の変化から融
合した細胞の形状の変化を知り、融合のパルス電圧を強
めたり,弱めたり調整することができる.隔室を多数、
格子上に配列したマイクロチャンバ上で、隔室からのN
+Xを独立な構造にすることにより、それぞれの隔室
に存在する、細胞の個体差に依存する′雀気融合条件を
微妙に制御することが可能となるので、多数の細胞を効
率良く融合させることができる。さらに、それぞれの隔
室に存在する細胞の状態を独立に把握できるため、労力
を要する目視@測等の手段なしに、所望の細胞の配:n
場所を把握して抽出することが可能となるので、所望の
細胞のみを確実に,しかも効!r良く生成することが可
能となる。By applying voltage to a pair of electrodes provided in a compartment on a microchamber plate, a pair of cells existing between the electrodes can be brought into contact with each other, fused through the cell membranes in contact with each other, and furthermore, the electrodes can be The changes in the shape of the fused cells can be detected from the changes in the potential between the two, and the fusion pulse voltage can be strengthened or weakened or adjusted. Many compartments,
N from the compartments on the microchambers arranged on a grid.
By making +X an independent structure, it is possible to delicately control the fusion conditions that depend on the individual differences of cells present in each compartment, allowing for efficient fusion of a large number of cells. be able to. Furthermore, since the state of the cells existing in each compartment can be grasped independently, the desired cell arrangement can be determined without the need for labor-intensive visual inspection or other means.
It is possible to extract only the desired cells by knowing the location, and it is effective! It becomes possible to generate the image with high quality.
また、隔室に存在する細胞の挙動を把握しながら、レー
ザ光線やX線を用いて細胞に加工を施せるので遺伝子導
入等の細胞処理を容易にかつ確実に行える。さらに、液
体中で、細胞等を位置決めするマイクロチャンバの隔室
に、細胞を位In決め保持する際に障害となる気泡の付
着の有無を判定できるので、気泡の事前除去が可能とな
り、細胞等の微小な粒子を信頼性の高く取扱えるマイク
ロチャンバを提供することができる。Furthermore, since the cells can be processed using laser beams or X-rays while understanding the behavior of the cells existing in the compartment, cell processing such as gene introduction can be performed easily and reliably. Furthermore, it is possible to determine whether or not there are air bubbles attached to the compartments of the microchamber that would pose an obstacle when positioning and holding cells in the liquid, making it possible to remove air bubbles in advance, allowing cells, etc. It is possible to provide a microchamber that can handle minute particles with high reliability.
以下、本発明の一実施例を第1冫1〜第321により説
明する。第1図は本望明のマイクロチャンバプレート,
第2図はマイクロチャンハプレートを用いた細胞融合装
置、第3図はマイクロチャンバプレートの電極の配線パ
ターン9′jである。第1,[コづ〜第3図において、
共通部分の番号は同一とした。Hereinafter, one embodiment of the present invention will be described with reference to the first to 321st examples. Figure 1 shows the microchamber plate of the present invention.
FIG. 2 shows a cell fusion device using a microchamber plate, and FIG. 3 shows a wiring pattern 9'j of the electrodes of the microchamber plate. 1st, [Kozu ~ In Figure 3,
The numbers for common parts were the same.
粒子として、大きさが2 0 〜1 0 0 Atmの
,+itl +Jを取扱う場合のマイクロチャンバプレ
ートの拡大した断面の鳥撤図を第1図に示す。マイクロ
チャンバプレート901は、厚さ400μmのSiウノ
エハに異方性エッチング処理によりピッチ770μmの
格子状の配列で形成さた隔室101〜103,201〜
203を有している。隔室101〜103には一対の細
胞を電気的に融合するため、異種細胞が2個ずつ吸引保
持されている。FIG. 1 shows an enlarged cross-sectional view of a microchamber plate when handling +itl +J particles having a size of 20 to 100 Atm. The microchamber plate 901 has compartments 101-103, 201- formed in a lattice-like arrangement with a pitch of 770 μm by anisotropic etching on a 400 μm thick Si wafer.
It has 203. In order to electrically fuse a pair of cells, two different cells are suctioned and held in the compartments 101 to 103.
なお、隔室201〜203には細胞が入っていない状態
を示してある。全ての隔室には、隔室103の吸引孔6
03と同一の構造の吸引孔が形成されている。吸引孔の
下側より図示していない吸引手段を用いて吸引すること
により、細胞を位置決め保持できる構造となっている。Note that the compartments 201 to 203 are shown without cells. All compartments have suction holes 6 in compartment 103.
A suction hole having the same structure as 03 is formed. It has a structure in which cells can be positioned and held by suctioning from below the suction hole using a suction means (not shown).
これらの細胞は、図示していない容器(第2図906)
に満たされた等張液中で、図示していない搬送手段(第
2図902,903)によりそれぞれの隔室に所定の数
だけ移し替えられる。隔室103には一組みの電極80
2,803が形成され、配線10.13を経て図示して
いない制御系(第2図905)につながっている。他の
隔室101,電極と配線11.12および20〜23が
制御系に接続している。These cells were placed in a container (not shown) (FIG. 2 906).
A predetermined number of cells are transferred to each compartment by a transport means (not shown) (902, 903 in FIG. 2) in an isotonic solution filled with a liquid. A set of electrodes 80 is provided in the compartment 103.
2,803 is formed, and is connected to a control system (FIG. 2, 905), not shown, via wiring 10.13. The other compartments 101, electrodes and wiring 11, 12 and 20-23 are connected to the control system.
第2図は第1図に示したマイクロチャンバプレート90
1を用いた細胞融合装置904の外観図である。浸透圧
を揃えて細胞の活性を保つための、等張液として0.5
molのソルビトール液を容器906の中に入れる。異
種細胞をA,Bとすると、細胞Aを搬送する手段902
、細胞Bを搬送する手段903を有している。搬送手段
は、マイクロチャンバプレート901の隔室に細胞Aと
Bをそれぞれ1個ずつ移し替えるため、それぞれ隔室に
対応した位置に細胞をそれぞれ1個だけ吸引する吸引座
を有した構造となっている。搬送手段902,903は
それぞれx,z軸方向に移動でき、マイクロチャンバプ
レートの隔室に細胞を移し替えることにより、一対の細
胞A,Bが位置決め保持される。各隔室に独立に設けら
れた電極からの配線は制御系905に接続されている。FIG. 2 shows the microchamber plate 90 shown in FIG.
1 is an external view of a cell fusion device 904 using cell fusion device 1. 0.5 as an isotonic solution to maintain cell activity by equalizing osmotic pressure.
A mol of sorbitol solution is placed in a container 906. Assuming that the heterogeneous cells are A and B, means 902 for transporting the cell A
, has means 903 for transporting cells B. In order to transfer one cell A and one cell B each to the compartments of the microchamber plate 901, the transport means has a suction seat that sucks only one cell at a position corresponding to each compartment. There is. The transport means 902 and 903 can move in the x- and z-axis directions, respectively, and the pair of cells A and B are positioned and held by transferring the cells to the compartments of the microchamber plate. Wiring from electrodes provided independently in each compartment is connected to a control system 905.
制御j’J905は、マイクロチャンバプレートの隔室
内の細胞を電気的に融合させるための電源や、細胞の状
態を)Ill胞を挟んだ電極間の電位変化として把握し
て、細胞の状態に応じて印加電圧を調整したり開閉する
等の処理を行う処理回路、搬送手段902,903k駆
動してマイクロチャンバプレートに細胞を移し替える操
作等を制御する回路等から構成されている。The control j'J905 uses a power supply to electrically fuse the cells in the compartment of the microchamber plate, and grasps the state of the cells as a potential change between the electrodes sandwiching the cell, and controls the power supply according to the state of the cells. It is comprised of a processing circuit that performs processing such as adjusting the applied voltage and opening/closing, and a circuit that controls operations such as driving the transport means 902 and 903k to transfer cells to the microchamber plate.
第3図はマイクロチャンバプレートの隔室にそれぞれ独
立に設けられた?I!極101〜104,201〜20
4,301〜304,401〜404と、これらの電極
からの配線10〜14,20〜24.30〜34.40
〜44を平面状にパターン化した例である。In Figure 3, each compartment of the microchamber plate is provided independently? I! Poles 101-104, 201-20
4,301-304, 401-404 and wiring from these electrodes 10-14, 20-24.30-34.40
This is an example in which 44 is patterned into a planar shape.
次に第1図に隔室103内の細胞を例にして、電気的な
細胞融合の過程を述へる。搬送手段により移し替えら1
fL、位置決めされた細胞800,801は吸引孔60
3からの吸引圧によって、吸引孔直上で互いに接触する
。一対の細胞は電極間に長手方向を成した吸引孔603
によって、互いに接触し8の字状を成し、その長手方向
が電界方向と一致するように位置決めされる。接触を保
った状態で、電極間にパルス状の電圧を印加すると、電
極に挟まれた一対の細胞が接触した細胞膜の部分から融
合し始める。融合の進行に伴って接触していた細胞は、
だるま状から楕円体状を経て球状体となる。一組みの電
極間の抵抗や静電容量や電荷量は、細胞の形状変化に伴
って変わる。Next, the process of electrical cell fusion will be described using the cells in the compartment 103 as an example in FIG. Transferred by conveyance means 1
fL, positioned cells 800 and 801 are suction holes 60
Due to the suction pressure from 3, they come into contact with each other directly above the suction hole. A pair of cells has a suction hole 603 extending longitudinally between the electrodes.
They are positioned so that they come in contact with each other to form a figure 8 shape, and their longitudinal direction coincides with the direction of the electric field. When a pulsed voltage is applied between the electrodes while maintaining contact, the pair of cells sandwiched between the electrodes begin to fuse from the part of the cell membrane that they contacted. As the fusion progresses, the cells that were in contact with each other,
It changes from a potbelly shape to an ellipsoid shape and then becomes a spherical body. The resistance, capacitance, and amount of charge between a pair of electrodes change as the shape of the cell changes.
半径rll r2の細胞が融合して半径r,の大きさに
変化するものと仮定すると、細胞の総容積が一定である
ので、次式が成立する。Assuming that cells with radius rll r2 fuse and change to the size of radius r, the following equation holds true since the total volume of the cells is constant.
rエ’+r2’=r,
接触した細胞の最大長は
2・(rエ+rz)
で、融合後の細胞の最大径は
2 ・ r,=2 ・(rよ’+r2’)である。例え
ば,等しい半径Rの2個の細胞が接触している時の最長
距離は4Rである。融合後の最長距射は2.52・Rと
2個のm胞が接触していた時に比べて63%と小さくな
る。従って、電極間の電位変化として検出できる。rE'+r2'=r, the maximum length of the cells in contact is 2.(rE+rz), and the maximum diameter of the cell after fusion is 2.r,=2.(r'+r2'). For example, when two cells with equal radius R are in contact, the longest distance is 4R. The longest distance shot after fusion is 2.52·R, which is 63% smaller than when the two m cells were in contact. Therefore, it can be detected as a potential change between the electrodes.
融合のためパルス状の電圧を印加した後、電極間の電位
変化が始まれば、その時細胞融合が始まったことになる
。細胞融合が進行して一つの球体となると、電極間の電
位変化が小さくなる。従って、一対の細胞に融合用のパ
ルス状電圧を印加した直後に、電極間の電位を測定し、
その変化率を求めることにより、融合の開始点を把握す
ることができる。細胞融合が始まるまでは、適当な周期
でパルス状電圧を加え続け、さらに、融合が始まらない
時には印加するパルス状電圧を漸次昇圧して印加条件を
変えることにより、細胞を融合させることができる。電
位変化が現われて融合の開始が検出された後には、融合
を進展させるためにパルス状電圧の印加を停止する。ま
た、細胞の活性か弱い場合等には、パルス状電圧の印加
により細胞が破損することがあるが、この時の電位変化
のモードは急峻な変化の後に一定となるモードを示す。After applying a pulsed voltage for fusion, if the potential between the electrodes begins to change, then cell fusion has begun. As cell fusion progresses and forms a single sphere, the potential change between the electrodes becomes smaller. Therefore, immediately after applying a pulsed voltage for fusion to a pair of cells, the potential between the electrodes is measured,
By determining the rate of change, the starting point of fusion can be determined. Cells can be fused by continuing to apply a pulsed voltage at appropriate intervals until cell fusion begins, and when fusion has not yet started, by gradually increasing the applied pulsed voltage and changing the application conditions. After a potential change appears and the start of fusion is detected, application of the pulsed voltage is stopped in order to advance fusion. Further, in cases where the activity of the cell is weak, the cell may be damaged by the application of a pulsed voltage, but the mode of potential change at this time is a mode in which the potential changes rapidly and then becomes constant.
従って、融合の進展に伴なってリ2われる緩やかな電位
変化のモートと区別することができるので、細胞の破損
時点を把握することができる。Therefore, it is possible to distinguish the moat from a moat whose potential changes gradually as the fusion progresses, and the point at which the cell is damaged can be ascertained.
隔室内で1個の細胞の破損が判明した場合には、残りの
細胞が未融合のまま残って、培養時に増夕16すること
が防ぐために、残りの細胞を破壊処理させるための高い
電圧を印加する。残存細胞の有無や破壊状況も電位変化
から検知できる。以Lの方法により、所望の融合細胞の
みを確実に残すことが可能である。なお、電極間距離を
200μmとし、0 . 5 molのソルビトール液
を用いて、サラダ菜の細胞を融合させる場合には、約2
5V,150μsのパルス状電圧を1〜数回程印加する
だけで細胞融合が始まり、8の字状の接触状態から、だ
るま状、楕円体状を経て、約2〜3分で球体状に融合が
進む。If one cell in the compartment is found to be damaged, a high voltage is applied to destroy the remaining cells to prevent them from remaining unfused and multiplying during culture. Apply. The presence or absence of remaining cells and the state of destruction can also be detected from potential changes. By the method described below, it is possible to ensure that only desired fused cells remain. Note that the distance between the electrodes is 200 μm, and the distance between the electrodes is 200 μm. When fusing salad green cells using 5 mol of sorbitol solution, approximately 2 mol of sorbitol solution is used.
Cell fusion begins by applying a 5V, 150μs pulse voltage once or several times, and the fusion progresses from a figure-eight contact state, to a potbellied shape, to an ellipsoid shape, and then to a spherical shape in about 2 to 3 minutes. move on.
第1図,第3図における電極からの配線パターンは互い
に交差しないので、パターニングは簡単であるが、チャ
ンバプレート上に形成可能な隔室の数に限度がある。第
4図は配線パターンを立体的に交差する構造にすること
によって、隔室の数に制限なしにチャンバプレート上に
形成可能な場合の一実施例である。y方向の配線10.
60とX方向の配線1〜7の交差点に対応して一組みの
電極11〜67がパターニングされている。それぞれの
電極に電圧を印加したり、電極間の電位を測定するため
の接続方法は、公知の2次元液晶デバイスや2次元M
O Sイメージセンサ等を恥動する方法の応用で可能で
ある。Since the wiring patterns from the electrodes in FIGS. 1 and 3 do not intersect with each other, patterning is simple, but there is a limit to the number of compartments that can be formed on the chamber plate. FIG. 4 shows an example in which an unlimited number of compartments can be formed on a chamber plate by making the wiring patterns intersect three-dimensionally. Wiring in the y direction 10.
A set of electrodes 11 to 67 are patterned corresponding to the intersections of wirings 1 to 7 in the X direction and 60. The connection method for applying a voltage to each electrode or measuring the potential between the electrodes is a known two-dimensional liquid crystal device or two-dimensional M
This is possible by applying a method of moving the OS image sensor or the like.
第5図は第4図に示した配線方法を用いたSi製のマイ
クロチャンバプレートを拡大した断面の鳥徹図である。FIG. 5 is an enlarged cross-sectional view of a Si microchamber plate using the wiring method shown in FIG. 4.
細胞を吸引位置決めする吸引孔(寸法10μm×80μ
m)を有する細胞保持溝プレート200と、吸引孔の位
置に対応して隔室を構成している側壁プレート201と
の二枚重ね構造である。重ね合わせる部分に形成した電
極類を示すため、細胞保持溝プレートと側壁プレートと
を分離した状態を示してある。Au製の厚さ300nm
の配線6,7および10−30は、第4図の配線パター
ンと同一番号の部分に対応する。Suction hole for suctioning and positioning cells (dimensions 10μm x 80μ
The cell holding groove plate 200 has a two-layered structure including a cell holding groove plate 200 having a cell retaining groove plate 200 and a side wall plate 201 forming a compartment corresponding to the position of the suction hole. In order to show the electrodes formed in the overlapping portion, the cell holding groove plate and the side wall plate are shown separated. Made of Au, thickness 300nm
Wirings 6, 7 and 10-30 correspond to the portions with the same numbers as the wiring pattern in FIG.
交差する配線の交差部分はSin2製の絶縁層で電気的
にlmされている。次に、隔室37を用いて説明する。The intersecting portions of the intersecting wiring lines are electrically isolated by an insulating layer made of Sin2. Next, explanation will be given using the compartment 37.
隔室37の吸引孔300の長手方向に配線6からの電極
301と配線30からの電極302が形成されている。An electrode 301 from the wiring 6 and an electrode 302 from the wiring 30 are formed in the longitudinal direction of the suction hole 300 of the compartment 37 .
吸引孔300の横方向にはS io2製の絶縁体の凸部
303,304が形成されている。絶紳体の凸部303
,304は吸引孔を挟んで配百されており、電極301
と302との間に電圧を印加した時に生しる電気力線を
吸引孔の中央で収束させる機能がある。従って、吸引孔
上に接触位置決めされた一対の細胞に対して効率の良い
電圧印加やall+定を可能としている。In the lateral direction of the suction hole 300, protrusions 303 and 304 made of an insulator made of Sio2 are formed. Convex part 303 of a great manly body
, 304 are arranged across the suction hole, and the electrodes 301
It has a function of converging electric lines of force generated when a voltage is applied between and 302 at the center of the suction hole. Therefore, it is possible to efficiently apply voltage and all+ constant to a pair of cells that are positioned in contact with each other on the suction hole.
次に、一対の電極間に存在する細胞の状態や挙動を電気
的に検出した実施例を第6〜8図を用いて述へる。第6
図は、本発明の実施例のf1極部拡犬図で、電極601
,602との間に異種細胞603,604が互いに接触
し位置決めされている状態を示している。これらの電極
や細胞は等張′/F!i605に浸ッテイる。文献(細
胞工学Vol.3,NO.6,1988,p.497−
505のp.500,p.502) に示さhているよ
うに、0 . 5 molのソルビトールの等張液の比
抵抗は約1kΩ・mmで、細胞膜の比抵抗は約100,
&Ω・mmである。通常、細胞膜の厚さは約10nmで
あるのでその厚さ方向の抵抗は約1kΩである。本発明
の電極601と602の間隔は200μmで、その抵抗
は約0.2kΩである。従って、対向する電極の幅を細
胞の直径より小さくするか、締林体(第5図の303,
304に相当)を設けて世界が細胞に集中する構造にす
ることによって、電極間に存在する細胞の形状に存在す
る抵抗を測定することが可能である。電極601と60
2間に電源606から定電圧をパルス状に印加して、検
出処理回路607から細胞の膜の厚さに存在する抵抗を
求め図示していない制御系(第2図905に相当)に出
力する。なお、低電圧をパルス状に印加するのけ等張液
の電気分解を防ぐためである。Next, an example in which the state and behavior of cells existing between a pair of electrodes are electrically detected will be described using FIGS. 6 to 8. 6th
The figure is an enlarged view of the f1 pole of the embodiment of the present invention, and shows an electrode 601.
, 602, different types of cells 603 and 604 are shown in contact with each other and positioned. These electrodes and cells are isotonic′/F! Immerse yourself in i605. Literature (Cell Engineering Vol. 3, No. 6, 1988, p. 497-
505 p. 500, p. 502) As shown in h, 0. The specific resistance of an isotonic solution of 5 mol of sorbitol is about 1 kΩ・mm, and the specific resistance of the cell membrane is about 100,
&Ω・mm. Normally, the thickness of a cell membrane is about 10 nm, so the resistance in the thickness direction is about 1 kΩ. The distance between the electrodes 601 and 602 of the present invention is 200 μm, and the resistance thereof is about 0.2 kΩ. Therefore, either make the width of the opposing electrodes smaller than the diameter of the cell, or
304) to create a structure in which the world concentrates on cells, it is possible to measure the resistance that exists in the shape of the cells that exist between the electrodes. electrodes 601 and 60
A constant voltage is applied in pulse form from a power supply 606 between 2 and the detection processing circuit 607 calculates the resistance existing in the thickness of the cell membrane and outputs it to a control system (not shown) (corresponding to 905 in FIG. 2). . Note that this is to prevent electrolysis of the isotonic solution by applying a low voltage in a pulsed manner.
測定処理後に得られる細胞の形状に存在する抵抗値の時
間的変化の例として第7,8図に示す。第7図は融合過
程の抵抗特性を示す。また第8図は細胞の破壊過程を示
す。両図とも横軸は時間し,縦軸は抵抗値rを表わして
いる。FIGS. 7 and 8 show examples of temporal changes in resistance values present in the shape of cells obtained after the measurement process. Figure 7 shows the resistance characteristics of the fusion process. Moreover, FIG. 8 shows the cell destruction process. In both figures, the horizontal axis represents time, and the vertical axis represents resistance value r.
第7Mにおいて、細胞が?1!極間に存在しない時間t
,には等張液のみの抵抗値r, (約0.2kΩ)、細
胞が1個だけ位置決めされている時間し2には細胞1個
分の膜厚に依存した抵抗値rz(約2kΩ)、細胞が2
個だけ位置決めされている時間し,には細胞2個分の膜
厚に依存した抵抗値r3(約4kΩ)、細胞融合が始ま
り細胞の融合が進行している時間t4には、互いに接触
していた部位の膜が薄くなり融合が進むに連れて抵抗値
が減少しr4となり、その結果、雑種細胞が形成される
。In the 7th M, cells? 1! Time t that does not exist between poles
, is the resistance value of only the isotonic solution r, (approximately 0.2 kΩ), and the time when only one cell is positioned, and 2 is the resistance value rz (approximately 2 kΩ) that depends on the membrane thickness of one cell. , 2 cells
At time t4 when only two cells are positioned, the resistance value r3 (approximately 4 kΩ) depends on the membrane thickness of two cells, and at time t4 when cell fusion has started and cell fusion is progressing, they are in contact with each other. As the membrane at the site becomes thinner and fusion progresses, the resistance value decreases to r4, and as a result, a hybrid cell is formed.
時間t,には雑種細胞として存在している時の抵抗値r
4を示す。At time t, the resistance value r when existing as a hybrid cell
4 is shown.
第8図は細胞の数と破損の有無を示す特性の一例である
。時間t1〜t,までは第7図と同じである。2個存在
していた細胞のうち1個が破損すると時間し,とし4と
の間の変化のように抵抗値の変化は急峻となる。従って
、細胞融合が進行中の緩やかな抵抗値の変化(第7図し
.に相当)と比へて識別して処理することが可能である
。時間t6の抵抗値r, (ほぼr2に等しい)は一対
の細胞のうち1個だけ破損して、残り1個となった時の
細胞の抵抗値である。さらに、残りの1個の細胞も破損
すると、時間t7に示すような抵抗値rt (ほぼr1
に等しい)となる。なお、それぞれの物質の抵抗値は電
極の形状や等張液の濃度,−1解質の濃度,細胞の種類
等により左右されることは明らかであるが、一度条件を
求めれば、大きなばらつきはない。また、静電容量や誘
電率などの電気的特性も検出処理回路の応用として考え
ることは容易である。FIG. 8 is an example of characteristics showing the number of cells and the presence or absence of damage. The period from time t1 to time t is the same as in FIG. It takes time for one of the two existing cells to break, and the change in resistance value becomes steep, as in the case with Toshi 4. Therefore, it is possible to distinguish and process the gradual change in resistance value during cell fusion (corresponding to Fig. 7). The resistance value r, (approximately equal to r2) at time t6 is the resistance value of the cell when only one of the pair of cells is damaged and only one remains. Furthermore, when the remaining one cell is also damaged, the resistance value rt (approximately r1
). It is clear that the resistance value of each substance depends on the shape of the electrode, the concentration of isotonic solution, the concentration of -1 solute, the type of cells, etc., but once the conditions are determined, large variations can be eliminated. do not have. Furthermore, it is easy to consider electrical characteristics such as capacitance and dielectric constant as applications of the detection processing circuit.
以上述へた実施例は、20〜100μmの細胞を取扱う
場合であるが、この寸法以外の細胞や″位子に対しても
、マイクロチャンバプレートの隔室や吸引孔を適切に設
計することにより容易に応用できることは明らかである
。なお、吸引孔のμmオーダの加工は半導体プロセスで
用いられているパターニング技術やエッチング技術を応
用することで実現できる。また、マイクロチャンバプレ
ートの材料等は加工寸法や精度に応じて、Si以外の硝
子や樹脂やセラミクス等を用いることも可能である。The examples described above deal with cells of 20 to 100 μm, but cells and particles with sizes other than this can easily be handled by appropriately designing the compartments and suction holes of the microchamber plate. It is clear that it can be applied to micro-chamber plate materials etc. The processing of suction holes on the μm order can be realized by applying patterning and etching technologies used in semiconductor processes. Depending on the accuracy, it is also possible to use glass, resin, ceramics, etc. other than Si.
さらに、本発明で示した細胞融合装置以外に、所定数の
細胞を隔室に入れてその状態を把握しながら薬品処理を
行ったり、培養処理を行う等の細胞処理装置として用い
ることも可能である。Furthermore, in addition to the cell fusion device shown in the present invention, it can also be used as a cell processing device, such as placing a predetermined number of cells in a compartment and performing chemical treatment or culturing while monitoring their condition. be.
また、所定の遺伝子を懸濁した液の中に細胞の位置決め
されたマイクロチャンバプレートを入れ、細く絞ったレ
ーザ光線やX線を細胞壁に照射して微細孔を開け、遺伝
子を細胞内に入れる遺伝子導入装置として用いることも
可能である。In addition, a microchamber plate with cells positioned in it is placed in a solution with a predetermined gene suspended in it, and the cell wall is irradiated with a narrowly focused laser beam or It can also be used as an introduction device.
さらに、粒子として血液を用いれば、隔室に位置決めさ
れる血球の数を計数することにより、単位流量当たりの
血球の数を計測して、血球濃度を求めることができる。Furthermore, if blood is used as the particles, by counting the number of blood cells positioned in the compartment, the number of blood cells per unit flow rate can be measured, and the blood cell concentration can be determined.
また、隔室に位置決めした血球に電圧を印加して,その
電圧による形状の変形具合から、血球の変形能を求めて
診断に供することのできる血球処理装置として用いるこ
とも可能である。It is also possible to use the device as a blood cell processing device that can apply a voltage to blood cells positioned in a compartment, determine the deformability of the blood cells from the degree of shape deformation caused by the voltage, and use it for diagnosis.
なお、粒子を液体中で位置決めして扱うマイクロチャン
バプレートにとって、隔室や吸引孔に気泡が付着するこ
とは粒子を操作する上で好ましくない。それぞれの隔室
の電極間の電位を予め測定することにより気泡の有無を
検知し、気泡を除去したり、データ処理上の配慮をする
ことが可能となるので、信頼性の極めて高いマイクロチ
ャンバを提供することができる。Note that for a microchamber plate that positions and handles particles in a liquid, it is undesirable for air bubbles to adhere to compartments or suction holes in terms of particle manipulation. By measuring the potential between the electrodes in each compartment in advance, it is possible to detect the presence or absence of air bubbles, remove air bubbles, and take other considerations in data processing, making it possible to create extremely reliable microchambers. can be provided.
本発明によれば、細胞や粒子の状態を個々に、独立に把
握することができるので、従来、細胞の個体差が大きい
ため人手に頼らざるを得ず自動化することが困難であっ
た細胞融合を、自動的に大量に行えるシステムとするこ
とが可能となったので、細胞工学の大きな発展に寄与で
きる。また、マイクロチャンバプレート上の隔室の配列
は既知であるので、隔室内の粒子や、細胞を番地付け管
理することが容易にでき、種々の処理を施した後の粒子
や、細胞の挙動を個々にコンピュータに取り込み処理す
るなどして、従来、不可能とされていた細胞や遺伝子工
学上の追跡研究等に貢献できる。According to the present invention, the states of cells and particles can be grasped individually and independently, so cell fusion, which was conventionally difficult to automate due to the large individual differences between cells, had no choice but to rely on human hands. Since it has become possible to create a system that can automatically perform large quantities of cell engineering, it can contribute to the major development of cell engineering. In addition, since the arrangement of the compartments on the microchamber plate is known, it is easy to manage the addresses of particles and cells in the compartments, and to check the behavior of particles and cells after various treatments. By individually importing and processing them into a computer, it is possible to contribute to follow-up research on cells and genetic engineering, which was previously considered impossible.
第1図は本発明の第1の実施例の拡大断面の鳥撤図、第
2図は第1の実施例の装置の外観図、第3図は第1の実
施例の配線パターン図、第4図は第2の実施例の配線パ
ターン図、第5図は第2の実施例の拡大断面の鳥馳図、
第6図は本発明の実施例の電極部拡大図、第7図は融合
過程の抵抗特性を示す図、第8図は細胞の破損過程を示
す図である。
符号の説明
10〜21・・配線、101〜203・・隔室、603
・吸引孔、800,801・・・細胞、802,8
03・・・電極、901・・・マイクロチャンバプレー
ト
爾/困
序2ワ
2ρ/′・一岳田脂
2・3一一丸社
/らダ
〆θ..{−,%ll御々、
第5悶
jlJ,メDグ
寒寧ト凸ぢp
第4虐
/ρ
2ρ
.?ク
4ρ
タρ
z0
第2目
by 乙1 乙I 乙◆ tf陸中
叫ムμムト慰FIG. 1 is an enlarged cross-sectional view of the first embodiment of the present invention, FIG. 2 is an external view of the device of the first embodiment, and FIG. 3 is a wiring pattern diagram of the first embodiment. 4 is a wiring pattern diagram of the second embodiment, and FIG. 5 is an enlarged cross-sectional bird's-eye diagram of the second embodiment.
FIG. 6 is an enlarged view of the electrode portion of the embodiment of the present invention, FIG. 7 is a diagram showing the resistance characteristics in the fusion process, and FIG. 8 is a diagram showing the cell breakage process. Explanation of symbols 10-21... Wiring, 101-203... Compartment, 603
・Suction hole, 800, 801...Cell, 802, 8
03...Electrode, 901...Microchamber plate 〈/Kushoku 2wa 2ρ/', Ichitake Taji 2, 3 Ichimarusha/Rada〆θ. .. {-,%ll Gogo, 5th agony jlJ, MeDgukanneitoconvexp 4th torture/ρ 2ρ . ? Ku4ρ Taρ z0 2nd by Otsu 1 Otsu I Otsu
Claims (1)
独立に前記一対の電極間へ電圧を印加する手段とを有す
ることを特徴とするマイクロチャンバプレート。 2、請求項1記載のマイクロチャンバプレートにおいて
、上記一対の電極間の電気抵抗や静電容量や蓄積を検知
する手段を付加してなることを特徴とするマイクロチャ
ンバプレート。 3、請求項2記載のマイクロチャンバプレートを用いて
検出された上記一対の電極間の電気抵抗や静電容量や電
荷から、上記隔室内の粒子の有無または形状を特定する
ことを特徴とする粒子判別方法。 4、請求項2記載のマイクロチャンバプレートに、上記
一対の電極間に粒子を位置決めする手段を付加してなる
ことを特徴とする粒子処理装置。 5、請求項4記載の粒子処理装置において、上記粒子を
細胞としたことを特徴とする細胞処理装置。 6、請求項5記載のマイクロチャンバプレートに、上記
一対の電極間に位置決めされた細胞融合手段を付加して
なることを特徴とする細胞融合装置。 7、請求項6記載の細胞融合装置を用いて融合し培養し
たことを特徴とする細胞。 8、請求項2記載のマイクロチャンバプレートに、上記
隔室内に存在する細胞に微小孔を開ける手段を付加して
なることを特徴とする細胞への遺伝子導入装置。 9、請求項8記載の細胞への遺伝子導入装置において、
上記微小孔を開ける手段としてレーザ光線を用いること
を特徴とする細胞への遺伝子導入装置。 10、請求項8記載の細胞への遺伝子導入装置において
、上記微小孔を開ける手段としてX線を用いることを特
徴とする遺伝子導入装置。 11、請求項5記載の細胞処理装置における細胞を血球
とし、該血球の活性度や変形能を判別する手段を付加し
てなることを特徴とする血球処理装置。[Claims] 1. A microchamber plate characterized by having a plurality of compartments each having a pair of electrodes therein, and means for independently applying a voltage between the pair of electrodes for each compartment. . 2. The microchamber plate according to claim 1, further comprising means for detecting electrical resistance, capacitance, or accumulation between the pair of electrodes. 3. Particles characterized by specifying the presence or absence or shape of particles in the compartment from the electrical resistance, capacitance, or charge between the pair of electrodes detected using the microchamber plate according to claim 2. Discrimination method. 4. A particle processing device comprising the microchamber plate according to claim 2, further comprising means for positioning the particles between the pair of electrodes. 5. The particle processing device according to claim 4, wherein the particles are cells. 6. A cell fusion device comprising the microchamber plate according to claim 5, further comprising cell fusion means positioned between the pair of electrodes. 7. A cell characterized by being fused and cultured using the cell fusion device according to claim 6. 8. A device for introducing genes into cells, characterized in that the microchamber plate according to claim 2 is further provided with means for making micropores in the cells existing in the compartment. 9. The device for gene introduction into cells according to claim 8,
An apparatus for introducing genes into cells, characterized in that a laser beam is used as a means for opening the micropores. 10. The gene introduction device into cells according to claim 8, wherein X-rays are used as means for opening the micropores. 11. A blood cell processing apparatus according to claim 5, wherein the cells are blood cells, and a means for determining the activity and deformability of the blood cells is added.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63283601A JP2829005B2 (en) | 1988-11-11 | 1988-11-11 | Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell |
| US07/425,028 US5183744A (en) | 1988-10-26 | 1989-10-23 | Cell handling method for cell fusion processor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63283601A JP2829005B2 (en) | 1988-11-11 | 1988-11-11 | Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02131569A true JPH02131569A (en) | 1990-05-21 |
| JP2829005B2 JP2829005B2 (en) | 1998-11-25 |
Family
ID=17667618
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63283601A Expired - Fee Related JP2829005B2 (en) | 1988-10-26 | 1988-11-11 | Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2829005B2 (en) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003505072A (en) * | 1999-07-21 | 2003-02-12 | ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア | Cell / tissue analysis by controlled electroporation |
| JP2003505073A (en) * | 1999-07-21 | 2003-02-12 | ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア | Controlled electroporation and cell-mediated membrane mass transport |
| WO2003057819A1 (en) * | 2002-01-07 | 2003-07-17 | Uab Research Foundation | Electroporation cuvette-pipette tips, multi-well cuvette arrays, and electrode template apparatus adapted for automation and uses thereof |
| WO2003096002A1 (en) * | 2002-05-13 | 2003-11-20 | Matsushita Electric Industrial Co., Ltd. | Instrument and method for measuring action signal of biological sample |
| WO2003104788A1 (en) * | 2002-06-05 | 2003-12-18 | 松下電器産業株式会社 | Extracellular potential measuring device and method for fabricating the same |
| JP2004012215A (en) * | 2002-06-05 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Extracellular potential measurement device and method of manufacturing the same |
| JP2004504022A (en) * | 2000-07-14 | 2004-02-12 | ユニバーシティ オブ サウス フロリダ | Electrofusion chamber |
| JP2004069309A (en) * | 2002-08-01 | 2004-03-04 | Matsushita Electric Ind Co Ltd | Extracellular potential measurement device and method of manufacturing the same |
| WO2004050866A1 (en) * | 2002-12-03 | 2004-06-17 | Genetronics, Inc. | Large-scale electroporation plates, systems, and methods of use |
| JP2005156234A (en) * | 2003-11-21 | 2005-06-16 | Matsushita Electric Ind Co Ltd | Extracellular potential measuring device and method for measuring extracellular potential using the same |
| JP2007529215A (en) * | 2004-03-15 | 2007-10-25 | アマクサ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Container and apparatus for generating an electric field in different chambers |
| US7622294B2 (en) | 1997-03-14 | 2009-11-24 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US7736477B2 (en) | 2004-08-25 | 2010-06-15 | Panasonic Corporation | Probe for measuring electric potential of cell |
| US7776193B2 (en) | 2005-12-20 | 2010-08-17 | Panasonic Corporation | Cell electrophysiological sensor |
| KR101015978B1 (en) * | 2008-04-18 | 2011-02-25 | 대한민국 | Fertilized Egg Fusion Plate |
| US8071363B2 (en) | 2006-05-25 | 2011-12-06 | Panasonic Corporation | Chip for cell electrophysiological sensor, cell electrophysiological sensor using the same, and manufacturing method of chip for cell electrophysiological sensor |
| JP2012098036A (en) * | 2010-10-29 | 2012-05-24 | Sony Corp | Sample flow-in apparatus, sample flow-in chip and sample flow-in method |
| US8202439B2 (en) | 2002-06-05 | 2012-06-19 | Panasonic Corporation | Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm |
| US8318477B2 (en) | 2005-06-07 | 2012-11-27 | Panasonic Corporation | Cellular electrophysiological measurement device and method for manufacturing the same |
| US8445263B2 (en) | 2006-07-06 | 2013-05-21 | Panasonic Corporation | Device for cellular electrophysiology sensor, cellular electrophysiology sensor using the device, and method for manufacturing the cellular electrophysiology sensor device |
| US10107804B2 (en) | 2001-03-23 | 2018-10-23 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6363372A (en) * | 1986-09-05 | 1988-03-19 | Hitachi Ltd | Cell fusion device |
| JPS6363397U (en) * | 1986-10-14 | 1988-04-26 | ||
| JPS63160575A (en) * | 1986-12-24 | 1988-07-04 | Norin Suisan Gijutsu Joho Kyokai | Cell fusion apparatus |
| JPS63269977A (en) * | 1987-04-30 | 1988-11-08 | Hitachi Ltd | Cell fusion method |
-
1988
- 1988-11-11 JP JP63283601A patent/JP2829005B2/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6363372A (en) * | 1986-09-05 | 1988-03-19 | Hitachi Ltd | Cell fusion device |
| JPS6363397U (en) * | 1986-10-14 | 1988-04-26 | ||
| JPS63160575A (en) * | 1986-12-24 | 1988-07-04 | Norin Suisan Gijutsu Joho Kyokai | Cell fusion apparatus |
| JPS63269977A (en) * | 1987-04-30 | 1988-11-08 | Hitachi Ltd | Cell fusion method |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7622294B2 (en) | 1997-03-14 | 2009-11-24 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US9377388B2 (en) | 1997-03-14 | 2016-06-28 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US10241026B2 (en) | 1997-03-14 | 2019-03-26 | Trustees Of Tufts College | Target analyte sensors utilizing microspheres |
| JP2003505073A (en) * | 1999-07-21 | 2003-02-12 | ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア | Controlled electroporation and cell-mediated membrane mass transport |
| JP2003505072A (en) * | 1999-07-21 | 2003-02-12 | ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア | Cell / tissue analysis by controlled electroporation |
| JP2004504022A (en) * | 2000-07-14 | 2004-02-12 | ユニバーシティ オブ サウス フロリダ | Electrofusion chamber |
| US10107804B2 (en) | 2001-03-23 | 2018-10-23 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| WO2003057819A1 (en) * | 2002-01-07 | 2003-07-17 | Uab Research Foundation | Electroporation cuvette-pipette tips, multi-well cuvette arrays, and electrode template apparatus adapted for automation and uses thereof |
| JPWO2003096002A1 (en) * | 2002-05-13 | 2005-09-15 | 松下電器産業株式会社 | Biological sample activity signal measuring apparatus and measuring method |
| WO2003096002A1 (en) * | 2002-05-13 | 2003-11-20 | Matsushita Electric Industrial Co., Ltd. | Instrument and method for measuring action signal of biological sample |
| WO2003104788A1 (en) * | 2002-06-05 | 2003-12-18 | 松下電器産業株式会社 | Extracellular potential measuring device and method for fabricating the same |
| JP2004012215A (en) * | 2002-06-05 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Extracellular potential measurement device and method of manufacturing the same |
| US8232084B2 (en) | 2002-06-05 | 2012-07-31 | Panasonic Corporation | Device for measuring extracellular potential and method of manufacturing device |
| US7501278B2 (en) | 2002-06-05 | 2009-03-10 | Panasonic Corporation | Extracellular potential measuring device and method for fabricating the same |
| CN100487456C (en) | 2002-06-05 | 2009-05-13 | 松下电器产业株式会社 | Extracellular potential measuring device and method for manufacturing the same |
| US8202439B2 (en) | 2002-06-05 | 2012-06-19 | Panasonic Corporation | Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm |
| JP2004069309A (en) * | 2002-08-01 | 2004-03-04 | Matsushita Electric Ind Co Ltd | Extracellular potential measurement device and method of manufacturing the same |
| EA009405B1 (en) * | 2002-12-03 | 2007-12-28 | Дженетроникс, Инк. | Large-scale electroporation plates, systems, and methods of use |
| WO2004050866A1 (en) * | 2002-12-03 | 2004-06-17 | Genetronics, Inc. | Large-scale electroporation plates, systems, and methods of use |
| JP2005156234A (en) * | 2003-11-21 | 2005-06-16 | Matsushita Electric Ind Co Ltd | Extracellular potential measuring device and method for measuring extracellular potential using the same |
| US8030059B2 (en) | 2003-11-21 | 2011-10-04 | Panasonic Corporation | Apparatus for measuring extracellular potential |
| US8247218B2 (en) | 2003-11-21 | 2012-08-21 | Panasonic Corporation | Extracellular potential sensing element, device for measuring extracellular potential, apparatus for measuring extracellular potential and method of measuring extracellular potential by using the same |
| JP2007529215A (en) * | 2004-03-15 | 2007-10-25 | アマクサ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Container and apparatus for generating an electric field in different chambers |
| US7736477B2 (en) | 2004-08-25 | 2010-06-15 | Panasonic Corporation | Probe for measuring electric potential of cell |
| US8318477B2 (en) | 2005-06-07 | 2012-11-27 | Panasonic Corporation | Cellular electrophysiological measurement device and method for manufacturing the same |
| US7776193B2 (en) | 2005-12-20 | 2010-08-17 | Panasonic Corporation | Cell electrophysiological sensor |
| US7927474B2 (en) | 2005-12-20 | 2011-04-19 | Panasonic Corporation | Cell electrophysiological sensor |
| US8071363B2 (en) | 2006-05-25 | 2011-12-06 | Panasonic Corporation | Chip for cell electrophysiological sensor, cell electrophysiological sensor using the same, and manufacturing method of chip for cell electrophysiological sensor |
| US8445263B2 (en) | 2006-07-06 | 2013-05-21 | Panasonic Corporation | Device for cellular electrophysiology sensor, cellular electrophysiology sensor using the device, and method for manufacturing the cellular electrophysiology sensor device |
| KR101015978B1 (en) * | 2008-04-18 | 2011-02-25 | 대한민국 | Fertilized Egg Fusion Plate |
| JP2012098036A (en) * | 2010-10-29 | 2012-05-24 | Sony Corp | Sample flow-in apparatus, sample flow-in chip and sample flow-in method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2829005B2 (en) | 1998-11-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH02131569A (en) | Microchamber plate, cell detection method using the same, processing method and device, and cells | |
| US5183744A (en) | Cell handling method for cell fusion processor | |
| Wang et al. | Single-cell electroporation | |
| EP2446259B1 (en) | Method and system for using actuated surface-attached posts for assessing biofluid rheology | |
| US11987785B2 (en) | Microelectrode techniques for electroporation | |
| JP2004500022A (en) | Apparatus and method for introducing a substance into an object | |
| US20020074227A1 (en) | Method for making contact to cells present in a liquid environment above a substrate | |
| WO2019084000A1 (en) | Method and apparatus for electroporation of acoustically-aligned cells | |
| EP2270130A2 (en) | Cell fusion device, and method for cell fusion using the same | |
| US20160187335A1 (en) | Method and device for detecting sample | |
| JP2001183329A (en) | Electrophysiology automatic measuring device and electrophysiology automatic measuring method | |
| JPH10104188A (en) | Zeta potential measuring apparatus | |
| US20080230389A1 (en) | Electrochemical Detector Integrated on Microfabricated Capillary Electrophoresis Chip and Method of Manufacturing the Same | |
| JP2016126003A (en) | Specimen detection method and specimen detection apparatus | |
| Yang et al. | Label-free purification and characterization of optogenetically engineered cells using optically-induced dielectrophoresis | |
| TWI668441B (en) | A self-calibrated heavy metal detector | |
| JP2011104487A (en) | Apparatus for treating fine particle | |
| Lukkari et al. | Multi-purpose impedance-based measurement system to automate microinjection of adherent cells | |
| CN210176871U (en) | Electroporation chips and electroporation systems | |
| JP6538348B2 (en) | Particle measuring device | |
| Park et al. | Capacitive two-dimensional force sensing microcantilever with a conductive tip for characterization of biological samples | |
| US11054409B2 (en) | Method and device for automatically determining the position of a microsystem for manipulating a spherical microobject | |
| JP6238397B2 (en) | Cell space fractionation device and fine structure blade | |
| WO2018025636A1 (en) | Biological sample analysis method and biological sample analysis device | |
| JP6495439B2 (en) | Microfluidic analyzer and microfluidic analysis method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |