JPH02167465A - Ultrasonic flaw inspecting method - Google Patents
Ultrasonic flaw inspecting methodInfo
- Publication number
- JPH02167465A JPH02167465A JP63322859A JP32285988A JPH02167465A JP H02167465 A JPH02167465 A JP H02167465A JP 63322859 A JP63322859 A JP 63322859A JP 32285988 A JP32285988 A JP 32285988A JP H02167465 A JPH02167465 A JP H02167465A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- inspected
- probe
- frequency
- echo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 10
- 230000007547 defect Effects 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 238000002592 echocardiography Methods 0.000 claims description 7
- 238000007689 inspection Methods 0.000 claims description 6
- 239000000523 sample Substances 0.000 abstract description 13
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 230000003595 spectral effect Effects 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/12—Analysing solids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超音波探傷検査方法に関するものであり、さ
らに詳しくは検出欠陥部の正異常の判定を含む超音波探
傷検査方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection inspection method, and more particularly to an ultrasonic flaw detection inspection method that includes determining whether a detected defect is normal or abnormal. .
従来より超音波探傷検査は鋼材、鋼板、溶接部および機
械部品等の内部欠陥検査として広く行われ、近年ではセ
ラミックスに代表される新素材の欠陥検出法としても用
いられている。しかしこれら従来より行われている方法
では、検出された欠陥部の性状を欠陥より反射してくる
エコーの大きさをオシロスコープ等により測定し、その
値より欠陥の大きさを推定したり、被検査体上を自動走
査させることにより欠陥のインジケーションを2次元的
な図に表示し、そのインジケーションの大きさにより欠
陥の大きさを推定するに留まっていた。しかし、内部の
欠陥はその大きさが同等でも、欠陥の性状により強度に
与える影響が全く異なり、特にセラミックスのような脆
性材料ではこれらの差が著しいため、欠陥性状をインジ
ケーションの大きさのみで推定することには問題があっ
た。例えば欠陥を大きさだけで判定すると、実際には強
度に影響しない傷を含む製品を不良としたり、逆に大き
さは小さいが強度上問題のあるクラックを含む製品を良
品と判定したりする可能性があった。Ultrasonic flaw detection has traditionally been widely used to inspect internal defects in steel materials, steel plates, welded parts, machine parts, etc., and in recent years it has also been used as a defect detection method for new materials such as ceramics. However, in these conventional methods, the characteristics of the detected defect are measured by measuring the size of the echo reflected from the defect using an oscilloscope, etc., and the size of the defect is estimated from that value. By automatically scanning the body, the indication of the defect is displayed in a two-dimensional diagram, and the size of the defect can only be estimated based on the size of the indication. However, even if the size of internal defects is the same, the effect on strength is completely different depending on the nature of the defect, and these differences are particularly significant in brittle materials such as ceramics, so it is difficult to judge the defect quality by just the size of the indication. There were problems with estimation. For example, if defects are judged only by size, it is possible to judge a product as defective if it contains scratches that do not actually affect its strength, or to judge a product as good if it contains cracks that are small in size but pose a problem in terms of strength. There was sex.
発明者らは、上記の従来技術の欠点を改良し超音波探傷
検査により検出される欠陥についての欠陥性状を解析し
、検出された欠陥の使用適応上の良否について判定でき
る検査方法について鋭意検討した結果、欠陥部からのエ
コーの周波数成分を解析することにより欠陥の性状を判
定することができることを見出し本発明に至った。The inventors improved the drawbacks of the above-mentioned conventional technology, analyzed the defect characteristics of defects detected by ultrasonic flaw detection, and conducted intensive studies on an inspection method that can determine whether the detected defects are suitable for use or not. As a result, they discovered that the nature of a defect can be determined by analyzing the frequency components of echoes from the defective part, leading to the present invention.
本発明によれば、超音波探傷検査方法において、被検査
体に送信入射した超音波と反射エコーとの周波数成分を
比較解析することを特徴とする超音波探傷検査方法が提
供される。According to the present invention, there is provided an ultrasonic flaw detection and inspection method characterized in that frequency components of ultrasonic waves transmitted and incident on an object to be inspected and reflected echoes are comparatively analyzed.
従来の超音波探傷検査の探傷結果は、プロッターにより
インジケーションで示されるのみであったが、本発明方
法は欠陥に相当するインジケーションに対応する部分で
の反射エコーをスペクトラムアナライザー等で周波数成
分を解析し、欠陥が球状の空孔か、クラック状のものか
等を判定するものである。例えば探触子より送信される
超音波が、探傷周波数50Hzであれば第1図に示すよ
うに50MHzを中心周波数として±30Mt(z程度
の周波数成分を含んでいるが、この入射超音波が平板状
の欠陥で反射すると、反射エコーの周波数成分は、送信
した入射超音波とほぼ同一の周波数成分形状となる。一
方、クラック状の欠陥で反射した場合には、反射エコー
は高周波成分が散乱し高周波成分が小さい形状となり、
空孔のような球状の欠陥では、超音波が表面で反射する
とともに欠陥表面でモード変換し表面を伝播した後に戻
ってくるエコー等が含まれ、中心周波数以外の低周波数
及び高周波数側の画周波数側にもピークを有する形状と
なる。In conventional ultrasonic flaw detection, the results of flaw detection are only shown as indications on a plotter, but the method of the present invention uses a spectrum analyzer to analyze the frequency components of the reflected echoes at the part corresponding to the indication corresponding to the defect. It analyzes and determines whether the defect is a spherical hole or a crack. For example, if the ultrasonic waves transmitted from the probe have a flaw detection frequency of 50 Hz, as shown in Fig. 1, the incident ultrasonic waves When reflected from a crack-like defect, the frequency components of the reflected echo have almost the same frequency component shape as the transmitted incident ultrasound.On the other hand, when reflected from a crack-like defect, the high-frequency components of the reflected echo are scattered. The shape has a small high frequency component,
For spherical defects such as holes, ultrasonic waves are reflected on the surface, mode converted on the defect surface, and echoes that return after propagating on the surface are included, and images at low and high frequencies other than the center frequency are generated. The shape also has a peak on the frequency side.
上記のように、本発明は超音波探傷の被検査体内の欠陥
から反射してくるエコー周波数成分をスペクトラムアナ
ライザー等の周波数解析装置で解析することにより、該
当欠陥の性状を判定することができる。As described above, in the present invention, the nature of the defect can be determined by analyzing the echo frequency component reflected from the defect in the object to be inspected using a frequency analyzer such as a spectrum analyzer.
以下、実施例により本発明をさらに詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
第2図に示したような装置を用いて検査した。The test was carried out using an apparatus as shown in FIG.
窒化珪素で製作した50X50X20mmのブロック1
を用意した。超音波探傷器2、水槽3および探触子を走
査するための走査装置4、および探傷結果を出力するプ
ロッター5を配置した自動走査型超音波探傷装置に探傷
周波数50MHz、焦点距離25mmの水浸焦点型探触
子6を取付けた。またスペクトラムアナライザ7を用意
し、エコーの周波数成分が測定できるように高周波ケー
ブルで超音波探傷器2に接続した。50x50x20mm block 1 made of silicon nitride
prepared. An automatic scanning ultrasonic flaw detector equipped with an ultrasonic flaw detector 2, a water tank 3, a scanning device 4 for scanning the probe, and a plotter 5 for outputting flaw detection results was immersed in water with a flaw detection frequency of 50 MHz and a focal length of 25 mm. A focused probe 6 was attached. A spectrum analyzer 7 was also prepared and connected to the ultrasonic flaw detector 2 with a high frequency cable so that the frequency components of echoes could be measured.
まず窒化珪素製ブロック1を水槽2中にセットし、探触
子6がブロックの真上にくるように調節した。この時、
ブロックの表面より反射してくるエコーをスペクトラム
アナライザにより観察したところ第1図のように中心周
波数が50MHzで、±30MI(zの周波数成分を有
していた。First, a silicon nitride block 1 was set in a water tank 2, and the probe 6 was adjusted so as to be directly above the block. At this time,
When the echo reflected from the surface of the block was observed using a spectrum analyzer, it was found that the center frequency was 50 MHz and had a frequency component of ±30 MI (z) as shown in FIG.
つぎに探触子を走査させ、自動探傷を行ったところプロ
ッターにて第3図のようにいくつかの欠陥らしいインジ
ケーションを検出した。そこでそのインジケーションの
うち、Aのインジケーションの位置に探触子がくるよう
に、窒化珪素製ブロック上で探触子の位置を調整した。Next, when the probe was scanned and automatic flaw detection was performed, several indications that appeared to be defects were detected by the plotter as shown in Figure 3. Therefore, the position of the probe was adjusted on the silicon nitride block so that the probe was placed at the position of indication A among the indications.
この時のインジケーション部でのエコーをスペクトラム
アナライザにて観察したところ、第4図のような50M
Hz付近と30MHz 、 70MHzの3箇所にピー
クを持つ波形を得た。When I observed the echo from the indication section at this time using a spectrum analyzer, I found that it was 50M as shown in Figure 4.
A waveform with peaks near Hz, 30MHz, and 70MHz was obtained.
さらにBのインジケーションの位置に探触子がくるよう
に、窒化珪素製ブロック上で探触子の位置を調整し、こ
の時の欠陥部と推定されるエコーをスペクトラムアナラ
イザにて観察したところ、第5図のような中心周波数3
5MHzでかつ低周波成分に比べ、高周波成分が小さい
波形を得た。Furthermore, I adjusted the position of the probe on the silicon nitride block so that it was at the position of the indication B, and observed the echo, which was presumed to be the defective part, with a spectrum analyzer. Center frequency 3 as shown in Figure 5
A waveform with a frequency of 5 MHz and a high frequency component smaller than a low frequency component was obtained.
窒化珪素製ブロック上でこれら2箇所のインジケーショ
ン部をマークし、ダイヤモンドカッターにてそれぞれそ
の部位を切断したところ、前者は第6図(a)に示す球
状の空孔であったが、後者は第6図(b)に示すクラッ
クであった。When these two indication parts were marked on a silicon nitride block and each part was cut with a diamond cutter, the former was a spherical hole as shown in Figure 6(a), but the latter was a spherical hole. The crack was as shown in FIG. 6(b).
本実施例より明らかのように入射超音波に比し高周波数
成分が小さい場合はクラック状の欠陥を示し、中心周波
数のほか低周波数及び高周波数側にもピークを有する場
合は空孔状欠陥であり、これにより反射エコーの周波数
成分の解析によって被検査体内の欠陥性状の判定ができ
る。As is clear from this example, when the high frequency component is small compared to the incident ultrasonic wave, it indicates a crack-like defect, and when there are peaks on the low and high frequency sides in addition to the center frequency, it is a hole-like defect. This makes it possible to determine the nature of defects within the inspected object by analyzing the frequency components of reflected echoes.
従来の超音波探傷検査では単に被検査体内の欠陥の有無
が検出されるものであったのに対し、本発明の方法は、
欠陥の性状も判定できる超音波探傷検査方法である。本
発明の方法により、被検査体内の欠陥の性状を判定し、
被検査体の使用目的に応し、良否を判断することができ
るようになる。While conventional ultrasonic flaw detection simply detects the presence or absence of defects within the inspected object, the method of the present invention
This is an ultrasonic inspection method that can also determine the nature of defects. By the method of the present invention, the nature of defects in the inspected object is determined,
It becomes possible to judge whether the object to be inspected is good or bad depending on the purpose of use.
第1図、第4図及び第5図は、周波数成分波形を示した
図、第2図は本発明の一実施例の説明図、第3図は超音
波探傷検査結果を示すプロッター図、第6図(a)及び
(b)は被検査体内の欠陥形状断面図である。
■・・・窒化珪素製ブロック、2・・・超音波探傷器、
3・・・水槽、4・・・走査装置、5・・・プロッター
6・・・探触子、7・・・スペクトラムアナライザ。1, 4, and 5 are diagrams showing frequency component waveforms, FIG. 2 is an explanatory diagram of an embodiment of the present invention, and FIG. 3 is a plotter diagram showing the results of ultrasonic flaw detection. FIGS. 6(a) and 6(b) are cross-sectional views of defect shapes inside the object to be inspected. ■...Silicon nitride block, 2...Ultrasonic flaw detector,
3...Aquarium, 4...Scanning device, 5...Plotter 6...Probe, 7...Spectrum analyzer.
Claims (2)
射した超音波と反射エコーとの周波数成分を比較解析し
被検査体の欠陥性状を判定することを特徴とする超音波
探傷検査方法。(1) An ultrasonic flaw detection and inspection method characterized in that the frequency components of the ultrasonic waves transmitted and incident on the object to be inspected and the reflected echoes are comparatively analyzed to determine the defect properties of the object to be inspected.
の場合には平板状の欠陥、反射エコーが入射超音波の周
波数成分に比し高周波数成分が小さい場合にはクラック
状欠陥、反射エコーが中心周波数以外に低周波数及び高
周波数側にピークを有する場合には空孔状欠陥と判定す
る請求項1記載の超音波探傷検査方法。(2) If the frequency component of the reflected echo is almost the same as the frequency component of the incident ultrasonic wave, it is a plate-like defect, and if the high frequency component of the reflected echo is smaller than the frequency component of the incident ultrasonic wave, it is a crack-like defect. 2. The ultrasonic flaw detection method according to claim 1, wherein the defect is determined to be a hole-like defect if it has a peak at a low frequency and a high frequency side other than the center frequency.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63322859A JPH02167465A (en) | 1988-12-21 | 1988-12-21 | Ultrasonic flaw inspecting method |
| EP19890313347 EP0377986A3 (en) | 1988-12-21 | 1989-12-20 | Ultrasonic testing method |
| US07/454,404 US5001674A (en) | 1988-12-21 | 1989-12-21 | Ultrasonic testing method |
| US07/639,517 US5228004A (en) | 1988-12-21 | 1991-01-10 | Ultrasonic testing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63322859A JPH02167465A (en) | 1988-12-21 | 1988-12-21 | Ultrasonic flaw inspecting method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02167465A true JPH02167465A (en) | 1990-06-27 |
Family
ID=18148403
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63322859A Pending JPH02167465A (en) | 1988-12-21 | 1988-12-21 | Ultrasonic flaw inspecting method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02167465A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9970905B2 (en) | 2013-08-30 | 2018-05-15 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | System and method for defect monitoring |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56147082A (en) * | 1980-04-17 | 1981-11-14 | Yoshinori Hayakawa | Method and device for quantitative ultrasonic inspection using plural frequencies |
| JPS6036038A (en) * | 1983-08-08 | 1985-02-25 | アロカ株式会社 | Ultrasonic diagnostic apparatus |
| JPS61207964A (en) * | 1985-03-12 | 1986-09-16 | Hitachi Electronics Eng Co Ltd | Object inspecting device by reflected sound wave |
| JPS6486059A (en) * | 1987-09-29 | 1989-03-30 | Hitachi Construction Machinery | Ultrasonic measurement system |
-
1988
- 1988-12-21 JP JP63322859A patent/JPH02167465A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56147082A (en) * | 1980-04-17 | 1981-11-14 | Yoshinori Hayakawa | Method and device for quantitative ultrasonic inspection using plural frequencies |
| JPS6036038A (en) * | 1983-08-08 | 1985-02-25 | アロカ株式会社 | Ultrasonic diagnostic apparatus |
| JPS61207964A (en) * | 1985-03-12 | 1986-09-16 | Hitachi Electronics Eng Co Ltd | Object inspecting device by reflected sound wave |
| JPS6486059A (en) * | 1987-09-29 | 1989-03-30 | Hitachi Construction Machinery | Ultrasonic measurement system |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9970905B2 (en) | 2013-08-30 | 2018-05-15 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | System and method for defect monitoring |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2679123C (en) | Calibration method of ultrasonic flaw detection and quality control method and manufacturing method of pipe body | |
| US7010982B2 (en) | Method of ultrasonically inspecting airfoils | |
| US20050223807A1 (en) | Method for ultrasonic control of weld joints | |
| US9074927B2 (en) | Methods for non-destructively evaluating a joined component | |
| CN104792872A (en) | Ultrasonic detection method of sheet metal | |
| CA2258913C (en) | Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack | |
| EP3940338B1 (en) | Characterizing internal structures via ultrasound | |
| CN110596142A (en) | Defect detection method and system based on terahertz imaging | |
| CN111458415B (en) | Method for detecting coupling state of ultrasonic phased array transducer and workpiece to be detected | |
| JPH02167465A (en) | Ultrasonic flaw inspecting method | |
| JP5061891B2 (en) | Crack depth measurement method | |
| Anandika et al. | Non-destructive measurement of artificial near-surface cracks for railhead inspection | |
| US4380929A (en) | Method and apparatus for ultrasonic detection of near-surface discontinuities | |
| JP2004163210A (en) | Method and apparatus for evaluating spot welds by ultrasonic waves | |
| Hesse et al. | Defect detection in rails using ultrasonic surface waves | |
| JP2002214207A (en) | Method for inspecting welded part and ultrasonic flaw detector | |
| KR100485450B1 (en) | Ultrasonic testing apparatus and control method therefor | |
| JPS6229023B2 (en) | ||
| JPH05288723A (en) | Pitch-catch type ultrasonic flaw examination | |
| Prabhakaran et al. | Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods | |
| KR920007199B1 (en) | Nondestructive inspection method and apparatus | |
| JP3662231B2 (en) | Inspection method for steel drums | |
| JP3473435B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
| CN108375590A (en) | The online lossless detection method of universal joint surface casting flaw | |
| RU2812181C1 (en) | Method for ultrasonic non-destructive testing of nitride ceramic products for presence of defects |