JPH02174180A - Manufacture of distributed reflection type semiconductor laser - Google Patents
Manufacture of distributed reflection type semiconductor laserInfo
- Publication number
- JPH02174180A JPH02174180A JP32862588A JP32862588A JPH02174180A JP H02174180 A JPH02174180 A JP H02174180A JP 32862588 A JP32862588 A JP 32862588A JP 32862588 A JP32862588 A JP 32862588A JP H02174180 A JPH02174180 A JP H02174180A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thickness
- active waveguide
- waveguide layer
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000010410 layer Substances 0.000 claims abstract description 84
- 239000011241 protective layer Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000012808 vapor phase Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000005253 cladding Methods 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 28
- 230000003287 optical effect Effects 0.000 abstract description 5
- 238000010276 construction Methods 0.000 abstract 2
- 238000002425 crystallisation Methods 0.000 abstract 1
- 230000008025 crystallization Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000003486 chemical etching Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1分布反射型半導体レーザの製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a monodistribution reflection type semiconductor laser.
従来よりこの種の分布反射型半導体レーザは、ギガビッ
ト/秒レベルの超高速変調時においても安定した単一モ
ード動作を示すことから、長距離。Traditionally, this type of distributed reflection semiconductor laser has demonstrated stable single-mode operation even during ultra-high-speed modulation at the gigabit/second level, making it suitable for long distances.
大容量光ファイバ通信用光源として有望視されている。It is seen as a promising light source for large-capacity optical fiber communications.
また、この種の分布反射型半導体レーザのうちで、波長
制御機能等を付加した高性能な分布反射型半導体レーザ
の製造にあたっては、回折格子を結晶内に形成し、かつ
制御用電極を具備した低損失な非活性導波路層を、活性
導波路層と突き合わせて整合的に結合させることが必要
である。In addition, among this type of distributed reflection semiconductor lasers, in manufacturing high-performance distributed reflection semiconductor lasers with added wavelength control functions, it is necessary to form a diffraction grating in the crystal and provide a control electrode. It is necessary to match and bond a low loss non-active waveguide layer with an active waveguide layer.
東盛らば、第6図に示すように、半導体基板31上のス
トライプ状の所定領域32に活性導波路層と厚さが当該
活性導波路層と光学的に整合して結合する非活性導波路
層の厚さから該活性導波路層の厚さを減じたものと略等
しい保護層とを順次積層させてなる積層構造を形成し、
半導体基板上の積層構造を形成した領域以外の領域のみ
に厚さが当該積層構造と略等しく上面が略平坦な非活性
導波路層を気相エピタキシャル成長法により形成し。As shown in FIG. 6, Tomori et al. formed an active waveguide layer in a predetermined stripe-shaped region 32 on a semiconductor substrate 31 with an inactive waveguide whose thickness optically matches that of the active waveguide layer. A layered structure is formed by sequentially layering a protective layer that is approximately equal to the thickness of the layer minus the thickness of the active waveguide layer,
An inactive waveguide layer having a thickness substantially equal to that of the layered structure and having a substantially flat top surface is formed by vapor phase epitaxial growth only in regions other than the region where the layered structure is formed on the semiconductor substrate.
前記保護層及び非活性導波路層の上面に回折格子を形成
し、さらに前記回折格子の上面に前記保護層と同一材料
からなるクラッド層を形成することによって問題の解決
を図ろうとした(特願昭62−178978号)。An attempt was made to solve this problem by forming a diffraction grating on the upper surface of the protective layer and the inactive waveguide layer, and further forming a cladding layer made of the same material as the protective layer on the upper surface of the diffraction grating. (Sho 62-178978).
しかしながら、前記の従来技術では、結合部分において
非活性導波路層の厚みが徐々に変化しており、上面に回
折格子を形成しようとする場合に均一な回折格子が形成
できず、また、結合部分における非活性導波路層の結晶
性の良いものが得にくいという問題があった。However, in the above-mentioned conventional technology, the thickness of the non-active waveguide layer gradually changes at the coupling portion, making it impossible to form a uniform diffraction grating when attempting to form a diffraction grating on the top surface. There was a problem in that it was difficult to obtain a non-active waveguide layer with good crystallinity.
すなわち、結合部分において非活性導波路層の厚みが均
一でなく、結晶性が悪いために、前記結合部分において
反射散乱がおこり、そのための損失を生じるだけでなく
、光出力の低下やレーザしきい値の上昇をきたすという
問題があった。In other words, since the thickness of the non-active waveguide layer is not uniform in the coupling part and the crystallinity is poor, reflection and scattering occurs in the coupling part, which not only causes loss but also decreases the optical output and increases the laser threshold. There was a problem in that the value increased.
また、素子の信頼性にも問題が出る可能性がある。Furthermore, there is a possibility that a problem may arise in the reliability of the device.
本発明は、前記問題点を解決するためになされたもので
ある。The present invention has been made to solve the above problems.
本発明の目的は、結合部分における非活性導波路の厚み
の不均一性をできるだけ排除することができる技術を提
供することにある。An object of the present invention is to provide a technique that can eliminate as much as possible the non-uniformity of the thickness of the non-active waveguide in the coupling portion.
本発明の他の目的は、結晶性を向上させることにより異
種導波路間の結合を高め、高性能化を図ることができる
技術を提供することにある。Another object of the present invention is to provide a technique that can enhance the coupling between different types of waveguides by improving crystallinity and achieve higher performance.
本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
前記目的を達成するために、本発明は、分布反射型半導
体レーザの製造方法において、第1の導電型を有する半
導体基板上に活性導波路層と、該活性導波路層と光学的
に整合して結合する非活性導波路層と、該非活性導波路
層の厚さから前記活性導波路層の厚さを減じたものと略
等しい厚さの保護層とを順次積層させてなる積層構造を
形成する第1の工程と、前記半導体基板上の当該積層構
造上に島状の所定領域を形成し、島状の所定領域以外の
該積層構造を除去し、島状の所定領域にのみ当該積層構
造を形成する第2の工程と、前記半導体基板上の当該積
層構造を形成した領域以外の領域のみに厚さが当該積層
構造と略等しく上面が略平坦な非活性導波路層を気相エ
ピタキシャル成長法により形成する第3の工程と、前記
保護層及び非活性導波路層の上面に回折格子を形成する
第4の工程と、前記回折格子の上面に前記保護層と同一
材料からなる第2の導電型を有するクラッド層を形成す
る第5の工程を備えたことを最も主要な特徴とする。To achieve the above object, the present invention provides a method for manufacturing a distributed reflection semiconductor laser, including an active waveguide layer on a semiconductor substrate having a first conductivity type, and an active waveguide layer optically aligned with the active waveguide layer. A laminated structure is formed by sequentially laminating an inactive waveguide layer that is coupled to the inactive waveguide layer, and a protective layer having a thickness substantially equal to the thickness of the inactive waveguide layer minus the thickness of the active waveguide layer. forming a predetermined island-like region on the laminated structure on the semiconductor substrate, removing the laminated structure other than the predetermined island-like region, and adding the laminated structure only to the predetermined island-like region; a second step of forming a non-active waveguide layer having a thickness substantially equal to that of the multilayer structure on the semiconductor substrate other than the region where the multilayer structure is formed, and forming an inactive waveguide layer having a substantially flat upper surface by vapor phase epitaxial growth. a fourth step of forming a diffraction grating on the upper surface of the protective layer and the inactive waveguide layer; and a second conductive layer made of the same material as the protective layer on the upper surface of the diffraction grating. The most important feature is that it includes a fifth step of forming a cladding layer having a mold.
前述の手段によれば、気相エピタキシャル成長にあって
は、半導体基板面上における成長種の移動(マイグレー
ション)が速やかであり、平坦性が良好である。Sun
、等のマスクを利用した選択成長にあっても、マスク上
に到来した成長種は速やかに半導体基板上(マスクに覆
われていない領域)に移動し、さらにマスク端部近傍と
マスクからはなれた点における成長種の濃度勾配を抑制
する効果が顕著である。According to the above-mentioned means, in vapor phase epitaxial growth, migration of growth species on the surface of the semiconductor substrate is rapid and flatness is good. Sun
Even in selective growth using a mask such as , etc., the growing species that arrive on the mask quickly move onto the semiconductor substrate (area not covered by the mask), and then move to the vicinity of the edge of the mask and away from the mask. The effect of suppressing the concentration gradient of growing species at a point is remarkable.
したがって、上面が平坦な選択成長層が得られる。しか
し、半導体基板上に占めるマスクの面積が大きいとこれ
らの効果が得にくくなるため、マスク面積をできるだけ
小さくすることにより、その効果は一段と顕著となる。Therefore, a selectively grown layer with a flat top surface can be obtained. However, if the mask area occupied on the semiconductor substrate is large, it becomes difficult to obtain these effects, so by making the mask area as small as possible, the effects become even more remarkable.
以下1本発明の一実施例を図面を用いて具体的に説明す
る。An embodiment of the present invention will be specifically described below with reference to the drawings.
なお、実施例を説明するための全回において、同一機能
を有するものは同一符号を付け、その繰り返しの説明は
省略する。Note that throughout the description of the embodiments, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.
第1図は、本発明を適用して作製された分布反射型半導
体レーザの実施例Iの概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of Example I of a distributed reflection semiconductor laser manufactured by applying the present invention.
第1図において、1はn型InP基板、2は波長λ0が
1.55 μmのInGaAsp活性導波路層、3は波
長λ。が163μmのn型InGaAsP非活性導波路
層、4はp型InPクラッド層、5はp″″型InGa
AsPキャップ層、6はp型InP電流ブロック層、7
はn型InP電流閉じ込め層、8はn型電極、9はp型
電極、10はピッチ層約2400人、深さ約500人の
回折格子、11は前記活性導波路層2と非活性導波路層
3との結合部である。In FIG. 1, 1 is an n-type InP substrate, 2 is an InGaAsp active waveguide layer with a wavelength λ0 of 1.55 μm, and 3 is a wavelength λ. is a 163 μm n-type InGaAsP non-active waveguide layer, 4 is a p-type InP cladding layer, and 5 is a p''''-type InGa layer.
AsP cap layer, 6 p-type InP current blocking layer, 7
is an n-type InP current confinement layer, 8 is an n-type electrode, 9 is a p-type electrode, 10 is a diffraction grating with a pitch layer of about 2,400 layers and a depth of about 500 layers, and 11 is the active waveguide layer 2 and the inactive waveguide. This is the joint part with layer 3.
なお、前記波長λ。は、媒質のバンドギャップ波長を示
すものである。Note that the wavelength λ. indicates the bandgap wavelength of the medium.
活性導波路層2を含む活性領域101と、回折格子10
及び非活性導波路層3を有する分布反射(DBR)領域
102.103と、非活性導波路層3を有する位相調整
領域104とは電気的に分離されている。An active region 101 including an active waveguide layer 2 and a diffraction grating 10
A distributed reflection (DBR) region 102, 103 with a non-active waveguide layer 3 and a phase adjustment region 104 with a non-active waveguide layer 3 are electrically separated.
第2A図〜第2F図は、第1図に示す分布反射型半導体
レーザを本発明の製造方法を適用して作製する実施例■
を示す製造工程の要部断面図である。FIGS. 2A to 2F show an example of fabricating the distributed reflection semiconductor laser shown in FIG. 1 by applying the manufacturing method of the present invention.
FIG.
本実施例■の分布反射型半導体レーザの製造方法は、ま
ず、第2A図に示すように、n型InP基板1上の全面
にわたって、InGaAsPからなる活性導波路層(厚
さ0.15μm、バンドギャップの波長λ。1.55μ
m)2、InPからなる保護層(厚さ0.1μm)3A
を有機金属気相エピタキシャル成長(MOVPE)法を
用いて順次接層形成する。As shown in FIG. 2A, the method for manufacturing the distributed reflection type semiconductor laser of Example 2 is as follows: First, as shown in FIG. 2A, an active waveguide layer (0.15 μm thick, band Gap wavelength λ: 1.55μ
m) 2, protective layer made of InP (thickness 0.1 μm) 3A
are successively formed in contact with each other using a metal organic vapor phase epitaxial growth (MOVPE) method.
次いで、第2B図に示すように、このn型InP基板1
の所定領域とする保護層3A上に、SiO□マスク3B
を1例えば、スパッタリング法及びフォトリングラフィ
法を用いて形成し、このSiO□マスク3Bと、例えば
、化学エツチング法とにより前記活性導波路層2及び保
護層3Aの不用部分を除去して、第2B図に示すような
(011)方向に長さ約200μm、幅約40μmの島
状領域(3B)を形成する。Next, as shown in FIG. 2B, this n-type InP substrate 1
A SiO□ mask 3B is placed on the protective layer 3A as a predetermined area.
1 using, for example, a sputtering method and a photolithography method, and unnecessary portions of the active waveguide layer 2 and the protective layer 3A are removed using this SiO□ mask 3B and, for example, a chemical etching method. An island region (3B) having a length of about 200 μm and a width of about 40 μm is formed in the (011) direction as shown in FIG. 2B.
次に、第2C図に示すように、前記5in2マスク3B
を選択成長マスクとして前記島状領域以外の領域にのみ
ノンドープ1nGaAsPからなる非活性導波路層(厚
さ0.25μm、バンドギャップの波長1.3μm)3
をMOVPE法を用いて形成する。Next, as shown in FIG. 2C, the 5in2 mask 3B
As a selective growth mask, an inactive waveguide layer (thickness 0.25 μm, band gap wavelength 1.3 μm) 3 made of non-doped 1nGaAsP is grown only in regions other than the island-like region.
is formed using the MOVPE method.
この場合、形成条件として反応炉内の圧力を約50 T
orrと大気圧に比べて極めて低くしているので、原料
ガスがn型InP基板1面上で速やかに移動し。In this case, the pressure inside the reactor is set to about 50 T as a forming condition.
Since the orr is extremely low compared to atmospheric pressure, the raw material gas moves quickly on one surface of the n-type InP substrate.
平坦な成長面が得られる効果が一層促進される。The effect of obtaining a flat growth surface is further promoted.
従って、前記SiO□マスク3B上に成長は起こらず、
第2C図に示すような平坦な成長表面が得られる。Therefore, no growth occurs on the SiO□ mask 3B,
A flat growth surface as shown in FIG. 2C is obtained.
次に、SiO□マスク3BをHF等で除去した後、第2
D図に示すように、保護層3A及び非活性導波路層3の
全面にわたって二束干渉露光法と化学エツチング法とを
用いてピッチ約2400人、深さ約500人の回折格子
10を形成する。この場合、前記保護層3A及び非活性
導波路層3の上面をMOVPE法により平坦とすること
ができる。Next, after removing the SiO□ mask 3B with HF or the like, the second
As shown in Figure D, a diffraction grating 10 with a pitch of about 2,400 gratings and a depth of about 500 gratings is formed over the entire surface of the protective layer 3A and the inactive waveguide layer 3 using a two-beam interference exposure method and a chemical etching method. . In this case, the upper surfaces of the protective layer 3A and the inactive waveguide layer 3 can be made flat by the MOVPE method.
次に、第2E図に示すように、回折格子10上にp型I
nPからなるクラッド層(厚さ2.0μm)4をMOV
PE法等により形成する。この場合、前記クラッド層4
は、前記保護層3Aと同じInPを用いているために、
保護層SA上に形成された回折格子10は、第2F図に
示すように、実質的に消失したものと同様となる。Next, as shown in FIG. 2E, p-type I is placed on the diffraction grating 10.
MOV the cladding layer (thickness 2.0 μm) 4 made of nP
Formed by PE method or the like. In this case, the cladding layer 4
Since the same InP as the protective layer 3A is used,
The diffraction grating 10 formed on the protective layer SA is essentially the same as that which has disappeared, as shown in FIG. 2F.
最後に、横モード制御のための埋め込み構造をドライエ
ツチング法とMOVPE法とにより形成し、第1図に示
すように、活性導波路層2を含む活性領域101と1回
折格子10及び非活性導波路層3を有する分布反射(D
BR)領域102.103と。Finally, a buried structure for transverse mode control is formed by dry etching and MOVPE, and as shown in FIG. Distributed reflection (D
BR) area 102.103.
非活性導波路層3を有する位相調整領域104とを電気
的に分離して、p型電極とn型電極をそれぞれ形成して
分布反射型レーザ素子として完成する。The phase adjustment region 104 having the inactive waveguide layer 3 is electrically separated, and a p-type electrode and an n-type electrode are respectively formed to complete a distributed reflection type laser device.
このような方法により製作さ九た分布反射型半導体レー
ザ素子において、第3゛図(分布反射型レーザの電流−
光出力特性を示す図)に示すように、室温連続発振時に
光出力30mW、微分量子効率0.29W/Aが得られ
た。また、隣接モードの抑圧比は、40dB程度あり、
スペクトル線幅2MHz程度の安定した単一モード発振
が得られた。In a distributed reflection type semiconductor laser device manufactured by such a method, Fig. 3 (distributed reflection type laser current -
As shown in FIG. 2), an optical output of 30 mW and a differential quantum efficiency of 0.29 W/A were obtained during continuous oscillation at room temperature. In addition, the suppression ratio of adjacent modes is about 40 dB,
Stable single mode oscillation with a spectral linewidth of about 2 MHz was obtained.
第4図は1本発明を適用して作製された分布反対型半導
体レーザの実施例■の要部概略構成を示す断面図である
。FIG. 4 is a cross-sectional view showing a schematic configuration of a main part of Example 2 of an anti-distribution type semiconductor laser manufactured by applying the present invention.
本実施例■の分布反射型半導体レーザと本実施例■どの
布反射型半導体レーザとの異なる点は、第4図に示すよ
うに、前記活性領域101の両端側に前記回折格子10
及び非活性導波路層3を有する分布反射領域102と同
じ積層構造を有する分布反射領域103を有している点
である。The difference between the distributed reflection type semiconductor laser of this embodiment (2) and the fabric reflection type semiconductor laser of this embodiment (2) is that, as shown in FIG.
and a distributed reflection region 103 having the same laminated structure as the distributed reflection region 102 having the inactive waveguide layer 3.
この構造を有する素子においては、狭いスペクトル線幅
を実現することができる。In an element having this structure, a narrow spectral linewidth can be achieved.
第5A図〜第5F図は、第4図に示す分布反射型半導体
レーザを本発明の製造方法を適用して作製する実施例■
を示す製造工程の要部断面図である。5A to 5F show an example of manufacturing the distributed reflection semiconductor laser shown in FIG. 4 by applying the manufacturing method of the present invention.
FIG.
本実施例■の分布反射型半導体レーザの製造方法は、前
記本実施例■の分布反射型半導体レーザの製造方法と同
様に、まず、第5A図に示すように、n型InP基板1
上の全面にわたって、InGaAsPからなる活性導波
路層(厚さ0.15μm、バンドギャップの波長1.5
5μm)2、InPからなる保護層(厚さ0.1μm)
3Aを有機金属気相エピタキシャル成長(MOVPE)
法を用いて順次積層形成する。The method for manufacturing the distributed reflection type semiconductor laser of this embodiment (2) is similar to the method of manufacturing the distributed reflection type semiconductor laser of this example (2), in which first, as shown in FIG. 5A, an n-type InP substrate is
An active waveguide layer made of InGaAsP (thickness 0.15 μm, bandgap wavelength 1.5
5 μm) 2. Protective layer made of InP (thickness 0.1 μm)
3A by metal organic vapor phase epitaxial growth (MOVPE)
They are sequentially laminated using a method.
次いで、第5B図に示すように、このn型InP基板1
の所定領域とする保護層3A上に、 5in2マスク3
Bを例えばスパッタリング法及びフォトリングラフィ法
を用いて形成し、この5in2マスク3Bと例えば化学
エツチング法とにより前記活性導波路層2及び保護層3
Aの不用部分を除去して、第5B図に示すようなく01
1>方向に長さ約200μm、幅約40μmの島状領域
(3B)を形成する。Next, as shown in FIG. 5B, this n-type InP substrate 1
A 5in2 mask 3 is placed on the protective layer 3A as a predetermined area.
B is formed using, for example, a sputtering method and a photolithography method, and the active waveguide layer 2 and the protective layer 3 are formed using this 5in2 mask 3B and, for example, a chemical etching method.
Remove the unnecessary part of A and make it as shown in Figure 5B.
An island region (3B) having a length of about 200 μm and a width of about 40 μm is formed in the 1> direction.
次に、第5C図に示すように、前記SiO□マスク3B
を選択成長マスクとして前記島状領域以外の領域にのみ
ノンドープInGaAsPからなる非活性導波路層(厚
さ0.25μm、バンドギャップの波長1.3μm)3
をMOVPE法を用いて形成する。Next, as shown in FIG. 5C, the SiO□ mask 3B
As a selective growth mask, an inactive waveguide layer (thickness 0.25 μm, band gap wavelength 1.3 μm) 3 made of non-doped InGaAsP is formed only in regions other than the island-like region.
is formed using the MOVPE method.
この場合、形成条件として反応炉内の圧力を約50 T
orrと大気圧に比べて極めて低くしているので。In this case, the pressure inside the reactor is set to about 50 T as a forming condition.
Because it is extremely low compared to orr and atmospheric pressure.
原料ガスがn型InP基板1面上で速やかに移動し、平
坦な成長面が得られる効果が一層促進される。The raw material gas moves quickly on the surface of the n-type InP substrate, further promoting the effect of obtaining a flat growth surface.
従って、前記SiO□マスク3B上に成長は起こらず、
第5C図に示すような平坦な成長表面が得られる。Therefore, no growth occurs on the SiO□ mask 3B,
A flat growth surface as shown in FIG. 5C is obtained.
次に、 5un2マスク3BをHF等で除去した後、第
5D図に示すように、保護層3A及び非活性導波路層3
の全面にわたって二束干渉露光法と化学エツチング法と
を用いてピッチ約2400人、深さ約500人の回折格
子10を形成する。この場合。Next, after removing the 5un2 mask 3B with HF or the like, as shown in FIG. 5D, the protective layer 3A and the inactive waveguide layer 3 are removed.
A diffraction grating 10 with a pitch of about 2,400 and a depth of about 500 is formed over the entire surface using a two-bundle interference exposure method and a chemical etching method. in this case.
前記保護層3A及び非活性導波路層3の上面をMOVP
E法により平坦とすることができる。MOVP the upper surfaces of the protective layer 3A and the inactive waveguide layer 3.
It can be made flat by the E method.
次に、第5E図に示すように、回折格子10上にp型丁
nPからなるクラッド層(厚さ2.0μm) 4をMO
VPE法等により形成する。この場合、前記クラッド層
4は、前記保護層3Aと同じInPを用いているために
、保護層3A上に形成された回折格子10は、第5F図
に示すように、実質的に消失したものと同様となる。Next, as shown in FIG. 5E, a cladding layer (thickness 2.0 μm) 4 made of p-type nP is formed on the diffraction grating 10.
Formed by VPE method or the like. In this case, since the cladding layer 4 uses the same InP as the protective layer 3A, the diffraction grating 10 formed on the protective layer 3A has virtually disappeared, as shown in FIG. 5F. It is the same as.
このようにして製作された分布反射型半導体レーザ素子
において、第3図(分布反射型レーザの電流−光出力特
性を示す図)に示すように、室温連続発振時に光出力3
0mW、微分量子効率0゜29W/Aが得られた。また
、隣接モードの抑圧比は、40dB程度あり、スペクト
ル線幅2MH2程度の安定した単一モード発振が得られ
た。In the distributed reflection type semiconductor laser device manufactured in this way, as shown in Fig. 3 (a diagram showing the current-light output characteristics of the distributed reflection type laser), the optical output is 3 when continuous oscillation is performed at room temperature.
0 mW and a differential quantum efficiency of 0°29 W/A were obtained. Further, the suppression ratio of adjacent modes was about 40 dB, and stable single mode oscillation with a spectral line width of about 2 MH2 was obtained.
以上1本発明を実施例にもとづき具体的に説明したが、
本発明は、前記実施例に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更可能であること
は言うまでもない。The present invention has been specifically explained above based on examples, but
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the spirit thereof.
以上、説明したように、本発明によれば、マスク面積を
最小にすることで気相エピタキシャル法により、活性導
波路層と、上部に均一なピッチ。As described above, according to the present invention, the active waveguide layer and the upper part can be formed with a uniform pitch by vapor phase epitaxial method by minimizing the mask area.
深さの回折格子を形成した非活性導波路層とを光学的に
整合して突き合わせて結合することにより、結合部分で
の光学的な反射散乱、電気的なリークの発生がなくなる
ため、高性能な分布反射型半導体レーザを得ることがで
きる。By optically matching and butt-coupling the inactive waveguide layer with a deep diffraction grating formed thereon, optical reflection scattering and electrical leakage at the coupling part are eliminated, resulting in high performance. A distributed reflection type semiconductor laser can be obtained.
第1図は、本発明を適用して作製された分布反射型半導
体レーザの実施例■の概略構成を示す斜親図、
第2A図〜第2F図は、第1図に示す分布反射型半導体
レーザを本発明の製造方法を適用して作製する実施例I
を示す製造工程の要部断面図、第3図は、本発明による
分布反射型半導体レーザの製造方法により作製された分
布反射型レーザの電流−光出力特性を示す図。
第4図は、本発明を適用して作製された分布反射型半導
体レーザの実施例Hの要部概a!8構成を示す断面図、
第5A図〜第5F図は、第4図に示す分布反射型半導体
レーザを本発明の製造方法を適用して作製する実施例■
を示す製造工程の要部断面図。
第6図は、従来の分布反射型レーザの製作時におけるマ
スクパターンを示す図である。
図中、1・・・n形InP基板、2・・・InGaAg
P活性導波路層、3・・・n型InGaAsP非活性導
波路層、3A・・・InP保護層、3B・・・Sun、
マスク、4・・・p型InPクラット層、5・・・P゛
型InGaAsPキャップ層、6・・・p型■nP電流
ブロック層、7・・・n型InP電流閉じ込め層、8・
・・n型電極、9・・・P種電極、10・・・回折格子
、11・・活性導波路層と非活性導波路層との結合部、
101・・・活性領域、 102.103・・・分布反
射領域、104・・位相調整領域。FIG. 1 is a perspective view showing the schematic structure of Example 2 of a distributed reflection semiconductor laser manufactured by applying the present invention, and FIGS. 2A to 2F are distributed reflection semiconductor lasers shown in FIG. 1. Example I of manufacturing a laser by applying the manufacturing method of the present invention
FIG. 3 is a cross-sectional view of a main part of the manufacturing process showing the current-optical output characteristics of a distributed reflection laser manufactured by the method for manufacturing a distributed reflection semiconductor laser according to the present invention. FIG. 4 is an outline of the main part of Example H of a distributed reflection type semiconductor laser manufactured by applying the present invention. 8. FIGS. 5A to 5F are cross-sectional views showing the structure of FIG.
FIG. FIG. 6 is a diagram showing a mask pattern when manufacturing a conventional distributed reflection laser. In the figure, 1... n-type InP substrate, 2... InGaAg
P active waveguide layer, 3... n-type InGaAsP inactive waveguide layer, 3A... InP protective layer, 3B... Sun,
Mask, 4... p-type InP crat layer, 5... P-type InGaAsP cap layer, 6... p-type nP current blocking layer, 7... n-type InP current confinement layer, 8...
... n-type electrode, 9 ... P-type electrode, 10 ... diffraction grating, 11 ... coupling part between active waveguide layer and inactive waveguide layer,
101... Active region, 102.103... Distributed reflection region, 104... Phase adjustment region.
Claims (1)
層と、該活性導波路層と光学的に整合して結合する非活
性導波路層と、該非活性導波路層の厚さから前記活性導
波路層の厚さを減じたものと略等しい厚さの保護層とを
順次積層させてなる積層構造を形成する第1の工程と、
前記半導体基板上の当該積層構造上に島状の所定領域を
形成し、島状の所定領域以外の該積層構造を除去し、島
状の所定領域にのみ当該積層構造を形成する第2の工程
と、前記半導体基板上の当該積層構造を形成した領域以
外の領域のみに厚さが当該積層構造と略等しく上面が略
平坦な非活性導波路層を気相エピタキシャル成長法によ
り形成する第3の工程と、前記保護層及び非活性導波路
層の上面に回折格子を形成する第4の工程と、前記回折
格子の上面に前記保護層と同一材料からなる第2の導電
型を有するクラッド層を形成する第5の工程を備えたこ
とを特徴とする分布反射型半導体レーザの製造方法。(1) An active waveguide layer on a semiconductor substrate having a first conductivity type, an inactive waveguide layer optically aligned and coupled to the active waveguide layer, and a thickness of the inactive waveguide layer. a first step of forming a laminated structure by sequentially laminating a protective layer having a thickness substantially equal to that of the active waveguide layer with a reduced thickness;
A second step of forming a predetermined island-like region on the laminated structure on the semiconductor substrate, removing the laminated structure other than the predetermined island-like region, and forming the laminated structure only in the predetermined island-like region. and a third step of forming an inactive waveguide layer having a thickness substantially equal to that of the layered structure and a substantially flat top surface only in a region other than the region where the layered structure is formed on the semiconductor substrate by vapor phase epitaxial growth. a fourth step of forming a diffraction grating on the upper surface of the protective layer and the inactive waveguide layer; and forming a cladding layer of a second conductivity type made of the same material as the protective layer on the upper surface of the diffraction grating. A method of manufacturing a distributed reflection semiconductor laser, comprising a fifth step of:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63328625A JPH07109922B2 (en) | 1988-12-26 | 1988-12-26 | Method for manufacturing distributed reflection semiconductor laser |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63328625A JPH07109922B2 (en) | 1988-12-26 | 1988-12-26 | Method for manufacturing distributed reflection semiconductor laser |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02174180A true JPH02174180A (en) | 1990-07-05 |
| JPH07109922B2 JPH07109922B2 (en) | 1995-11-22 |
Family
ID=18212357
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63328625A Expired - Lifetime JPH07109922B2 (en) | 1988-12-26 | 1988-12-26 | Method for manufacturing distributed reflection semiconductor laser |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07109922B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015109319A (en) * | 2013-12-03 | 2015-06-11 | 日本電信電話株式会社 | Narrow line width laser |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6423591A (en) * | 1987-07-20 | 1989-01-26 | Nippon Telegraph & Telephone | Manufacture of distributed bragg reflection type semiconductor laser |
-
1988
- 1988-12-26 JP JP63328625A patent/JPH07109922B2/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6423591A (en) * | 1987-07-20 | 1989-01-26 | Nippon Telegraph & Telephone | Manufacture of distributed bragg reflection type semiconductor laser |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015109319A (en) * | 2013-12-03 | 2015-06-11 | 日本電信電話株式会社 | Narrow line width laser |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH07109922B2 (en) | 1995-11-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7340142B1 (en) | Integrated optoelectronic device and method of fabricating the same | |
| JP2008113041A (en) | Waveguide | |
| JPH04243216A (en) | Method for manufacturing optical waveguide, integrated optical device and method for manufacturing the same | |
| JP2890745B2 (en) | Method of manufacturing semiconductor device and method of manufacturing optical semiconductor device | |
| US6224667B1 (en) | Method for fabricating semiconductor light integrated circuit | |
| CN112542769A (en) | Wide-spectrum multi-wavelength Fabry-Perot laser and manufacturing method thereof | |
| US6204078B1 (en) | Method of fabricating photonic semiconductor device using selective MOVPE | |
| KR20030069879A (en) | Method of producing a semiconductor laser and optical integrated semiconductor device including the same | |
| JP4151043B2 (en) | Manufacturing method of optical semiconductor device | |
| JPH05251812A (en) | Distributed-feedback semiconductor laser with quantum well structured optical modulator and manufacture thereof | |
| JP3264179B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
| JPH02174180A (en) | Manufacture of distributed reflection type semiconductor laser | |
| JPH0555689A (en) | Distributed reflection type semiconductor laser with wavelength control function | |
| JP3116912B2 (en) | Semiconductor optical integrated device, optical communication module using the same, optical communication system and method of manufacturing the same | |
| JP2003069134A (en) | Semiconductor optical device and manufacturing method thereof | |
| JP2953449B2 (en) | Optical semiconductor device and method of manufacturing the same | |
| JP2770848B2 (en) | Integrated light source of semiconductor laser and optical modulator and method of manufacturing the same | |
| JP2004128372A (en) | Distributed feedback semiconductor laser device | |
| KR100433298B1 (en) | Fabricating method of spot-size converter semiconductor optical amplifier | |
| JPH10270789A (en) | Semiconductor optical device used for optical communication and its manufacturing method | |
| JPH08330665A (en) | Manufacture of optical semiconductor laser | |
| JPS61274384A (en) | Optical integrated element | |
| JPH10154845A (en) | Distributed reflection semiconductor laser array and method of manufacturing the same | |
| JPH084178B2 (en) | Method for manufacturing distributed Bragg reflection semiconductor laser | |
| JPH0697591A (en) | Manufacture of semiconductor laser |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 14 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 14 |