JPH02179202A - Discrimination between regeneration and power running in electric rolling stock - Google Patents
Discrimination between regeneration and power running in electric rolling stockInfo
- Publication number
- JPH02179202A JPH02179202A JP63331098A JP33109888A JPH02179202A JP H02179202 A JPH02179202 A JP H02179202A JP 63331098 A JP63331098 A JP 63331098A JP 33109888 A JP33109888 A JP 33109888A JP H02179202 A JPH02179202 A JP H02179202A
- Authority
- JP
- Japan
- Prior art keywords
- regeneration
- power running
- motor
- plugging
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008929 regeneration Effects 0.000 title claims abstract description 63
- 238000011069 regeneration method Methods 0.000 title claims abstract description 63
- 238000005096 rolling process Methods 0.000 title 1
- 238000004804 winding Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 13
- 230000001172 regenerating effect Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 abstract description 7
- 230000005284 excitation Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000012850 discrimination method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005279 excitation period Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、バッテリ・フォークリフトなどの電気車にお
ける回生・力行判別方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining regeneration/power running in an electric vehicle such as a battery forklift.
[従来の技術]
一般にバッテリ・フォークリフトなどの電気車において
は、回生・力行を切換える手段を備えており、電気車を
走行発進させる場合など、回生・力行のいずれの状態で
あるかの判別を行なっている。[Prior Art] Generally, electric vehicles such as battery-powered forklifts are equipped with means for switching between regeneration and power running, and when starting an electric vehicle, it is necessary to determine whether the state is regeneration or power running. ing.
そのため、アクセルを踏んだ最初の時点で、モータ回路
中に設けられた回生・力行切換手段の接点(コンタクタ
)を、まず回生Ill (開放側)にしておき、モータ
の駆動制御を行なう走行チョッパをONL、かつモータ
の界磁巻線に予饋励1電流を流してみて、そのときの電
機子電流がモータの回転方向により相違することから、
回生・力行を判別するようにしている。Therefore, when the accelerator is first stepped on, the contact of the regeneration/powering switching means provided in the motor circuit is first set to the regeneration Ill (open side), and the traveling chopper that controls the drive of the motor is turned on. When a pre-excitation current is applied to the ONL and the field winding of the motor, the armature current at that time differs depending on the rotational direction of the motor.
It is designed to distinguish between regeneration and power running.
この従来の回生・力行の判別方法を第2図を用いて説明
すると、モータの電機子Aは、回生・力行切換コンタク
タMG、電機子電流検出抵抗Ra、界磁巻線Wとその極
性を切換える切換コンタクタMF、MR1走行チョッパ
CHを介してバッテリBAに接続されているが、判別動
作のために最初、コンタクタMGはオープン(開)とし
、予備励磁回路素子TRと走行チョッパCHをONとす
る。To explain this conventional method for determining regeneration/power running using FIG. 2, the armature A of the motor switches its polarity with a regeneration/power running switching contactor MG, an armature current detection resistor Ra, and a field winding W. The switching contactor MF and the MR1 are connected to the battery BA via the running chopper CH, but for the determination operation, the contactor MG is initially opened, and the pre-excitation circuit element TR and the running chopper CH are turned on.
これにより、界磁巻線Wに予備励磁電流Isfが流れ、
その時、モータか逆回転方向ならS R子Aの誘起電圧
Eは、図示右方向になり、この誘起電圧Eにより、走行
チョッパCHと回生ダイオードDgによる閉ループ回路
に矢印に示したように発電電流1gが流れる。As a result, a pre-excitation current Isf flows through the field winding W,
At that time, if the motor is rotating in the reverse direction, the induced voltage E in the S R element A will be in the right direction in the figure, and this induced voltage E will cause the generated current of 1 g to flow through the closed loop circuit consisting of the running chopper CH and the regenerative diode Dg as shown by the arrow. flows.
これをt流検出抵抗Raにより検出し、発電電流1gが
成る一定レベル以上であるなら、回生と判別する。他方
、モータが逆回転方向でなければ、誘起電圧Eは左方向
になるので、発電電流Igは流れず、力行と判別する。This is detected by the t-current detection resistor Ra, and if the generated current exceeds a certain level of 1 g, it is determined that regeneration is occurring. On the other hand, if the motor is not rotating in the reverse direction, the induced voltage E will be in the left direction, so the generated current Ig will not flow, and power running is determined.
そして、力行と判別したときは、コンタクタMGをクロ
ーズ(閉)する。When it is determined that power running is being performed, contactor MG is closed.
[発明が解決しようとする課題]
ところで、上記の判別方法では、アクセルを踏んでから
回生・力行判別を行なうのに、予備励磁期間が約100
m5必要であり、さらに、力行判別したとき、コンタク
タMGをクローズさせるのに動作時間が約100m5必
要である。したがつて、力行加速するには計200m5
の時間ロスがあり、加速応答性が悪いものとなっている
。この点でのフォークリフトなどの電気車における運転
機能の改善が望まれる。[Problems to be Solved by the Invention] By the way, in the above determination method, the pre-excitation period is approximately 100 minutes to perform the regeneration/power running determination after stepping on the accelerator.
Further, when it is determined that the power running is performed, an operation time of approximately 100 m5 is required to close the contactor MG. Therefore, it takes a total of 200m5 to accelerate the power running.
There is a time loss, resulting in poor acceleration response. In this respect, it is desired to improve the driving functions of electric vehicles such as forklifts.
本発明は、上記要請に応えるもので、回生・力行判別動
作の高速化を図り、かつ回生判別の精度を高めた電気車
の回生・力行判別方法を提供することを目的とする。The present invention is in response to the above-mentioned demands, and aims to provide a method for determining regeneration/power running of an electric vehicle that speeds up the regeneration/power running discrimination operation and improves the accuracy of regeneration discrimination.
[課題を解決するための手段]
本発明は、直流モータと、このモータの界磁巻線の極性
を切換える切換手段と、上記モータの電機子と直列に回
生・力行を切換える切換手段−を設け、力行逆転時にプ
ラギング電流として電機子に流れるようにしたプラギン
グダイオードと、上記モータのインダクタンスに蓄えら
れたエネルギーを電源に返すためのフライホイールダイ
オードと、回生・力行時に上記モータへの通電をデユー
ティ制御する走行チョッパと、回生時に回生電流を流す
ための回生ダイオードと、アクセルを踏んだことを検出
するアクセル入力手段と、前進・後進の極性を指示する
スイッチ入力手段と、上記モータの電機子電流を検出す
る電機子電流検出器と、逆転時にのみ流れるプラギング
電流を検出するプラギング電流検出器と、上記界磁巻線
の極性を切換える切換手段、回生・力行切換手段および
走行チョッパのパルスを制御する制御手段を備えた電気
車において、アクセルを踏んだ直後は上記モータの界磁
巻線切換手段を上記極性指示スイッチ入力手段により所
定の極性に切換接続させ、かつ回生・力行切換手段は力
行側に一時的に切換接続させた後、通常の力行制御パル
スを走行チョッパに与え、このチョッパがOFFした時
点でのプラギング電流が所定レベル以上であれば回生判
定を行ない、上記回生・力行切換手段を回生側に切換え
、さらに、上記の最初のパルスから数パルスまでの間を
判別期間とし、この期間内に回生判定が行われなかった
ときは力行判定とし、上記回生・力行切換手段は力行側
の状態を続行し、力行制御を続行させる回生・力行判別
方法である。[Means for Solving the Problems] The present invention includes a DC motor, a switching means for switching the polarity of the field winding of the motor, and a switching means for switching between regeneration and power running in series with the armature of the motor. , a plugging diode that allows the plugging current to flow to the armature during reversal of power running, a flywheel diode that returns the energy stored in the inductance of the motor to the power supply, and duty control of energization to the motor during regeneration and power running. a regenerative diode for flowing regenerative current during regeneration, an accelerator input means for detecting when the accelerator is depressed, a switch input means for instructing forward/reverse polarity, and a regenerative chopper for controlling the armature current of the motor. An armature current detector for detecting, a plugging current detector for detecting the plugging current flowing only during reverse rotation, a switching means for switching the polarity of the field winding, a regeneration/powering switching means, and a control for controlling pulses of the traveling chopper. Immediately after stepping on the accelerator, the field winding switching means of the motor is switched to a predetermined polarity by the polarity indicating switch input means, and the regeneration/powering switching means is temporarily switched to the powering side. After the switching connection is made, a normal powering control pulse is applied to the running chopper, and if the plugging current at the time when the chopper is turned off is above a predetermined level, regeneration is determined, and the regeneration/powering switching means is switched to the regeneration side. Furthermore, the period from the first pulse to several pulses is defined as a determination period, and if regeneration is not determined within this period, powering is determined, and the regeneration/powering switching means changes the state of the powering side. This is a regeneration/power running discrimination method that continues the power running control.
[作用]
この判別方法によれば、アクセルを踏んだ直後は、モー
タ回路は通常の力行状態と同一とされ、通常の力行と同
一の走行チョッパのONパルスを供給した直後のOFF
期間に、回生可能なモータ逆転時は、電機子の誘起電圧
により1ラギング電流がプラギングダイオードを通して
流れる。したがって、プラギング電流を検出するのみで
、即座に回生・力行の判定を行なうことができる。[Operation] According to this determination method, immediately after stepping on the accelerator, the motor circuit is assumed to be in the same state as in normal power running, and the motor circuit is in the same state as in normal power running, and the motor circuit is in the OFF state immediately after supplying the ON pulse of the running chopper, which is the same as in normal power running.
During the period, when the regenerative motor is reversed, one lagging current flows through the plugging diode due to the induced voltage of the armature. Therefore, regeneration and power running can be immediately determined by simply detecting the plugging current.
[実施例]
以下、本発明方法が実施される電気車の回路構成例を第
1図を用いて説明する。[Example] Hereinafter, an example of the circuit configuration of an electric vehicle in which the method of the present invention is implemented will be described with reference to FIG.
電気車の走行駆動源としての直流モータの電機子Aは、
その回生・力行を切換えるコンタクタMG(切換手段)
と直列に接続され、さらにモータの界磁巻線Wおよび、
その巻線の極性を切換える前進および後進コンタクタM
P、MRと、回生・力行時にモータへの通電をデユーテ
ィ制御する走行チョッパCHなどを介してバッテリBA
(@源)に接続されている。The armature A of the DC motor that serves as the driving source for the electric vehicle is:
Contactor MG (switching means) that switches between regeneration and power running
further connected in series with the field winding W of the motor and
Forward and reverse contactor M that switches the polarity of its windings
P, MR, and the battery BA via the driving chopper CH, etc., which controls the duty of energizing the motor during regeneration and power running.
Connected to (@source).
また、モータが力行、逆転時に、電機子Aにプラギング
電流が流れるようにプラギングダイオードDPが設けら
れ、また、モータのインダクタンスに蓄えられたエネル
ギーを電源に返すためのフライホイールダイオードDf
と、回生時に回生電流を流すための回生ダイオードDg
が設けられている。Additionally, a plugging diode DP is provided so that a plugging current flows through the armature A when the motor runs in power or reverses, and a flywheel diode Df is provided to return energy stored in the inductance of the motor to the power source.
and a regenerative diode Dg for flowing regenerative current during regeneration.
is provided.
前進・後進の極性を指示するディレクショナルスイッチ
DF、Drtが、上記コンタクタMP、MRを駆動する
コイルMF、MRとそれぞれ直列に接続され、さらに、
アクセルACCの中立以外の時にONするマイクロスイ
ッチSFと、制御トランジスタQ1を介してバッテリB
Aに接続されている。また、上記コンタクタMGを駆動
するコイルMGが、上記マイクロスイッチSFと制御ト
ランジスタQ2を介してバッテリBAに接続されている
。Directional switches DF and Drt for instructing forward and reverse polarity are connected in series with the coils MF and MR that drive the contactors MP and MR, respectively, and further,
Battery B is connected to the battery B via the microswitch SF, which is turned ON when the accelerator ACC is not in neutral, and the control transistor Q1.
Connected to A. Further, a coil MG that drives the contactor MG is connected to the battery BA via the microswitch SF and the control transistor Q2.
アクセルACCを踏み込んだとき、その踏込み量に応じ
て出力されるアクセル角データADと、上記電機子Aに
直列に挿入した電機子電流検出抵抗Raおよび上記プラ
ギングダイオードDpに直列に挿入したプラギング電流
を検出する1ランギング電流検出抵抗Rpからの各デー
タIa、Ipが制御回路CC(制御手段)に入力され、
この制御回路CCの出力G、Bfr、Bgにより、走行
チョッパCH、トランジスタQ1およびQ2を制御して
いる。When the accelerator ACC is depressed, the accelerator angle data AD output in accordance with the amount of depression, the armature current detection resistor Ra inserted in series with the armature A, and the plugging current inserted in series with the plugging diode Dp. Each data Ia and Ip from the one running current detection resistor Rp to be detected is input to a control circuit CC (control means),
The outputs G, Bfr, and Bg of the control circuit CC control the traveling chopper CH and the transistors Q1 and Q2.
上記構成において、アクセルACCを踏んだ直後は、第
3図に示したように、制御回路CCは一時的に通常の力
行状態と同一、すなわち前進コンタクタMFと回生・力
行切換コンタクタMGをONさせる。そして、走行チョ
ッパCHへ通常の力行と同一のONパルスを供給する。In the above configuration, immediately after stepping on the accelerator ACC, as shown in FIG. 3, the control circuit CC temporarily turns on the same state as the normal powering state, that is, the forward contactor MF and the regeneration/powering switching contactor MG. Then, the same ON pulse as in normal powering is supplied to the running chopper CH.
これにより、バッテリBAから電機子Aにはバッテリ電
流rbが流れる。このONパルスを供給した直後のOF
F期間に回生可能なモータ逆転時においては、電機子A
の誘起電圧Eが図示右向き方向に発生し、そのため、破
線で示すようにプラギングダイオードDPとコンタクタ
MG(クローズ)でなる閉ループにプラギング電流Ip
が流れる。As a result, battery current rb flows from battery BA to armature A. OF immediately after supplying this ON pulse
When the motor is reversed during regeneration during period F, armature A
An induced voltage E is generated in the right direction in the figure, and therefore, a plugging current Ip is generated in a closed loop consisting of the plugging diode DP and the contactor MG (closed) as shown by the broken line.
flows.
したがって、このプラギング電流■ρが所定の判別期間
(後記)内に所定レベルを越えたかどうかをチエツクす
ることで、越えたら回生可として回生判定し、コンタク
タMGをオープンとし、回生制御を行う。一方、所定の
判定期間内にプラギング電流hpが所定レベルを越えな
かったら、力行判定し、力行制御を続行する。Therefore, by checking whether or not this plugging current ρ exceeds a predetermined level within a predetermined determination period (described later), if it exceeds it, regeneration is determined to be possible, contactor MG is opened, and regeneration control is performed. On the other hand, if the plugging current hp does not exceed the predetermined level within the predetermined determination period, power running is determined and power running control is continued.
上記の回生・力行判別動作を第4図のタイムチャートに
基づいて以下に説明する。The above regeneration/power running discrimination operation will be explained below based on the time chart of FIG. 4.
同図において、アクセルACCを踏むことで、走行チョ
ッパCHに対するONパルスGが制御回路CCから4m
Sの一定周期で出力され、それに同期して、パルスGの
ON期間に1!機子電流Iaが、OFF期間に励磁電流
Ifとプラギング電流ipが図示のごとく流れ、ここで
は3発目のパルスGの直後にプラギング電流1pが所定
レベルを越えたので、回生判定している。この判定によ
り、コンタクタMG接点をオーブンになるよう離脱させ
るが、この離脱に要する時間、約8mSの間はパルスG
をロックしている。In the same figure, by stepping on the accelerator ACC, the ON pulse G for the running chopper CH is 4 m from the control circuit CC.
It is output at a constant period of S, and in synchronization with it, 1! is output during the ON period of pulse G! During the OFF period of the armature current Ia, the excitation current If and the plugging current ip flow as shown in the figure, and here, since the plugging current 1p exceeds a predetermined level immediately after the third pulse G, regeneration is determined. Based on this judgment, the contactor MG contact is separated so as to become an oven, but during the time required for this separation, approximately 8 mS, the pulse G
is locked.
なお、回生・力行判別期間はアクセルACCを踏んだ直
後から一定時間、例えば最大16mSとし、以降は、判
定結果による制御、すなわち回生もしくは力行の制御を
行なう。また、上記判別期間内で、回生判定がなされる
と、その時点で判別期間は終了させる。Note that the regeneration/power running discrimination period is a certain period of time, for example, 16 mS at maximum, immediately after stepping on the accelerator ACC, and thereafter, control is performed based on the determination result, that is, regeneration or power running is controlled. Further, if a regeneration determination is made within the above-mentioned determination period, the determination period is ended at that point.
次に、電機子電流1a、プラギング電流IP、励磁電流
Ifの関係を式に示すと、走行チョッパCHがOFFの
期間について、
1 =1 +1
pr
となり、モータが逆転でなければ、I =Oのため、
I =Ifとなり、逆転(回生可)なら、■ ≠0で
、プラギング電流I は電機子の誘起ρ
p電圧Eに比
例し、
I −E/rA
ただしrAは電機子の抵抗
であり、また、誘起電圧Eは、
E=kIfN
ただしkは比例定数、Nは回転数
であるので、プラギング電流Ipは回転数に比例し、し
たがって、高速逆転時には1発のパルス、中速逆転時に
は2〜3発のパルス、低速逆転時には3〜4発のパルス
の各々の後に、プラギング電IIρが所定レベルを越え
る。Next, if the relationship among the armature current 1a, plugging current IP, and excitation current If is shown in the formula, 1 = 1 + 1 pr for the period when the running chopper CH is OFF, and if the motor is not reversed, I = O. For,
I = If, and if reverse rotation (regeneration possible), ■ ≠ 0, and the plugging current I is the armature induced ρ
p is proportional to the voltage E, I -E/rA where rA is the resistance of the armature, and the induced voltage E is: E=kIfN where k is the proportionality constant and N is the rotation speed, so the plugging current Ip is The plugging voltage IIρ is proportional to the rotation speed, and therefore exceeds a predetermined level after one pulse during high-speed reversal, two to three pulses during medium-speed reversal, and three to four pulses during low-speed reversal.
かくして、パルスの周期を4mSとすると、4〜16m
S内で判別することができ、特に、急便な減速応答が要
求される高速逆回転時は4mSで判別することができる
。コンタクタ接点接点の離脱時間は8mSであるので、
高速逆転での回生切換タイムは4+8=12mS、低速
逆転での回生切換最大タイムは、16+8=24mSと
なり、従来の方法で必要としていた200m5に歓べ格
段に短い時間ですみ、回生切換に際して実使用上、はと
んど応答遅れを感じなくなる。Thus, if the pulse period is 4 mS, then 4 to 16 m
It can be determined within 4 mS, and especially during high-speed reverse rotation where an immediate deceleration response is required, it can be determined within 4 mS. Since the detachment time of the contactor contact is 8 mS,
The regeneration switching time in high-speed reversal is 4 + 8 = 12 mS, and the maximum regeneration switching time in low-speed reversal is 16 + 8 = 24 mS, which is much shorter than the 200 m5 required by the conventional method, making it easier to use in actual regeneration switching. Above, you will hardly notice any delay in response.
しかも、力行加速の場合は、全く遅れ時間が存在せず、
電気車の制御として極めて応答性の高いものとなる。Moreover, in the case of power running acceleration, there is no delay time at all,
This provides extremely responsive control for electric vehicles.
さらには、プラギング電流ipは逆転時以外には流れな
いので、従来方法の電機子電流1aによる判別に教べて
、確実な判別が可能となる。また、本方法によれば、判
別時に、従来のように界磁巻線に予備励磁電流を流す必
要がないので、簡単な構成で判別が可能となる。Furthermore, since the plugging current ip does not flow except during reverse rotation, it is possible to make reliable discrimination in addition to the conventional method of discrimination based on the armature current 1a. Further, according to the present method, there is no need to flow a preliminary excitation current through the field winding at the time of discrimination as in the conventional method, so that discrimination can be performed with a simple configuration.
[発明の効果]
以上の説明から明らかなように本発明方法によれば、回
生・力行判別時に、回生・力行切換コンタクタを一時的
に力行状態とし、そのときの1ラギング@流をチエツク
することにより、回生・力行判別を行なうようにしてい
るので、走行チョッパの数パルス内に判別が可能で、特
に、力行判別されたときは、判別動作状態のままで続行
させればよい、したがって、従来の回生・力行コンタク
タをオーブンとして予備励磁を行なって電機子電流をチ
エツクする方法では、予備励磁時間が長くかかるばかり
か、力行判別された場合、判定後にコンタクタ接点を閉
じるために、その動作応答に時間がかかるのに対し、本
発明の方法では、判別時間は大巾に短縮され、応答性が
良好となる。[Effects of the Invention] As is clear from the above explanation, according to the method of the present invention, when determining regeneration/powering, the regeneration/powering switching contactor is temporarily put in the powering state, and the 1 lagging @flow at that time is checked. Since regeneration and power running are determined by the above, it is possible to make a determination within a few pulses of the running chopper.Especially, when power running is determined, it is sufficient to continue in the state of discrimination operation. In the method of checking the armature current by pre-exciting the regeneration/power running contactor as an oven, not only does it take a long time to pre-excite, but also when power running is determined, the contactor contact closes after the determination, which takes a long time to respond to the operation. In contrast, with the method of the present invention, the determination time is greatly shortened and responsiveness is improved.
また、モータの逆転時以外ではプラギング電流は流れな
いので、従来の予備励磁による電機子電流をチエツクす
る方法に較べ、判別の精度が向上し、かつ、構成の簡素
化をも図ることができる。Further, since the plugging current does not flow except when the motor is reversed, the accuracy of determination is improved and the configuration can be simplified compared to the conventional method of checking the armature current by preliminary excitation.
第1図は本発明方法が実施される電気車の回路構成図、
第2図は従来方法の動作を説明するための回路図、第3
図は本発明方法の動作を説明するための回路図、第4図
は本発明方法による動作を説明するためのタイムチャー
トである。
A・・・モータの電機子、W・・・モータの界磁巻線、
MF’、MR・・・極性切換コンタクタ、MG・・・回
生・力行切換コンタクタ、Dp・・・プラギングダイオ
ード、Df・・・フライホイールダイオード、Dg・・
・回生ダイオード、CH・・・走行チョッパ、ACC・
・・アクセル、DF、DR・・・ディレクショナルスイ
ッチ、Ra・・・電機子電流検出抵抗、Rp・・・プラ
ギング電流検出抵抗、CC・・・制御回路、BA・・・
バッテリ。
出願人 日本輸送機株式会社
代理人 弁理士 板 谷 康 夫第
図
第
図
(従来)
第
国
(、ト発朗)FIG. 1 is a circuit diagram of an electric vehicle in which the method of the present invention is implemented;
Figure 2 is a circuit diagram for explaining the operation of the conventional method;
The figure is a circuit diagram for explaining the operation of the method of the present invention, and FIG. 4 is a time chart for explaining the operation of the method of the present invention. A...Motor armature, W...Motor field winding,
MF', MR...Polarity switching contactor, MG...Regeneration/powering switching contactor, Dp...Plugging diode, Df...Flywheel diode, Dg...
・Regenerative diode, CH...travel chopper, ACC・
...Accelerator, DF, DR...Directional switch, Ra...Armature current detection resistor, Rp...Plugging current detection resistor, CC...Control circuit, BA...
Battery. Applicant Nippon Yusoki Co., Ltd. Agent Patent Attorney Yasushi Itatani (Conventional) Daikoku (Tohatsuro)
Claims (1)
換える切換手段と、上記モータの電機子と直列に回生・
力行を切換える切換手段を設け、力行逆転時にプラギン
グ電流として電機子に流れるようにしたプラギングダイ
オードと、上記モータのインダクタンスに蓄えられたエ
ネルギーを電源に返すためのフライホィールダイオード
と、回生・力行時に上記モータへの通電をデューティ制
御する走行チョッパと、回生時に回生電流を流すための
回生ダイオードと、アクセルを踏んだことを検出するア
クセル入力手段と、前進・後進の極性を指示するスイッ
チ入力手段と、上記モータの電機子電流を検出する電機
子電流検出器と、逆転時にのみ流れるプラギング電流を
検出するプラギング電流検出器と、上記界磁巻線の極性
を切換える切換手段、回生・力行切換手段および走行チ
ョッパのパルスを制御する制御手段を備えた電気車にお
いて、 アクセルを踏んだ直後は上記モータの界磁巻線切換手段
を上記極性指示スイッチ入力手段により所定の極性に切
換接続させ、かつ回生・力行切換手段は力行側に一時的
に切換接続させた後、通常のカ行制御パルスを走行チョ
ッパに与え、このチョッパがOFFした時点でのプラギ
ング電流が所定レベル以上であれば回生判定を行ない、
上記回生・力行切換手段を回生側に切換え、さらに、上
記の最初のパルスから数パルスまでの間を判別期間とし
、この期間内に回生判定が行われなかったときは力行判
定とし、上記回生・力行切換手段は力行側の状態を続行
し、力行制御を続行させることを特徴とした電気車にお
ける回生・力行判別方法。(1) A DC motor, a switching means for switching the polarity of the field winding of this motor, and a regenerative motor connected in series with the armature of the motor.
A plugging diode is provided to switch between power running and the plugging current flows to the armature during reversal of power running, a flywheel diode is used to return the energy stored in the inductance of the motor to the power supply, and a plugging diode is provided to switch between power running and power running. A travel chopper that controls the duty of energizing the motor, a regeneration diode that causes regenerative current to flow during regeneration, an accelerator input device that detects when the accelerator is pressed, and a switch input device that instructs forward/reverse polarity. An armature current detector that detects the armature current of the motor, a plugging current detector that detects the plugging current that flows only during reverse rotation, switching means for switching the polarity of the field winding, regeneration/powering switching means, and running In an electric vehicle equipped with a control means for controlling chopper pulses, immediately after stepping on the accelerator, the field winding switching means of the motor is switched to a predetermined polarity by the polarity indicating switch input means, and the regeneration/power running is switched on. After the switching means temporarily switches to the power running side, it applies a normal power running control pulse to the traveling chopper, and if the plugging current at the time when the chopper is turned off is equal to or higher than a predetermined level, regeneration is determined,
The regeneration/power running switching means is switched to the regeneration side, and the period from the first pulse to several pulses is set as a determination period, and if regeneration is not determined within this period, power running is determined, and the regeneration/power running switching means is switched to the regeneration side. A method for determining regeneration/powering in an electric vehicle, characterized in that the powering switching means continues a powering side state and continues powering control.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63331098A JPH02179202A (en) | 1988-12-28 | 1988-12-28 | Discrimination between regeneration and power running in electric rolling stock |
| US07/454,975 US4994973A (en) | 1988-12-28 | 1989-12-22 | Control system for industrial use vehicles |
| DE68923946T DE68923946T2 (en) | 1988-12-28 | 1989-12-22 | Control system for industrial trucks. |
| EP89123807A EP0376206B1 (en) | 1988-12-28 | 1989-12-22 | Control system for industrial use vehicles |
| KR1019890019407A KR940009269B1 (en) | 1988-12-28 | 1989-12-23 | Control device of industrial vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63331098A JPH02179202A (en) | 1988-12-28 | 1988-12-28 | Discrimination between regeneration and power running in electric rolling stock |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02179202A true JPH02179202A (en) | 1990-07-12 |
Family
ID=18239834
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63331098A Pending JPH02179202A (en) | 1988-12-28 | 1988-12-28 | Discrimination between regeneration and power running in electric rolling stock |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02179202A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL1031744C2 (en) * | 2006-05-03 | 2007-11-06 | Stertil Bv | Lifting system. |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6212306A (en) * | 1985-03-08 | 1987-01-21 | Toyoda Autom Loom Works Ltd | Regenerative/power drive discriminating method and device of dc motor |
| JPS62262602A (en) * | 1986-05-09 | 1987-11-14 | Hitachi Ltd | Plugging detector for electric vehicle |
-
1988
- 1988-12-28 JP JP63331098A patent/JPH02179202A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6212306A (en) * | 1985-03-08 | 1987-01-21 | Toyoda Autom Loom Works Ltd | Regenerative/power drive discriminating method and device of dc motor |
| JPS62262602A (en) * | 1986-05-09 | 1987-11-14 | Hitachi Ltd | Plugging detector for electric vehicle |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL1031744C2 (en) * | 2006-05-03 | 2007-11-06 | Stertil Bv | Lifting system. |
| WO2007126310A1 (en) * | 2006-05-03 | 2007-11-08 | Stertil B.V. | Lifting system |
| GB2451986A (en) * | 2006-05-03 | 2009-02-18 | Stertil Bv | Lifting system |
| GB2451986B (en) * | 2006-05-03 | 2010-03-17 | Stertil Bv | Lifting system |
| US8246008B2 (en) | 2006-05-03 | 2012-08-21 | Stertil B.V. | Lifting system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH05103497A (en) | Electric vehicle | |
| JPH08340604A (en) | Regenerative braking method and power control system for electrically driven vehicle | |
| JPH05236604A (en) | Low loss control method of electrically driven vehicle | |
| US4427928A (en) | Braking control apparatus for an electric motor operated vehicle | |
| US4114076A (en) | Control system for a motor having a shunt field winding | |
| US4124088A (en) | Safety device for a vehicle | |
| JPH02179202A (en) | Discrimination between regeneration and power running in electric rolling stock | |
| KR0152301B1 (en) | Brake revival control of an industrial car | |
| KR0183465B1 (en) | A regenerating control method for an industrial motor car | |
| JP2556005B2 (en) | Electric vehicle regenerative braking control device | |
| JPH0993726A (en) | Method for controlling electric rolling stock | |
| JPH06101881B2 (en) | Braking controller for electric vehicle | |
| JPH10285714A (en) | Device for controlling dc shunt motor for industrial vehicle | |
| JP2607405Y2 (en) | Regenerative control device for electric vehicle | |
| JP2814851B2 (en) | Travel control device for electric industrial vehicles | |
| JP2591830Y2 (en) | Field weakening control circuit for electric forklift | |
| JPS6212306A (en) | Regenerative/power drive discriminating method and device of dc motor | |
| JPS6243404B2 (en) | ||
| JPH11168801A (en) | Regenerative control for electric vehicle and apparatus thereof | |
| SU1359171A1 (en) | Vehicle electric drive | |
| KR20010097303A (en) | Regenerative braking apparatus and method in a electric car | |
| JPS62113211A (en) | Controller for unmanned vehicle | |
| JPH01185189A (en) | Regeneration and power running controller for dc motor | |
| JP3204024B2 (en) | Drive control device for reach type forklift | |
| JP2000224716A (en) | Motor controller for DC electric vehicles |