JPH02188716A - Optical device with polarizing means - Google Patents
Optical device with polarizing meansInfo
- Publication number
- JPH02188716A JPH02188716A JP839389A JP839389A JPH02188716A JP H02188716 A JPH02188716 A JP H02188716A JP 839389 A JP839389 A JP 839389A JP 839389 A JP839389 A JP 839389A JP H02188716 A JPH02188716 A JP H02188716A
- Authority
- JP
- Japan
- Prior art keywords
- polarized
- luminous flux
- polarized light
- light beam
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は偏光手段を有した光学装置に関し、例えば所定
の方向に振動する偏光光束を用いて、マスクやレチクル
等の物体を照射するようにした半導体素子製造用の露光
装置における照明系や観察物体を照射する顕微鏡の照明
系等に好適な偏光手段を有した光学装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical device having a polarizing means, for example, for illuminating an object such as a mask or a reticle using a polarized light beam vibrating in a predetermined direction. The present invention relates to an optical device having a polarizing means suitable for an illumination system in an exposure apparatus for manufacturing semiconductor devices, an illumination system of a microscope for illuminating an observation object, and the like.
(従来の技術)
従来より光源からの光束を複数に分割したり、又は複数
の光束を合体させた後に物体面上に導光し、照明するよ
うにした光学装置が例えば照明系や測定糸等各方面で用
いられている。(Prior Art) Conventionally, optical devices that divide a light beam from a light source into multiple parts or combine multiple light beams and then guide the light onto an object surface to illuminate the object surface are used, such as illumination systems and measuring threads. It is used in various fields.
一般には無偏光な光束を用いて、該光束を複数に分割し
たり、合成したりするとその都度、光分割面において光
量は損失し、例えば無偏光の光束は偏光ビームスプリッ
タ−を通過するとき、光量の半分が損失してしまう。Generally, when a non-polarized light beam is used and the light beam is split into multiple parts or combined, the amount of light is lost at the light splitting plane.For example, when a non-polarized light beam passes through a polarizing beam splitter, Half of the light is lost.
この為、従来より光束を分割又は合体するとき直線偏光
や円偏光の光束を使用し、位相補正板や偏光ビームスプ
リッタ−等を用いて行い1分割の際の光量損失を防止す
るようにした光学系が用いられている。For this reason, optical systems have conventionally used linearly polarized or circularly polarized light to split or combine the light beam, using phase correction plates, polarizing beam splitters, etc. to prevent loss of light quantity when dividing into one beam. system is used.
特に近年レーザの発展や偏光状態が1つのコード化され
た光情報として取り扱うことができる為に高精度な光学
系において光を制御する際には光の偏光状態を利用した
光学装置が種々と用いられている。Particularly in recent years, with the development of lasers and the ability to treat the polarization state as a piece of coded optical information, various optical devices that utilize the polarization state of light are used to control light in high-precision optical systems. It is being
(発明が解決しようとする問題点)
しかしながら一般には偏光ビームスプリッタ−等の偏光
手段を用いて無偏光の光束を所定の方向に振動する偏光
光束として取り出して使用する際には、その初期段階で
は偏光手段により光量の略半分が失われてしまうという
問題点があった。(Problem to be Solved by the Invention) However, in general, when a polarizing means such as a polarizing beam splitter is used to extract an unpolarized light beam as a polarized light beam that oscillates in a predetermined direction and uses it, in the initial stage. There was a problem in that approximately half of the light amount was lost due to the polarizing means.
この為完全に偏光した光束を発する光源に比べて無偏光
の光束を発する光源を用いた場合は同し光量を得るのに
2倍の光量が必要となってくるという問題点があった。For this reason, when a light source that emits a non-polarized light beam is used, compared to a light source that emits a completely polarized light beam, twice the amount of light is required to obtain the same amount of light.
本発明は無偏光の光束を発する光源を用いて所定の偏光
状態の光束として取り出して使用する際の初期段階で失
われる光量の再利用を図り光源からの光束の偏光状態を
そろえて出射するようにし、全光束を効率的に利用する
ようにした照明系や測定系等に好適な偏光手段を有した
光学装置の提供を目的とする。The present invention uses a light source that emits an unpolarized light beam to reuse the amount of light that is lost in the initial stage when it is extracted as a light beam with a predetermined polarization state and is used, so that the light beam from the light source is emitted with the same polarization state. It is an object of the present invention to provide an optical device having a polarizing means suitable for an illumination system, a measurement system, etc., which makes efficient use of the total luminous flux.
(問題点を解決する為の手段)
本発明においてはランダムな偏光状態の入射光束を偏光
ビームスプリッタ−で互いに直交する2つの直線偏光光
束に分割し、このうち一方の偏光光束の偏光方位を位相
補正板を介して90度変位させたのち光路合成部材を介
して他方の偏光光束と合体させて偏光状態をそろえて出
射させるようにしたことを特徴としている。(Means for solving the problem) In the present invention, an incident light beam having a random polarization state is split into two linearly polarized light beams orthogonal to each other by a polarizing beam splitter, and the polarization direction of one of the polarized light beams is changed to a phase. It is characterized in that, after being displaced by 90 degrees through a correction plate, it is combined with the other polarized light beam through an optical path combining member to align the polarization state and output it.
(χ施例)
第1図は本発明・の第1実施例の光学系の要部概略図で
ある。(X Example) FIG. 1 is a schematic diagram of the main parts of an optical system according to a first example of the present invention.
同図においてlOは偏光手段を有した光学装置である。In the figure, lO is an optical device having a polarizing means.
lは偏光手段としての偏光ビームスプリッタ−であり1
本実施例ではインコヒーレントのランダムな偏光状態の
入射光束りを偏光分割面1aにより互いに直交する2つ
の直線偏光光束L1.L2に分割している。l is a polarizing beam splitter as a polarizing means, and 1
In this embodiment, an incident light beam having an incoherent random polarization state is divided into two mutually orthogonal linearly polarized light beams L1. It is divided into L2.
本実施例では偏光分割面1aにより紙面と手行な市内に
振動面を有するP偏光光束L2を通過させ1紙面と垂直
な面内に振動面を有するS偏光光束を反射させている。In this embodiment, the polarization splitting surface 1a allows a P-polarized light beam L2 having a vibrating plane within the plane of the paper to pass therethrough, and reflects an S-polarized light beam having a vibrating plane within a plane perpendicular to the plane of the paper.
そして偏光ビームスプリッタ−1より出射したP偏光光
束なλ/2板2を通過させて偏光方位を90度回転させ
てS偏光光束L2Sとし、ミラー5で反射させた後反射
プリズムより成る光合成部材6に導光している。Then, the P-polarized light beam emitted from the polarizing beam splitter 1 passes through the λ/2 plate 2, rotates the polarization direction by 90 degrees, and becomes the S-polarized light beam L2S. After reflecting by the mirror 5, the light combining member 6 consists of a reflecting prism. It guides light.
一゛方偏光分割面1aで反射したS偏光光束Llは反射
面tbで反射させた後偏光ビームスプリッタ−1から出
射させミラー4で反射させた後、光路合成部材6に導光
している。そしてS偏光光束Llを光路合成部材6によ
り洗のミラー5で反射してきたS@光光束L2Sと合体
させた後、光学装W11Oから所定方向1こ振動面を有
した直線偏光光束L3として出射させている。The S-polarized light beam Ll reflected by the one-way polarization splitting surface 1a is reflected by the reflecting surface tb, outputted from the polarizing beam splitter 1, reflected by the mirror 4, and then guided to the optical path combining member 6. Then, the S-polarized light beam Ll is combined with the S@light light beam L2S reflected by the mirror 5 by the optical path combining member 6, and then outputted from the optical device W11O as a linearly polarized light beam L3 having one vibration plane in a predetermined direction. ing.
そして該直線偏光光束L3を例えば不図示の照明系や測
定系等に導光するようにしている。The linearly polarized light beam L3 is then guided to, for example, an illumination system or a measurement system (not shown).
本実施例において入射光束りがコヒーレントのランダム
な偏光状態の光束であるときは光路合成部材6に到達す
る2光束の光路長差が小さいと互いに干渉する場合があ
る。この為例えばS偏光光束Llの光路中にP偏光光束
L2に対して所定の光路長差を付与することのできる光
路長調整部材を配置している。そしてS偏光光束に光路
長差を付与した後に光合成部材6で合体するようにして
、これにより2つの光束L1とL2Sとの光路長差の拡
大を図92光束が互いに干渉しないようにして光学装W
110より出射させている。In this embodiment, when the incident light beam is a coherent random polarized light beam, if the difference in optical path length between the two light beams reaching the optical path combining member 6 is small, they may interfere with each other. For this purpose, for example, an optical path length adjusting member that can provide a predetermined optical path length difference with respect to the P-polarized light beam L2 is disposed in the optical path of the S-polarized light beam Ll. After imparting an optical path length difference to the S-polarized light beams, they are combined at the light combining member 6, thereby increasing the optical path length difference between the two light beams L1 and L2S. W
The light is emitted from 110.
光路長調整部材3の構成としては、例えば中空の透明部
材の箱体より成り、内部の空気圧がポンプでオンライン
又はオフラインで制御できるようにし、又は内部の温度
をヒーター等により調整したような手段笠が適用出来る
0本実施例では通過光束に所定の光路長差が付与出来る
ようなものであればどのような手段であっても適用可能
である。The structure of the optical path length adjusting member 3 is, for example, a box made of a hollow transparent member, and the internal air pressure can be controlled online or offline with a pump, or the internal temperature can be adjusted with a heater or the like. In this embodiment, any means can be applied as long as it can impart a predetermined optical path length difference to the passing light beam.
尚、本実施例においてλ/2板2の代わりにイメージロ
ーチーターを用いて一方の光束の偏光方向を90度変位
するようにしても良い、又、光合成部材として反射プリ
ズム6の代わりに第2図に示すような内面反射を2度用
いたプリズム反射体7より構成しても良い。In this embodiment, an image rotor cheater may be used instead of the λ/2 plate 2 to shift the polarization direction of one light beam by 90 degrees, and a second reflective prism 6 may be used as the light combining member instead of the reflecting prism 6. It may also be constructed from a prism reflector 7 that uses internal reflection twice as shown in the figure.
本実施例では以上のように各要素を設定することにより
ランダムな偏光状態の入射光束を全て所定の方向に振動
する直線偏光光束として取り出すようにして光束の有効
利用を図っている。In this embodiment, by setting each element as described above, all of the incident light beams in random polarization states are extracted as linearly polarized light beams vibrating in a predetermined direction, thereby making effective use of the light beams.
第3図は本発明の第2実施例の光学系の要部概略図であ
る。FIG. 3 is a schematic diagram of the main parts of an optical system according to a second embodiment of the present invention.
本実施例では偏光手段としての偏光ビームスプリッタ−
8の偏光分割面8aと反射面8bとを第1実施例に用に
平行とせず、所定の角度aを有する楔状のプリズム体よ
り構成している。In this example, a polarizing beam splitter is used as a polarizing means.
The polarization splitting surface 8a and the reflecting surface 8b of No. 8 are not parallel to each other as in the first embodiment, but are constituted by a wedge-shaped prism body having a predetermined angle a.
そして偏光分割面8aで反射分割したS偏光光束Llを
反射[1j8bで反射させ偏光ビームスプリッタ−8よ
り出射させ入射角1で光合成部材としてのオプティカル
パイプ9に入射させて%%る。Then, the S-polarized light beam Ll that has been reflected and split by the polarization splitting surface 8a is reflected by [1j8b, emitted from the polarization beam splitter 8, and incident on an optical pipe 9 as a light combining member at an incident angle of 1%.
一方偏光分割面8aを透過分割したP偏光光束L2をλ
/2板2を介してS偏光光束L2Sとして光束Llと偏
光状態をそろえて光束Llと同じ入射角iでオプティカ
ルパイプ9に入射させている。On the other hand, the P-polarized light beam L2 that is transmitted through the polarization splitting surface 8a is λ
The S-polarized light beam L2S is made to have the same polarization state as the light beam L1 through the /2 plate 2, and is made incident on the optical pipe 9 at the same incident angle i as the light beam L1.
これによりオプティカルパイプ9から出射された偏光状
態のそろった光束を利用するようにしている。This allows the use of the light beam with uniform polarization state emitted from the optical pipe 9.
本実施例ではオプティカルパイプ9への光束の入射角i
によりオプティカルパイプ9からの出射光の配向特性を
制御し、所定の配光特性を有する光束として例えば不図
示の照明系へ導光している。In this embodiment, the incident angle i of the light beam on the optical pipe 9
The orientation characteristics of the light emitted from the optical pipe 9 are controlled by the optical pipe 9, and the light is guided to, for example, an illumination system (not shown) as a light beam having predetermined light distribution characteristics.
本実施例では第1図の第1実施例に比べてミラーを用い
ていない為に′AM全体の小型化が容易である。Compared to the first embodiment shown in FIG. 1, this embodiment does not use a mirror, so it is easier to downsize the entire AM.
第4図は本発明の第3実施例の光学系の要部概略図であ
る。FIG. 4 is a schematic diagram of the main parts of an optical system according to a third embodiment of the present invention.
本実施例では偏光手段としての偏光ビームスプリッタ−
1に対して2つの半導体レーザ41.42からの光束を
入射させている。In this example, a polarizing beam splitter is used as a polarizing means.
The light beams from two semiconductor lasers 41 and 42 are made incident on one laser beam.
半導体レーザ41からの光束のうち偏光分割面laでP
偏光光束を通過させ、S偏光光束を反射させている。又
半導体レーザ42からの光束のうち偏光分割面1aでP
偏光光束を反射させ、S偏光光束を透過させている。そ
して2つのS偏光光束を反射面1bで反射させた後ミラ
ー4を介して光合成部材6に導光している。一方、2つ
のP偏光光束はλ/2板を介してS偏光光束としてミラ
ー5を介して光合成部材6に導光し、これらの各光束を
偏光方位をそろえて合体して出射させている。P of the light beam from the semiconductor laser 41 at the polarization splitting plane la
The polarized light beam is passed through, and the S-polarized light beam is reflected. Also, out of the light beam from the semiconductor laser 42, P at the polarization splitting plane 1a
The polarized light beam is reflected and the S-polarized light beam is transmitted. The two S-polarized light beams are reflected by the reflecting surface 1b and then guided to the light combining member 6 via the mirror 4. On the other hand, the two P-polarized light beams are guided through a λ/2 plate as S-polarized light beams to a light combining member 6 via a mirror 5, and these light beams are combined with the same polarization direction and emitted.
一般に半導体レーザは光の拡がり角が縦横で異っている
。この為本実施例では例えば2つの半導体レーザからの
光束を無限遠で合成したときの光束の光強度分布が第5
図に示すように各要素を設定している。In general, semiconductor lasers have different spread angles of light in the vertical and horizontal directions. Therefore, in this embodiment, for example, when the light beams from two semiconductor lasers are combined at infinity, the light intensity distribution of the light beam is 5th.
Each element is set as shown in the figure.
これにより例えば照明系に用いるときの実効的な照明系
のシグマσ、即ち照明系の開口数に対する結像レンズの
開口数との比が同図に示す光束51.52を合成した光
束53となるので、半導体レーザー単体で使用したもの
よりたてよこが同じになり円に近い状態て使用できる。As a result, for example, when used in an illumination system, the effective sigma σ of the illumination system, that is, the ratio of the numerical aperture of the imaging lens to the numerical aperture of the illumination system, becomes the light flux 53 that is a composite of the light fluxes 51.52 shown in the same figure. Therefore, the vertical and horizontal sides are the same compared to when using a semiconductor laser alone, and it can be used in a nearly circular state.
このように本実施例では2つの半導体レーザからの光束
を効率的に合体させて用いるようにして、シリンドリカ
ルレンズ等を用いずに実効的な照明系のσ値を適切に誰
持している。In this way, in this embodiment, the luminous fluxes from the two semiconductor lasers are efficiently combined and used, and the effective σ value of the illumination system is appropriately determined without using a cylindrical lens or the like.
尚、第3図1w44図の実施例においてランダムな偏光
状態の光束にコヒーレント光を用いた場合は同図に示す
ように一方の光束の光路中に光路長調整部材3を設けれ
ば第1図の第1実施例の場合と同様の効果が得られる。In the embodiment shown in FIG. 3, 1w, and 44, if coherent light is used for the randomly polarized light beam, if the optical path length adjustment member 3 is provided in the optical path of one of the light beams as shown in the same figure, the result as shown in FIG. The same effects as in the first embodiment can be obtained.
(発明の効果)
本発明によれば前述のように偏光手段としての偏光ビー
ムスプリッタ−と偏光方位を90度変位させる偏光素子
を用いることによりコヒーレント光やインコヒーレント
光に関係なく、ランダムな無偏光の光束より所定の偏光
状層の光束を光量の損失を防止しつつ効率的に取り出す
ことのできる例えば照明系等に好適な偏光手段を有した
光学装置を達成することができる;(Effects of the Invention) According to the present invention, as described above, by using a polarizing beam splitter as a polarizing means and a polarizing element that shifts the polarization direction by 90 degrees, random unpolarized light can be generated regardless of coherent light or incoherent light. It is possible to achieve an optical device having a polarizing means suitable for, for example, an illumination system, which can efficiently extract the luminous flux of a predetermined polarized layer from the luminous flux of , while preventing loss of light quantity;
第1図は本発明の第1実施例の光学系の要部概略図、第
2図は第1図の一部分の他の実施例の概略図、第3図、
第4図は各々本発明の第2.第3実施例の光学系の要部
概略図、第5図は第4図において光束を合成したときの
強度分布の説明図である0図中1,8は偏光手段、2は
λ/2板、3は光路長調整部材、4.5はミラー、6.
7は光合成部材、41.42は半導体レーザー、9はオ
プティカルパイプ、である。FIG. 1 is a schematic diagram of the main parts of the optical system of the first embodiment of the present invention, FIG. 2 is a schematic diagram of another embodiment of a part of FIG. 1, and FIG.
FIG. 4 shows the second embodiment of the present invention. A schematic diagram of the main parts of the optical system of the third embodiment, and FIG. 5 is an explanatory diagram of the intensity distribution when the luminous flux is combined in FIG. , 3 is an optical path length adjustment member, 4.5 is a mirror, and 6.
7 is a photosynthesis member, 41.42 is a semiconductor laser, and 9 is an optical pipe.
Claims (2)
リッターで互いに直交する2つの直線偏光光束に分割し
、このうち一方の偏光光束の偏光方位を偏光素子を介し
て90度変位させた後、光路合成部材を介して他方の偏
光光束と合体させて偏光状態をそろえて出射させるよう
にしたことを特徴とする偏光手段を有した光学装置。(1) An incident light beam with a random polarization state is split into two linearly polarized light beams orthogonal to each other by a polarizing beam splitter, and after displacing the polarization direction of one of the polarized light beams by 90 degrees via a polarizing element, the optical path is 1. An optical device having a polarizing means, characterized in that the polarized light beam is combined with the other polarized light beam via a combining member and emitted with the polarized state aligned.
偏光ビームスプリッターで互いに直交する2つの直線偏
光光束に分割し、このうち一方の偏光光束の偏光方位を
偏光素子を介して90度変位させると共に、該2つの直
線偏光光束のうち一方の光束を光路長調整部材を介して
他方の光束に対して2つの光束が干渉を起こさない所定
の光路長差を付与した後、該2つの光束を光路合成部材
により合体させて偏光方位をそろえて出射させるように
したことを特徴とする偏光手段を有した光学装置。(2) A polarizing beam splitter splits the incident light beam in a coherent random polarization state into two linearly polarized light beams orthogonal to each other, and shifts the polarization direction of one of the polarized light beams by 90 degrees via a polarizing element. After imparting a predetermined optical path length difference between one of the two linearly polarized light beams to the other light beam through an optical path length adjustment member so that the two light beams do not interfere, the two light beams are optically combined. 1. An optical device having a polarizing means, characterized in that the polarizing means is combined by a member so that the polarized light direction is aligned and the light is emitted.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP839389A JPH02188716A (en) | 1989-01-17 | 1989-01-17 | Optical device with polarizing means |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP839389A JPH02188716A (en) | 1989-01-17 | 1989-01-17 | Optical device with polarizing means |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02188716A true JPH02188716A (en) | 1990-07-24 |
Family
ID=11691949
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP839389A Pending JPH02188716A (en) | 1989-01-17 | 1989-01-17 | Optical device with polarizing means |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02188716A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4825203B2 (en) * | 2004-07-06 | 2011-11-30 | リアルディー インコーポレイテッド | Illumination system and method capable of controlling polarization state |
-
1989
- 1989-01-17 JP JP839389A patent/JPH02188716A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4825203B2 (en) * | 2004-07-06 | 2011-11-30 | リアルディー インコーポレイテッド | Illumination system and method capable of controlling polarization state |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4065923B2 (en) | Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus | |
| JP6548727B2 (en) | Lighting device and measuring device | |
| JP2536023B2 (en) | Exposure apparatus and exposure method | |
| KR950023045A (en) | Lighting system for color image projectors and circular polarizers | |
| JP2001284228A (en) | Exposure apparatus and device manufacturing method | |
| WO2006091782B1 (en) | Apparatus and method for enhanced critical dimension scatterometry | |
| JP2590510B2 (en) | Lighting equipment | |
| KR970703541A (en) | High-efficiency illumination device and image projection apparatus comprising such a device | |
| JPH0593884A (en) | Beam combination/split cube prism for chromatic polarization | |
| JPH11312631A5 (en) | Illumination optical system, exposure apparatus, and method for adjusting optical path of illumination optical system | |
| JPH11312631A (en) | Illumination optical device and exposure device | |
| JP3269362B2 (en) | LCD projector | |
| JPH03215930A (en) | Lighting device | |
| JP2016503186A5 (en) | ||
| JP2823649B2 (en) | Light beam synthesizer | |
| JP4534210B2 (en) | Optical delay device, illumination optical device, exposure apparatus and method, and semiconductor device manufacturing method | |
| JPS63271313A (en) | polarizer | |
| JPH02188716A (en) | Optical device with polarizing means | |
| JPH0385514A (en) | Circularly polarized light generator | |
| US2811077A (en) | Stereo projection apparatus | |
| JPH03276119A (en) | Multiplexing optical system | |
| JPS54133130A (en) | Projector | |
| JP2636863B2 (en) | Polarizing device | |
| KR100716959B1 (en) | Light source assembly and projection display device using the same | |
| JPH02109086A (en) | Hologram printing equipment |