JPH02183117A - Displacement detector - Google Patents
Displacement detectorInfo
- Publication number
- JPH02183117A JPH02183117A JP186689A JP186689A JPH02183117A JP H02183117 A JPH02183117 A JP H02183117A JP 186689 A JP186689 A JP 186689A JP 186689 A JP186689 A JP 186689A JP H02183117 A JPH02183117 A JP H02183117A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnetostrictive
- pulse
- magnetostrictive line
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 17
- 239000000463 material Substances 0.000 claims description 15
- 238000001514 detection method Methods 0.000 abstract description 29
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 abstract description 9
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁歪現象を用いて物体の機械的変位や液面の変
位などを検出する変位検出装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a displacement detection device that detects mechanical displacement of an object, displacement of a liquid surface, etc. using a magnetostrictive phenomenon.
従来、M1歪式変位検出装置として、米国特許第317
3131号公報に記載のように、磁歪線と、磁歪線に沿
って移動可能な永久磁石と、磁歪線に電流パルスを供給
する発信手段と、磁歪線の特定部位に設けられ、上記永
久磁石の近接する磁歪線の部位で発生した超音波信号を
受信する受信手段とを備えたものが知られている。Conventionally, as an M1 distortion type displacement detection device, US Patent No. 317
As described in Japanese Patent Application No. 3131, a magnetostrictive wire, a permanent magnet movable along the magnetostrictive wire, a transmitting means for supplying a current pulse to the magnetostrictive wire, and a transmitting means provided at a specific part of the magnetostrictive wire, and a permanent magnet movable along the magnetostrictive wire. A device is known that is equipped with a receiving means for receiving an ultrasonic signal generated at a site of a magnetostrictive wire in the vicinity.
上記受信手段によって磁歪線に電流パルスを供給すると
、磁歪線には円周方向の磁場が形成されるとともに、永
久磁石が近接している磁歪線の部位にのみ永久磁石によ
る磁歪線の軸方向の磁場が形成され、所謂ビープマン効
果(綽1ede鵬ann effect)によって磁歪
線の当該部位に捩り歪が発生し、この捩り歪が2、激に
生じるため、磁歪線の両端に向かって捩り振動(超音波
)が伝播する。この超音波を受信手段で検出すれば、磁
歪線の受信手段の位置から永久磁石までの距*2を時間
りの関数として次式で求めることができる。When a current pulse is supplied to the magnetostrictive wire by the receiving means, a circumferential magnetic field is formed in the magnetostrictive wire, and the axial direction of the magnetostrictive wire is caused by the permanent magnet only in the part of the magnetostrictive wire that is close to the permanent magnet. A magnetic field is formed, and torsional strain is generated in the relevant part of the magnetostrictive wire due to the so-called Beepmann effect. This torsional strain is intense, causing torsional vibration (super sound waves) propagate. If this ultrasonic wave is detected by the receiving means, the distance*2 from the position of the receiving means of the magnetostrictive line to the permanent magnet can be determined as a function of time using the following equation.
j!冒v−t
上式において、■は超音波の伝播速度であり、磁歪線の
横弾性係数をG、M1歪線の密度をρとすで与えられる
。j! In the above equation, ■ is the propagation velocity of the ultrasonic wave, which is given by G being the transverse elastic modulus of the magnetostrictive line and ρ being the density of the M1 strain line.
ところが、磁歪線として一般的な磁歪材料であるNiを
使用した場合には、横弾性係数Gや密度ρが温度によっ
て変化する特性を有しているため、伝播速度Vが温度に
よって変化し、測定距離lに誤差をもたらすことになる
。However, when Ni, which is a common magnetostrictive material, is used as the magnetostrictive wire, the transverse elastic modulus G and density ρ have characteristics that change depending on temperature, so the propagation velocity V changes depending on temperature, making measurement difficult. This will cause an error in the distance l.
この問題を解消するため、本出願人は磁歪線に沿って移
動可能な永久磁石の他に、磁歪綿の特定部位に永久磁石
を固定し、可動永久磁石から伝播される超音波信号の到
達時間と固定永久磁石から伝播される超音波信号の到達
時間との比を求めることにより、温度変化の影響のない
距離測定を行うことができる変位検出装置を提案した(
特開昭61−226615号公報)。In order to solve this problem, the applicant fixed a permanent magnet at a specific part of the magnetostrictive cotton in addition to a permanent magnet that can move along the magnetostrictive line, and the arrival time of the ultrasonic signal propagated from the movable permanent magnet We proposed a displacement detection device that can measure distances without being affected by temperature changes by determining the ratio of the arrival time of ultrasonic signals propagated from a fixed permanent magnet.
(Japanese Patent Application Laid-Open No. 61-226615).
しかしながら、上記変位検出装置の場合には超音波の伝
播速度の温度変化による測定誤差は解消できるものの、
受信手段の回路部の温度変化による測定誤差を解消する
ことはできない。即ち、周囲の温度が変化すると、超音
波信号を検出する歪検出装置の感度が変化したり、歪検
出装置の検出波をパルス状に成形するコンパレータの比
較点(闇値という)が変化するからである。However, in the case of the above displacement detection device, although measurement errors due to temperature changes in the propagation velocity of ultrasonic waves can be eliminated,
It is not possible to eliminate measurement errors due to temperature changes in the circuit section of the receiving means. In other words, when the ambient temperature changes, the sensitivity of the strain detection device that detects ultrasonic signals changes, and the comparison point (called the dark value) of the comparator that shapes the detected wave of the strain detection device into a pulse shape changes. It is.
第5図は歪検出装置の感度が変化した場合の波形図であ
り、波形Aは発信手段から供給される電流パルス、波形
Bは歪検出装置で検出される超音波信号の検出波形、波
形Cは検出波形Bをコンパレータで成形した出力波形で
ある。このうち、歪検出装置の゛感度が温度によって変
化すると、第5図破線で示すように検出波形Bが変化し
、これによりコンパレータの出力波形Cも破線のように
変化し、本来の測定時間りがLoへずれ、測定誤差ΔL
を生しる。FIG. 5 is a waveform diagram when the sensitivity of the strain detection device changes. Waveform A is the current pulse supplied from the transmitting means, waveform B is the detection waveform of the ultrasonic signal detected by the strain detection device, and waveform C. is an output waveform obtained by shaping the detected waveform B with a comparator. Among these, when the sensitivity of the strain detection device changes due to temperature, the detected waveform B changes as shown by the broken line in Figure 5, and the output waveform C of the comparator also changes as shown by the broken line, causing the original measurement time to change. shifts to Lo, measurement error ΔL
produce.
第6図はコンパレータの闇値が変化した場合の波形図で
あり、本来の閾(I!!hが温度変化によりhoへ変化
すると、測定誤差ΔLを生じる。FIG. 6 is a waveform diagram when the darkness value of the comparator changes, and when the original threshold (I!!h changes to ho due to temperature change), a measurement error ΔL occurs.
上記のような回路部の測定誤差を解消するための温度補
償回路があるが、これでは温度センサ等の多数の電子部
品を使用する関係でコストが上昇するとともに、各部品
のバラフキのために良好な温度補償を期待するのは困難
であった。There is a temperature compensation circuit to eliminate measurement errors in the circuit section as described above, but this increases cost due to the use of a large number of electronic components such as temperature sensors, and also increases the cost due to variations in each component. It was difficult to expect adequate temperature compensation.
そこで、本発明の目的は、温度補償回路を使用せずに、
回路部の温度変化による測定誤差を解消できる変位検出
装置を提供することにある。Therefore, an object of the present invention is to
An object of the present invention is to provide a displacement detection device that can eliminate measurement errors caused by temperature changes in a circuit section.
(課題を解決するための手段〕
上記目的を達成するために、本発明は、線状または管状
の磁歪材料と、磁歪材料の近傍に任意の間隔を隔てて配
置された第1永久磁石および第2永久磁石と、磁歪材料
の軸線方向に電流パルスを供給する発信手段と、磁歪材
料の特定部位に設けられ、第1.第2永久磁石の近接す
る磁歪材料の部位で発生した超音波信号を受信する受信
手段と、第1永久磁石から受信手段への超音波信号の伝
播時間と第2永久磁石から受信手段への超音波信号の伝
播時間との差により、第1永久磁石と第2永久磁石との
相対変位量を求める演算手段とを備えたものである。(Means for Solving the Problems) In order to achieve the above object, the present invention includes a linear or tubular magnetostrictive material, a first permanent magnet and a first permanent magnet arranged near the magnetostrictive material at an arbitrary interval. 2 permanent magnets, a transmitting means for supplying a current pulse in the axial direction of the magnetostrictive material, and a transmitting means provided at a specific part of the magnetostrictive material, and transmitting an ultrasonic signal generated at a part of the magnetostrictive material adjacent to the 1st and 2nd permanent magnets. Due to the difference between the propagation time of the ultrasonic signal from the first permanent magnet to the receiving means and the propagation time of the ultrasonic signal from the second permanent magnet to the receiving means, It is equipped with calculation means for determining the amount of relative displacement with respect to the magnet.
即ち、一方の永久磁石からの超音波信号波形が回路部の
温度変化により変化した場合には、他方の永久磁石から
の超音波信号波形も全く同様に変化するのであるから、
これら波形の到達時間の差を求めれば温度変化による影
響を解消できる。そこで、本発明では両方の永久礎石か
らの超音波信号の到達時間差を求めることにより、温度
補償回路等を全く使用せずに正確な変位検出を行うこと
ができる。That is, if the ultrasonic signal waveform from one permanent magnet changes due to a temperature change in the circuit section, the ultrasonic signal waveform from the other permanent magnet changes in exactly the same way.
By determining the difference in the arrival times of these waveforms, the influence of temperature changes can be eliminated. Therefore, in the present invention, by determining the arrival time difference of the ultrasonic signals from both permanent foundation stones, accurate displacement detection can be performed without using any temperature compensation circuit or the like.
なお、本発明では超音波の伝播速度が温度によって変化
しないことを前掃としているが、これについては磁歪材
料としてN15panC(商品名)のような恒弾性金属
を使用すれば解決できる。恒弾性金属の超音波伝播速度
の温度変化率は、熱処理等によってO〜20ppm/”
C程度にまで低減できる。これに対し、回路部の温度に
よる測定バラツキは一般に200〜500ppm /
’C程度であるから、恒弾性金1の超音波伝播速度の温
度変化は実用上無視できる。In the present invention, the propagation speed of ultrasonic waves does not change with temperature, but this can be solved by using a constant elastic metal such as N15panC (trade name) as the magnetostrictive material. The temperature change rate of the ultrasonic propagation velocity of constant-modulus metals can be changed from O to 20 ppm/'' by heat treatment, etc.
It can be reduced to about C. On the other hand, the measurement variation due to the temperature of the circuit section is generally 200 to 500 ppm/
Since the temperature is approximately 100°C, the temperature change in the ultrasonic propagation velocity of the constant elastic gold 1 can be practically ignored.
第1図は本発明にかかる変位検出装置の基本的構成の一
例を示し、1はN15panC(商品名)のような恒弾
性金属からなる磁歪線、2は磁歪線1を取り囲み磁歪線
1に沿って移動可能な環状の永久磁石であり、この永久
磁石2は磁歪線1の軸線方向に分極されている。3は磁
歪線1の始端に電流パルスを供給する発信手段の一例で
あるパルス発生装置、4は磁歪線lの始端側に設けられ
た受信手段の一例である歪検出装置、5は磁歪線lの特
定部位に固定され、可動永久磁石2と同様な特性を存す
る環状の固定永久磁石、6は歪検出装置4の検出信号を
パルス状の信号に変換するコンパレータ等のパルス成形
回路である。FIG. 1 shows an example of the basic configuration of the displacement detection device according to the present invention, in which 1 is a magnetostrictive wire made of a constant elastic metal such as N15panC (trade name), and 2 is a magnetostrictive wire that surrounds the magnetostrictive wire 1 and extends along the magnetostrictive wire 1. The permanent magnet 2 is an annular permanent magnet that can be moved by the magnetostrictive wire 1. The permanent magnet 2 is polarized in the axial direction of the magnetostrictive wire 1. 3 is a pulse generator which is an example of a transmitting means for supplying a current pulse to the starting end of the magnetostrictive wire 1; 4 is a strain detecting device which is an example of a receiving means provided on the starting end side of the magnetostrictive wire l; 5 is a magnetostrictive wire l An annular fixed permanent magnet is fixed at a specific location and has characteristics similar to those of the movable permanent magnet 2, and 6 is a pulse shaping circuit such as a comparator that converts the detection signal of the strain detection device 4 into a pulsed signal.
第2図は上記構成の変位検出装置の各部の波形を示し、
Aはパルス発生装置3によって磁歪線1に供給される電
流パルス、Bは歪検出装置4で検出される信号波形であ
り、このうち7は固定永久磁石5によって発生した超音
波信号波形、8は可動永久磁石2によって発生した超音
波信号波形である。また、Cはパルス成形口−路6で上
記波形7゜8をパルス状の波形9.lOに変換したもの
である。Figure 2 shows the waveforms of each part of the displacement detection device with the above configuration,
A is the current pulse supplied to the magnetostrictive wire 1 by the pulse generator 3, B is the signal waveform detected by the strain detection device 4, of which 7 is the ultrasonic signal waveform generated by the fixed permanent magnet 5, and 8 is the waveform of the ultrasonic signal generated by the fixed permanent magnet 5. This is an ultrasonic signal waveform generated by the movable permanent magnet 2. Further, C is a pulse forming port-path 6 which converts the above waveform 7°8 into a pulsed waveform 9. It is converted to lO.
可動永久磁石2と歪検出装置4との距離を11、固定永
久磁石5と歪検出装置4との距離を28、可動永久in
石2で発生した超音波が歪検出装置4まで伝播する時間
をLl、固定永久磁石5で発生した超音波が歪検出装置
4まで伝播する時間を1、、[音波の伝播速度をVとす
ると、42、 =v−t、 ・・・(1)
!□=V −jl ・・・(2)で与えら
れる。The distance between the movable permanent magnet 2 and the strain detection device 4 is 11, the distance between the fixed permanent magnet 5 and the strain detection device 4 is 28, and the movable permanent magnet is in.
The time it takes for the ultrasonic waves generated by the stone 2 to propagate to the strain detection device 4 is Ll, the time it takes for the ultrasonic waves generated by the fixed permanent magnet 5 to propagate to the strain detection device 4 to reach the strain detection device 4 is 1, [If the propagation speed of the sound wave is V] ,42, =v-t, ...(1)
! □=V −jl ... is given by (2).
いま、第2図に破線で示すようにパルス成形回路6の闇
値が温度変化によってhからhoへと変化すると、第2
図C′のように可動永久磁石2の超音波伝播時間1+
はt1+ΔLへ、固定永久磁石2の超音波伝播時間t2
はり、+Δtへとそれぞれ変化する。そのため、(1)
式および(2)式は次のようになる。Now, as shown by the broken line in FIG. 2, when the dark value of the pulse shaping circuit 6 changes from h to ho due to temperature change, the second
As shown in Figure C', the ultrasonic propagation time of the movable permanent magnet 2 is 1+
is t1+ΔL, ultrasonic propagation time t2 of fixed permanent magnet 2
The beam changes to +Δt, respectively. Therefore, (1)
The equation and equation (2) are as follows.
j!、 =v (t、 +Δt) ・・・
(3)Il、 −v (tt +Δt)
−(4)ここで、!、とl、との比を演算すると、回
路部の誤差ΔLは解消できない、そこで、(1)式と(
2)式との差により可動永久磁石2と固定永久磁石5と
の相対距離2を演算すると、
1 = l Il z
=v(t+ tg) ・・・(6)となり、
回路部の誤差ΔLを解消できる。つまり、パルス成形回
路6の闇値が変化したり、歪検出装置′t4の感度が変
化しても、両方の永久磁石2.5からの伝播時間差tc
=t+ Lりは変化しない、したがって、伝播時間
差tを求めることにより、可動永久磁石2と固定永久磁
石5との相対距離2を温度変化に影響されずに精密に求
めることが可能となる。なお、伝播速度Vは磁歪線lと
して恒弾性金属を使用することにより、温度変化による
誤差を実用上無視することができる。j! , =v (t, +Δt)...
(3) Il, -v (tt +Δt)
-(4) Here! When calculating the ratio between , and l, the error ΔL in the circuit cannot be eliminated, so equation (1) and (
2) Calculating the relative distance 2 between the movable permanent magnet 2 and the fixed permanent magnet 5 using the difference from the formula, 1 = l Il z = v (t + tg) (6),
The error ΔL in the circuit section can be eliminated. In other words, even if the dark value of the pulse shaping circuit 6 changes or the sensitivity of the strain detection device 't4 changes, the propagation time difference tc from both permanent magnets 2.5
=t+ L does not change. Therefore, by determining the propagation time difference t, it is possible to accurately determine the relative distance 2 between the movable permanent magnet 2 and the fixed permanent magnet 5 without being affected by temperature changes. Incidentally, by using a constant-elasticity metal as the magnetostrictive wire 1, errors in the propagation velocity V due to temperature changes can be practically ignored.
上記伝播時間差【は従来技術によって容易に電気信号に
変換できる0例えば、第2図りのように波形9で三角波
状に変化する電圧をスタートさせ、波形10によってそ
の瞬間の三角波の電圧値をサンプルホールドすればアナ
ログ信号として検出でき、また第2図Eのように波形9
でクロックをスタートさせ、波形lOの時点でクロック
をセットすればデジタル信号として検出できる。The above-mentioned propagation time difference can be easily converted into an electrical signal using conventional technology. Then it can be detected as an analog signal, and waveform 9 can be detected as shown in Figure 2E.
If the clock is started at , and the clock is set at the time of waveform lO, it can be detected as a digital signal.
一他の実施例−
上記実施例では2個の永久磁石の一方を可動永久磁石2
.他方を固定永久磁石5としたが、これに代えて双方と
も可動永久磁石とし、両永久磁石の相対距離を測定する
こ゛ともできる。Another embodiment - In the above embodiment, one of the two permanent magnets is replaced with the movable permanent magnet 2.
.. Although the other one is the fixed permanent magnet 5, it is also possible to use movable permanent magnets for both of them instead and measure the relative distance between the two permanent magnets.
また、永久磁石として両側面に異極を着磁した円環状磁
石に限らず、例えば第3図に示すように磁歪Illを間
にして同極(図ではNWA)を対向させた2個又はそれ
以上の永久磁石11.12で構成してもよく、あるいは
第3図のうち1個の永久磁石のみで構成してもよい。In addition, the permanent magnet is not limited to an annular magnet with different poles magnetized on both sides, but for example, as shown in Figure 3, two or It may be constructed with the above permanent magnets 11 and 12, or it may be constructed with only one permanent magnet shown in FIG.
また、磁歪材料として磁歪線を用い、この磁歪線に電流
パルスを直接供給するものに限らず、第4図に示すよう
に筒状の磁歪管13を用い、この磁歪管13の中央に電
流パルスを流すための導線14を挿通した構成としても
よい、この場合には、侑歪管13を伝播する超音波を受
信手段で検出すればよい。In addition, it is not limited to the case where a magnetostrictive wire is used as the magnetostrictive material and a current pulse is directly supplied to the magnetostrictive wire, and a cylindrical magnetostrictive tube 13 is used as shown in FIG. A configuration may be adopted in which a conductive wire 14 for flowing the water is inserted. In this case, the ultrasonic waves propagating through the distortion tube 13 may be detected by the receiving means.
さらに、受信手段としては、歪検出装置のように接触型
受信手段を使用してもよいが、コイルのような非接触型
受信手段を使用してもよい。Further, as the receiving means, a contact receiving means such as a strain detection device may be used, but a non-contact receiving means such as a coil may also be used.
(発明の効果)
以上の説明で明らかなように、本発明によれば、2個の
永久磁石からの超音波信号の到達時間差によって両永久
磁石の相対変位を測定するようにしたので、受信回路部
の温度変化による影響を受けずに精密に変位を検出でき
る。しかも、複雑な温度補償回路等を全く使用する必要
がないので、安価に構成できる。(Effects of the Invention) As is clear from the above explanation, according to the present invention, the relative displacement of the two permanent magnets is measured based on the arrival time difference of the ultrasonic signals from the two permanent magnets. Displacement can be detected accurately without being affected by temperature changes. Moreover, since there is no need to use a complicated temperature compensation circuit or the like, it can be constructed at low cost.
第1図は本発明にかかる変位検出装置の一例の基本構成
図、第2図は検出方法の一例を示す波形図、第3図は永
久磁石の他の実施例の斜視図、第4図は磁歪材料の他の
実施例の斜視図、第5図は歪検出装置の感度が変化した
場合の波形図、第6図はコンパレークの閾値が変化した
場合の波形図である。
l・・・磁歪線、2・・・可動永久磁石、3・・・パル
ス発生装置(発信手段)、4・・・歪検出装置(受信手
段)、5・・・固定永久磁石、6・・・パルス成形コ路
。
特許出願人 三京貿易株式会社
代 理 人 弁理士 筒井 秀隆
第1図
第3図
第4図
第5図
第6図
ΔtFIG. 1 is a basic configuration diagram of an example of a displacement detection device according to the present invention, FIG. 2 is a waveform diagram showing an example of a detection method, FIG. 3 is a perspective view of another embodiment of a permanent magnet, and FIG. A perspective view of another embodiment of the magnetostrictive material, FIG. 5 is a waveform diagram when the sensitivity of the strain detection device changes, and FIG. 6 is a waveform diagram when the comparator threshold changes. l... Magnetostrictive wire, 2... Movable permanent magnet, 3... Pulse generator (transmission means), 4... Strain detection device (receiving means), 5... Fixed permanent magnet, 6...・Pulse forming path. Patent applicant Sankyo Boeki Co., Ltd. Representative Hidetaka Tsutsui Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Δt
Claims (1)
間隔を隔てて配置された第1永久磁石および第2永久磁
石と、磁歪材料の軸線方向に電流パルスを供給する発信
手段と、磁歪材料の特定部位に設けられ、第1,第2永
久磁石の近接する磁歪材料の部位で発生した超音波信号
を受信する受信手段と、第1永久磁石から受信手段への
超音波信号の伝播時間と第2永久磁石から受信手段への
超音波信号の伝播時間との差により、第1永久磁石と第
2永久磁石との相対変位量を求める演算手段とを備えた
ことを特徴とする変位検出装置。A linear or tubular magnetostrictive material, a first permanent magnet and a second permanent magnet arranged near the magnetostrictive material at an arbitrary interval, a transmitting means for supplying a current pulse in the axial direction of the magnetostrictive material, and a magnetostrictive material. a receiving means that is provided at a specific part of the material and receives an ultrasonic signal generated at a part of the magnetostrictive material adjacent to the first and second permanent magnets; and a propagation time of the ultrasonic signal from the first permanent magnet to the receiving means. and calculation means for calculating the amount of relative displacement between the first permanent magnet and the second permanent magnet based on the difference between the propagation time of the ultrasonic signal from the second permanent magnet to the receiving means. Device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1001866A JPH0678899B2 (en) | 1989-01-07 | 1989-01-07 | Displacement detection device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1001866A JPH0678899B2 (en) | 1989-01-07 | 1989-01-07 | Displacement detection device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02183117A true JPH02183117A (en) | 1990-07-17 |
| JPH0678899B2 JPH0678899B2 (en) | 1994-10-05 |
Family
ID=11513471
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1001866A Expired - Lifetime JPH0678899B2 (en) | 1989-01-07 | 1989-01-07 | Displacement detection device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0678899B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5412317A (en) * | 1992-07-07 | 1995-05-02 | Santest Co., Ltd. | Position detector utilizing absolute and incremental position sensors in combination |
| DE19700681A1 (en) * | 1996-01-12 | 1997-07-17 | Toyota Motor Co Ltd | Object or liquid level physical displacement ascertainment device |
| JP2011158027A (en) * | 2010-02-01 | 2011-08-18 | Santest Co Ltd | Fluid pressure actuator which can detect position and load |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59162412A (en) * | 1983-02-10 | 1984-09-13 | ゲプハルト・バルフ・フアブリ−ク・フアインメカニシエル・エルツオイグニシユ・フエルバルツングスゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Ultrasonic distance measuring device |
| JPS61226615A (en) * | 1985-03-30 | 1986-10-08 | Sankyo Boeki Kk | Displacement detecting device |
-
1989
- 1989-01-07 JP JP1001866A patent/JPH0678899B2/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59162412A (en) * | 1983-02-10 | 1984-09-13 | ゲプハルト・バルフ・フアブリ−ク・フアインメカニシエル・エルツオイグニシユ・フエルバルツングスゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Ultrasonic distance measuring device |
| JPS61226615A (en) * | 1985-03-30 | 1986-10-08 | Sankyo Boeki Kk | Displacement detecting device |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5412317A (en) * | 1992-07-07 | 1995-05-02 | Santest Co., Ltd. | Position detector utilizing absolute and incremental position sensors in combination |
| DE19700681A1 (en) * | 1996-01-12 | 1997-07-17 | Toyota Motor Co Ltd | Object or liquid level physical displacement ascertainment device |
| US5886518A (en) * | 1996-01-12 | 1999-03-23 | Sumitomo Special Metals Co., Ltd. | Nickel alloy magnetostrictive wire and displacement detection device using same |
| JP2011158027A (en) * | 2010-02-01 | 2011-08-18 | Santest Co Ltd | Fluid pressure actuator which can detect position and load |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0678899B2 (en) | 1994-10-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3898555A (en) | Linear distance measuring device using a moveable magnet interacting with a sonic waveguide | |
| KR960000341B1 (en) | Compact head, signal enhancing magnetostrictive transducer | |
| US5017867A (en) | Magnetostrictive linear position detector with reflection termination | |
| EP0024495B1 (en) | Acoustic pulse delay line system for measuring distances along a magnetostrictive wire | |
| US4678993A (en) | Distance measuring device operating with torsional ultrasonic waves detected without mode conversion | |
| US5196791A (en) | Magnetostrictive linear position detector and a dual pole position magnet therefor | |
| JPH0350285B2 (en) | ||
| JP3177700B2 (en) | Measuring device using magnetostrictive wire | |
| Liu et al. | Optimization of high precision magnetostrictive linear displacement sensor | |
| JPH02183117A (en) | Displacement detector | |
| JP3799415B2 (en) | Magnetostrictive displacement detector | |
| JPS5882110A (en) | Stature measuring device | |
| KR20070114550A (en) | Magnetostrictive position measuring device and position measuring method using the same | |
| KR101017120B1 (en) | Noncontact absolute displacement sensor using magnetic distortion effect | |
| US8054066B2 (en) | Magnetostrictive displacement transducer with phase shifted bias burst | |
| JPH07306030A (en) | Displacement detector | |
| SU1126906A1 (en) | Device for measuring constant magnetic field | |
| RU214164U1 (en) | Measuring element for magnetostrictive linear encoder | |
| JPS61226615A (en) | Displacement detecting device | |
| JPH02248824A (en) | Residual stress measuring device | |
| JPH0236162B2 (en) | ||
| RU2006793C1 (en) | Ultrasound converter of linear movements | |
| JP2001153639A (en) | Length measuring device using magnetostriction line | |
| JPS6027361B2 (en) | How to measure the thickness of conductive materials | |
| JP2004205321A (en) | Length measuring device |