[go: up one dir, main page]

JPH02183668A - color image encoding device - Google Patents

color image encoding device

Info

Publication number
JPH02183668A
JPH02183668A JP1001981A JP198189A JPH02183668A JP H02183668 A JPH02183668 A JP H02183668A JP 1001981 A JP1001981 A JP 1001981A JP 198189 A JP198189 A JP 198189A JP H02183668 A JPH02183668 A JP H02183668A
Authority
JP
Japan
Prior art keywords
amount
color image
information
signal
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001981A
Other languages
Japanese (ja)
Inventor
Toshiaki Watanabe
敏明 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1001981A priority Critical patent/JPH02183668A/en
Priority to US07/385,437 priority patent/US4984076A/en
Publication of JPH02183668A publication Critical patent/JPH02183668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/98Adaptive-dynamic-range coding [ADRC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/115Selection of the code volume for a coding unit prior to coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/162User input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/192Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、カラーの静止画像あるいは動画像の圧縮符
号化に係わる画像符号化装置である。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention] (Industrial Application Field) The present invention is an image encoding device related to compression encoding of color still images or moving images.

(従来の技術) テレビ電話あるいは電子カメラ等現在盛んに研究・開発
がなされている。このような装置におけるカラーの静止
画像、あるいは動画像の圧縮符号化を行う場合、一画面
をR,G、B信号、または輝度、色差信号にわけ、それ
ぞれの信号について圧縮処理を施すが、このR,G、B
の各信号、あるいは輝度2色差の各信号に含まれている
情報量(絵柄の細かさ)は異なっているのが普通であり
、符号化に際してもその情報量に応じた符号化(符号化
ビット数)を割り当てて圧縮符号化を行うことになる。
(Prior Art) Video telephones, electronic cameras, etc. are currently being actively researched and developed. When compressing and encoding color still images or moving images in such devices, one screen is divided into R, G, and B signals, or luminance and color difference signals, and compression processing is performed on each signal. R, G, B
The amount of information (details of the picture) contained in each signal or each signal of luminance and two color differences is usually different, and when encoding, the amount of information (encoded bits) is determined according to the amount of information. compression encoding.

一方、人間の視覚特性を考慮した場合、上記R2G、B
信号、あるいは輝度2色差信号の各信号ごとに人間の目
における検知されやすさとが異なっていることが知られ
ている。例えば輝度2色差信号の場合、一般に色差信号
に比べて輝度信号の方が人間の目には検知されやすい(
情報量も一般には輝度信号のほうが多い)。そのため、
符号化に際してもその検知されやすさに応じた符号量の
割り当てが必要になる。
On the other hand, when considering human visual characteristics, the above R2G, B
It is known that the ease of detection by the human eye differs for each signal or luminance and two-color difference signal. For example, in the case of a luminance two-color difference signal, the luminance signal is generally easier to detect by the human eye than the color difference signal (
In general, the amount of information is greater in the luminance signal). Therefore,
When encoding, it is necessary to allocate the amount of code according to the ease of detection.

このように、絵柄の細かさ、あるいは人間の目における
検知されやすさに応じて符号化ビット数を各信号に割り
当てる必要があるが、従来は、R2O,B信号を同じ重
要度と見なして符号量を割り当てる方式(斎藤、他:″
カラー画像の適応型離散コサイン変換Ga1n / 5
hapeベクトル量子化法″I E85−120.19
85年)、あるいは輝度信号:色差信号=2:1の符号
量を予め決めてしまう方式、あるいは輝度信号に対して
色差信号のS/N比が6dB低くなるように符号量を設
定する方式、−(伊東、他:カラー画像信号の可変長符
号選択型DPCM符号化方弐″2昭和63年電子情報通
信学会秋季全国大会D−70)などが用いられている。
In this way, it is necessary to allocate the number of encoding bits to each signal according to the fineness of the picture or the ease with which it is detected by the human eye, but conventionally, the R2O and B signals are considered to have the same importance and are encoded. A method for allocating amounts (Saito, et al.: ″
Adaptive discrete cosine transform of color images Ga1n/5
hape vector quantization method"I E85-120.19
1985), or a method in which the code amount is predetermined in a ratio of luminance signal: color difference signal = 2:1, or a method in which the code amount is set so that the S/N ratio of the color difference signal is 6 dB lower than that of the brightness signal. - (Ito, et al.: Variable-length code selection type DPCM encoding method for color image signals 2'' 1986 Institute of Electronics, Information and Communication Engineers Autumn National Conference D-70), etc. are used.

しかしこれらの方式は、実際に符号化すべき画面内に存
在する情報量に基づいた符号量配分ではなく、しかも人
間の視覚特性を十分に考慮しているとは言えない。例え
ば、輝度信号と色差信号の情報量の比率は絵ごとにかな
りばらつきがあるにもかかわらず、それを−律2:1に
規定すると輝度信号の符号量不足によるぼけや1色差信
号の符号量不足による色もれが生じる。また、輝度信号
に対して色差信号のS/N比を一律6dB低く設定して
おくと、特に色差信号の情報量が多い絵が入力された場
合に1本来あるはずの色が欠落してしまったり、画面全
体が色あせた様な再生画になって、主観評価の劣化を招
く等の問題がある。
However, these methods do not allocate the amount of code based on the amount of information actually present in the screen to be encoded, and furthermore, it cannot be said that they fully take human visual characteristics into consideration. For example, even though the ratio of the amount of information between the luminance signal and the color difference signal varies considerably from picture to picture, if it is defined as 2:1, blurring due to insufficient code amount of the luminance signal and the amount of code of one color difference signal will occur. Color leakage occurs due to shortage. Also, if the S/N ratio of the color difference signal is set uniformly 6 dB lower than the luminance signal, colors that should be present may be omitted, especially when a picture with a large amount of information in the color difference signal is input. There is a problem that the reproduced image appears dull or the entire screen appears faded, leading to deterioration of subjective evaluation.

(発明が解決しようとする課題) この様に、従来は画面内の各信号が保有している情報量
や、あるいは各信号が人間の視覚に及ぼすインパクトを
考慮した符号化ビット配分になっていないため、入力さ
れた絵柄によって再生画の主観評価が大きく異なり、特
に画面内の各信号が、予め設定されている比率と異なっ
た情報屋を持ってしる場合は再生画の品質が大きく劣化
する可能性があった。
(Problem to be solved by the invention) In this way, in the past, coding bit allocation did not take into account the amount of information held by each signal in the screen or the impact each signal has on human vision. Therefore, the subjective evaluation of the reproduced image varies greatly depending on the input image, and the quality of the reproduced image deteriorates significantly, especially if each signal on the screen has a different ratio from the preset ratio. It was possible.

そこで本発明はこのような問題に鑑みなされたものでそ
の目的はカラー画像が保有している情報量(絵柄の細か
さ)と、人間の視覚に与えるインパクトとを共に考慮し
たカラー画像符号化装置を提供することにある。
The present invention was created in view of these problems, and its purpose is to provide a color image encoding device that takes into account both the amount of information held in a color image (detailed image) and the impact it has on human vision. Our goal is to provide the following.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、カラー画像を符号化するカラー画像符号化装
置において、カラー画像を所定の信号成分例えば、R,
G、B信号や輝度9色差信号に変換するし、この信号成
分の各々の情報量を演算し、演算された情報量に基づい
て符号化すべき符号量あるいは比率の配分を設定し、配
分された符号量あるいは比率と、予め設定された符号量
とにより信号成分を符号化することを特徴とするカラー
画像符号化装置である。カラー画像を信号成分に変換す
る前段に一画面をブロック化する方法をも含む。
(Means for Solving the Problems) The present invention provides a color image encoding device that encodes a color image.
It converts into G, B signals and luminance 9 color difference signals, calculates the amount of information of each of these signal components, sets the amount of code to be encoded or the ratio distribution based on the calculated amount of information, and calculates the amount of code to be encoded or the ratio of the amount of code to be distributed. This is a color image encoding device characterized in that signal components are encoded using a code amount or ratio and a preset code amount. It also includes a method of dividing one screen into blocks before converting a color image into signal components.

ブロック化する場合について詳しく述べるならば、入力
画像の各R,G、B信、あるいは輝度、色差信号を表す
画面内をブロックに分割し、各ブロックごとに分散、標
準偏差、あるいはブロック内の画素値の最大値と最小値
の絶対値差分、あるいはブロックにフィルタ(例えば人
間の視覚特性を考慮したバンド・パス・フィルタ)をか
けた場合の出力結果の値などによって、あるいはまた。
To explain in detail the case of blocking, the screen representing each R, G, B signal, luminance, and color difference signal of the input image is divided into blocks, and the variance, standard deviation, or pixels in the block are calculated for each block. By the absolute difference between the maximum and minimum values, or by the value of the output result when a filter is applied to the block (for example, a band pass filter that takes into account human visual characteristics), or alternatively.

各ブロックを直交変換した場合の変換係数の一部、また
は全変換係数の値の絶対値和や電力(係数の一部に視覚
特性を考慮した重み付けをしてもよい)などによって各
ブロックの情報量を算出する。この情報量の一画面全体
についての平均値をその画面の各R,G、B信号、ある
いは輝度2色差信号の情報量とし、その比率(例えばR
:G:Bや、輝度信号:色差信号)に基づいて各R,G
、B信号、あるい−は輝度、色差信号の符号化ビット数
あるいはその比率を決定する(例えばここで、[111
度信号の情報量/色差信号の情報量]=Xとした場合に
、Y=f (X)(fは予め定められている関数)とし
て輝度信号と色差信号の符号化ビット数の配分比Yを決
定することも考えられる)。
Information about each block is determined by a part of the transform coefficients when each block is orthogonally transformed, or by the sum of the absolute values of all transform coefficients, power (some of the coefficients may be weighted in consideration of visual characteristics), etc. Calculate the amount. The average value of this information amount for one entire screen is taken as the information amount of each R, G, B signal or luminance two-color difference signal of that screen, and its ratio (for example, R
:G:B, luminance signal:color difference signal)
, B signal, or luminance, chrominance signal, or the ratio thereof (for example, here, [111
When Y = f (X) (f is a predetermined function), the distribution ratio of the number of coding bits of the luminance signal and the color difference signal is ).

実際の符号化に際しては、上記のように決定された符号
化ビット数あるいはその比率を基準にして(符号化ビッ
ト数あるいはその比率以内でその信号の符号化処理を必
ず終了する方法や、その符号化ビット数あるいはその比
率を超過して符号化処理を行う場合でも、超過分は予め
定められている範囲内に収まるような処理をする方法な
どが考えられる)符号化を行う。
During actual encoding, the number of encoded bits or its ratio determined as described above is used as a reference (methods for ensuring that the encoding process of the signal is completed within the number of encoded bits or its ratio, and the code Even if the encoding process exceeds the number of encoded bits or the ratio thereof, there may be a method in which the excess bits are processed within a predetermined range.) Encoding is performed.

さらに、色差信号内においても、例えばR−Y信号とB
−Y信号とでは人間の目に及ぼすインパクトが異なり、
R−Y信号の方がB−Y信号よりも検知されやすい。従
って符号量配分の際に色差信号内部においても、R−Y
信号の方にB−Y信号よりも大きな重み付けを行う。
Furthermore, within the color difference signal, for example, the RY signal and the B
-The impact it has on the human eye is different from the Y signal.
The RY signal is easier to detect than the B-Y signal. Therefore, when allocating the code amount, even within the color difference signal, R-Y
The signal is weighted more heavily than the B-Y signal.

なお、上記各信号の情報量を算出する際に、各ブロック
ごとの値の平均値と規定したが、この情報量に関しては
各ブロックごとに値を計算するのではなく、一画面全体
を一つのブロックと見なして一度に情報量を算出するこ
とも可能である。
Note that when calculating the amount of information for each signal above, it was defined as the average value of the values for each block, but regarding this amount of information, instead of calculating the value for each block, the entire screen is It is also possible to calculate the amount of information at once by considering it as a block.

(作 用) この様に、各R,G、B信号、あるいは輝度。(for production) In this way, each R, G, B signal or brightness.

色差信号の情報量の比率から、人間の視覚特性を考慮し
て、予め各信号の符号化ビット数の配分あるいはその比
率を決定し、実際の符号化に際しては、その配分された
ビット数あるいはその比率を基準に各信号の符号化処理
を行うことによって、どの様な絵柄の画像が入力された
場合でも画面内に破綻をきたすことがなく、しかも、常
に視覚特性に優れた再生画を得ることが可能となる。
The distribution of the number of bits encoded for each signal or its ratio is determined in advance from the ratio of the amount of information of the color difference signal, taking human visual characteristics into consideration, and during actual encoding, the allocated number of bits or its ratio is By encoding each signal based on the ratio, no matter what type of image is input, there will be no collapse on the screen, and moreover, it will always be possible to obtain a reproduced image with excellent visual characteristics. becomes possible.

(実施例) 以下に図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の送信側のブロック図である
。 まずブロック分割回路101により、入力画像(た
とえばY、R−Y、B−Yの各信号)がブロック(たと
えば8×8画素、あるいは16×16画素)に分割され
、各ブロックごとに情報量計算回路102において情報
量が計算される。
FIG. 1 is a block diagram of a transmitting side according to an embodiment of the present invention. First, the block division circuit 101 divides an input image (for example, Y, RY, and B-Y signals) into blocks (for example, 8×8 pixels or 16×16 pixels), and calculates the amount of information for each block. The amount of information is calculated in circuit 102.

情報量の定義としてはブロック内の画素値の分散(標準
偏差)、最大画素値と最小画素値との差の絶対値等が考
えられる。これらを一画面分平均して最終的な情報量の
算出を行なう。さらに重み付け回路103において視覚
特性を考慮した重み付けが各信号の情報量に対して行な
われる。例えば輝度信号の情報量をAY、色差信号の情
報量をA。
Possible definitions of the amount of information include the variance (standard deviation) of pixel values within a block, the absolute value of the difference between the maximum pixel value and the minimum pixel value, and the like. The final information amount is calculated by averaging these for one screen. Further, in a weighting circuit 103, weighting is performed on the information amount of each signal in consideration of visual characteristics. For example, the information amount of the luminance signal is AY, and the information amount of the color difference signal is A.

(この中でR−Yの情報量をAR−Y、B−Yの情報量
をAB−yとする。つまり、A c = A R−Y 
+ A B−Y)とすると、重み付け後の値はそれぞれ
、(IEAY  、  βAc   (例えば α:β
=2: 1,3: 1 @となる。又、R−Y、B−Y
についても重み付けを考慮すると、 PAy  T    fAR−Y  t    rAB
−y(例えば p:y:r=10:3:2等)となる。
(In this, the information amount of RY is AR-Y, and the information amount of BY is AB-y. In other words, A c = A R-Y
+ A B - Y), the weighted values are (IEAY, βAc (e.g. α: β
= 2: 1, 3: 1 @. Also, R-Y, B-Y
Considering the weighting for PAy T fAR−Y t rAB
-y (for example, p:y:r=10:3:2, etc.).

また、この重み付け回路103を除いたシステムも考え
られるこの場合は上記のα、β、あるいはPy 矛1r
は全て1とする。さらに、符号化ビット配分決定回路1
04では上記重み付け情報量に基づいて各信号への符号
化ビット数の配分を決定する。つまり全符号量をBaJ
ゎ輝度9色差(R−Y、B−Y)の符号量をそれぞれB
Y、B。
Also, a system without this weighting circuit 103 can be considered.In this case, the above-mentioned α, β, or Py
are all 1. Furthermore, the encoding bit allocation determining circuit 1
In step 04, the allocation of the number of encoded bits to each signal is determined based on the weighting information amount. In other words, the total code amount is BaJ
ゎThe code amount of the luminance 9 color differences (R-Y, B-Y) is set to B
Y,B.

(BR−YI BB−y)とすると、 によって各信号の符号化ビット数が決定される。If (BR-YI BB-y), The number of encoded bits of each signal is determined by .

あるいはまた、 によって輝度と色差の符号化ビット数を決定することも
できる(その後Cの中でさらにR−Y、B−Yに重みを
付けて、R−YとB−Yの符号化ビット数を個別に決定
することも可能)。
Alternatively, the number of encoding bits for luminance and chrominance can be determined by (can also be determined individually).

一方、別の決定法として、情報量の比を用いることもで
きる。つまり、第2図に示す様に直線(曲線でも良い)
を決め、横軸にYとCの情報量の比(AV/AC)を、
縦軸に符号化ビット数の比(By/Be)をとって、こ
の直線(又は曲線)によりA y / A CからBy
/Bcを一意に決定(図の点線)する。なお、この直線
(又は曲線)は原点を通っても良いし通らなくても良い
。また、傾きも視見特性を考慮して決定されるものであ
り、かつ、取り扱う絵柄に応じて変更しても良い。
On the other hand, as another determination method, it is also possible to use the ratio of information amounts. In other words, as shown in Figure 2, a straight line (or a curved line is fine)
Determine the information amount ratio of Y and C (AV/AC) on the horizontal axis,
The ratio of the number of encoded bits (By/Be) is plotted on the vertical axis, and by this straight line (or curve), from A y / A C to By
/Bc is uniquely determined (dotted line in the figure). Note that this straight line (or curve) may or may not pass through the origin. Further, the inclination is also determined in consideration of viewing characteristics, and may be changed depending on the pattern to be handled.

また、R,G、B信号で処理を行なう場合も同様の処理
が行え、例えば重み付けとしてR,G。
Further, when processing is performed using R, G, and B signals, similar processing can be performed, for example, R, G as weighting.

B=2 : 3 : 1などが考えられる。B=2:3:1 etc. can be considered.

次に符号化回路105ではDCT (離散コサイン変換
)、VQ(ベクトル量子化)、DPCM等の各種符号化
、あるいは可変長符号化等が行なわれる。ここでは10
4で決定された各信号の符号化ビット数を基準にして符
号化された各信号の伝送すべき情報量が決定される。例
えばY信号の各プロの符号化に際しては一旦]−以内で
符号化処理を終了させることによって決定された符号化
ビット数以内でその信号の符号化処理を必ず終了する方
法や、その符号化ビット数を超過して符号化を行なう場
合でも、超過分は予め定められている範囲内に収まるよ
うな処理をする方法等が考えられる。
Next, the encoding circuit 105 performs various types of encoding such as DCT (discrete cosine transform), VQ (vector quantization), and DPCM, or variable length encoding. here 10
The amount of information to be transmitted for each encoded signal is determined based on the number of encoded bits for each signal determined in step 4. For example, when encoding each signal of a Y signal, there is a method to ensure that the encoding process for that signal is completed within the determined number of encoding bits by once ending the encoding process within ]-, and the encoding process for that signal is Even when encoding is performed in excess of the number, there may be a method of processing such that the excess is within a predetermined range.

なおここでは予め符号化ビット数を決定しているが、各
信号の符号化ビット数の比のみが決定されており、その
比を基準にして(つまりその基準を完全に満足するかあ
るいはその比から大きくはずれることがない様にする)
符号化処理を行なう(つまり実際に使用される符号化ビ
ット数は変化するが、その比は常に一定、あるいはほぼ
一定となる)手法も考えられる。
Note that although the number of encoding bits is determined in advance here, only the ratio of the number of encoding bits of each signal is determined, and that ratio is used as the standard (in other words, whether the standard is completely satisfied or the ratio is (make sure that it does not deviate too much from the
A method of performing encoding processing (that is, the number of encoding bits actually used changes, but the ratio is always constant or almost constant) is also considered.

さらに本実施例では101でブロック分割を行なってい
るが、各信号の一画面分全体を1つのブロックと見なし
て一度に情報量の計算をすることも可能である。この場
合は必要に応じて符号化回路105の前でブロック分割
を行なうことになる(あるいはブロック分割が必要ない
場合もあり得る)。
Further, in this embodiment, block division is performed at step 101, but it is also possible to consider one screen of each signal as one block and calculate the amount of information at one time. In this case, block division will be performed in front of the encoding circuit 105 if necessary (or block division may not be necessary).

第3図は本発明の別の一実施例の送信側のブロック図で
ある。まず201で各信号(R,G、B又はy、c)を
ブロック分割し、DCT回路202にてDCTを施こす
、その後情報量計算回路203で各ブロックごとに情報
量を計算するが、この実施例の場合は1ブロツク内のD
CT変換係数の各係数値に対して絶対値和、あるいは電
力等を計算する。さらに重み付け回路204で視覚特性
を考慮した重み付けを行なうが、ここでは例えば第4図
に示す様に変換面の周波数領域に応じて重み係数を変化
させることが可能である(第4図では視覚特性に合わせ
て中域成分に大きな重み付けを行なっている)。なお、
情報量は全変換係数から求める場合もあるが、変換係数
の一部のみを用いても良い。その場合は第4図の重み係
数のうち使用しない領域の重み係数値をφにすれば良い
FIG. 3 is a block diagram of the transmitting side of another embodiment of the present invention. First, each signal (R, G, B or y, c) is divided into blocks in 201, and DCT is applied in a DCT circuit 202. Then, the information amount calculation circuit 203 calculates the amount of information for each block. In the case of the example, D within one block
The sum of absolute values, power, etc. is calculated for each coefficient value of the CT conversion coefficients. Furthermore, the weighting circuit 204 performs weighting in consideration of visual characteristics, and here, for example, as shown in FIG. (The midrange components are heavily weighted according to the In addition,
Although the amount of information may be determined from all the transform coefficients, it is also possible to use only a part of the transform coefficients. In that case, the weighting coefficient value of the unused area among the weighting coefficients shown in FIG. 4 may be set to φ.

その後符号化ビット配分決定回路205で符号化ビット
配分あるいは符号化ビット配分の比を決定するが、これ
は第1図の実施例で示したものと同様である。 さらに
206においては決定された符号化ビット数あるいはそ
の比率を基準としてDCT後の符号化処理を行なう。
Thereafter, the coding bit allocation determining circuit 205 determines the coding bit allocation or the coding bit allocation ratio, which is similar to that shown in the embodiment of FIG. Furthermore, in step 206, encoding processing after DCT is performed based on the determined number of encoding bits or the ratio thereof.

第5図は本発明の別の一実施例の送信側のブロック図で
ある。 まずブロック分割回路401でブロックに分割
した後フィルタ402でフィルタをかける(例えば視覚
特性を考慮して、中域周波数成分を通すハンド・パス・
フィルタ等)。その後情報量計算回路403ではフィル
タをかけた後の各画素値に対して第1図の実施例で示し
たのと同じ処理を行なうことによって情報量を計算し、
それを一画面分平均して各信号の最終的な情報量とする
FIG. 5 is a block diagram of the transmitting side of another embodiment of the present invention. First, a block dividing circuit 401 divides the blocks into blocks, and then a filter 402 applies a filter (for example, in consideration of visual characteristics, there is a hand pass filter that passes mid-range frequency components).
filters, etc.). Thereafter, the information amount calculation circuit 403 calculates the information amount by performing the same processing as shown in the embodiment of FIG. 1 on each pixel value after applying the filter,
This is averaged over one screen to obtain the final information amount of each signal.

その後符号化ビット配分決定回路404で各信号の対す
る符号化ビット数(あるいは符号化ビット数の比)を決
定し、 それに基づいて符号化回路405で符号化処理
を行なう。
Thereafter, a coding bit allocation determining circuit 404 determines the number of coding bits (or a ratio of the number of coding bits) for each signal, and based on this, a coding circuit 405 performs coding processing.

なお、この実施例では重み付けの処理を行なっていない
が(ハンド・バス・フィルタを通していることによって
中域周波数にすでに重みつけられていると考えられるた
め)、さらに情報量計算回路403の後で重み付を行な
うことも可能である。
Note that although weighting processing is not performed in this embodiment (because it is considered that the mid-range frequency is already weighted by passing through the hand bass filter), the weighting process is further performed after the information amount calculation circuit 403. It is also possible to attach.

その場合は重み付け後の情報量をもとに一画面の最終的
な情報量が決定されることになる。
In that case, the final amount of information for one screen will be determined based on the amount of information after weighting.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、信号成分(各R,G
、B信号信号、あるいは輝度2色差信号)がもっている
情報量(絵柄の細かさ)と、これら各信号が人間の視覚
に与えるインパクトとを、ともに考慮して各信号を符号
化する際の符号化ビット数を配分する(あるいは符号化
ビット数の比率を決定する)ことができるので、どの様
な絵柄の画像が入力された場合でも画面内に破綻をきた
すことがなく、シかも常に視覚特性に優れた再生画を得
ることが可能となる。
As explained above, according to the present invention, the signal components (each R, G
, B signal, or luminance two-color difference signal) and the impact each signal has on human vision are taken into account when encoding each signal. Since it is possible to allocate the number of encoded bits (or determine the ratio of the number of encoded bits), no matter what kind of image is input, there will be no collapse on the screen, and the visual characteristics will always be maintained. It becomes possible to obtain an excellent reproduced image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した図、第2図は輝度9
色差信号の情報量化から符号化ビット数配分比を決定す
る直線を示した図、第3図は本発明の他の一実施例を示
した図、第4図はDCT変換面における各係数の重み付
けの一例を示した図、第5図は本発明の別の一実施例を
示した図である。 301・・・ブロック、    302・・・低周波成
分領域、303・・・中周波成分領域、 304・・・
高周波成分領域、305・・・領域304における重み
係数。 第1図 代理人 弁理士  則 近 憲 佑 同  松山光之 AY/Ac 第2図
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows a luminance of 9
A diagram showing a straight line that determines the coding bit number allocation ratio from the information content of a color difference signal, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. 4 is a diagram showing the weighting of each coefficient in the DCT conversion plane. FIG. 5 is a diagram showing another embodiment of the present invention. 301...Block, 302...Low frequency component area, 303...Medium frequency component area, 304...
High frequency component region, 305...Weighting coefficient in region 304. Figure 1 Agent Patent attorney Nori Chika Ken Yudo Mitsuyuki Matsuyama AY/Ac Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)カラー画像を符号化するカラー画像符号化装置に
おいて、 前記カラー画像を所定の信号成分に変換する手段と、 この手段により得られた信号成分の各々の情報量を演算
する手段と、 この手段により演算された情報量に基づいて符号化すべ
き符号量あるいは比率の配分を設定する手段とを具備し
、 この手段により配分された符号量あるいは比率と、予め
設定された符号量とにより前記信号成分を符号化するこ
とを特徴とするカラー画像符号化装置。
(1) A color image encoding device that encodes a color image, comprising means for converting the color image into predetermined signal components, means for calculating the amount of information of each of the signal components obtained by this means, and and means for setting the distribution of the code amount or ratio to be encoded based on the information amount calculated by the means, and the code amount or ratio allocated by the means and the code amount set in advance are used to encode the signal. A color image encoding device characterized by encoding components.
(2)情報量を演算する手段は、各信号成分ごとに、そ
れぞれ視覚特性を考慮した重み付け処理を行う手段を有
してなることを特徴とする請求項1記載のカラー画像符
号化装置。
(2) The color image encoding device according to claim 1, wherein the means for calculating the amount of information includes means for performing weighting processing in consideration of visual characteristics for each signal component.
(3)カラー画像を符号化するカラー画像符号化装置に
おいて、 前記カラー画像の一画面をブロックに分割する手段と、
この手段により分割された各ブロックを所定の信号成分
に変換する手段と、 この手段により得られた信号成分の各々の情報量を演算
する手段と、 この手段により演算された情報量に基づいて符号化すべ
き符号量あるいは比率の配分を設定する手段とを具備し
、 この手段により配分された符号量あるいは比率と、予め
設定された符号量とにより前記各ブロックの信号成分を
符号化することを特徴とするカラー画像符号化装置。
(3) In a color image encoding device that encodes a color image, means for dividing one screen of the color image into blocks;
means for converting each block divided by this means into predetermined signal components; means for calculating the amount of information of each of the signal components obtained by this means; and a code based on the amount of information calculated by this means. means for setting the distribution of the amount of code or ratio to be encoded, and the signal component of each block is encoded using the amount of code or ratio allocated by this means and the amount of code set in advance. Color image encoding device.
(4)情報量を演算する手段は、一画面をブロックに分
割した各ブロック内の画素値から求めたブロック内の絵
柄の細かさを表す統計量の一画面における平均値で決定
されることを特徴とした請求項3記載のカラー画像符号
化装置。
(4) The means for calculating the amount of information is determined by the average value for one screen of statistics representing the fineness of the picture in the block obtained from the pixel values in each block where one screen is divided into blocks. The color image encoding device according to claim 3, characterized in that:
(5)情報量を演算する手段は、一画面をブロックに分
割した各ブロックごとに直交変換を施した後、変換係数
の一部あるいは全変換係数から求めたブロック内の絵柄
の細かさを表す統計量の一画面における平均値で決定さ
れることを特徴とした請求項3記載のカラー画像符号化
装置。
(5) The means to calculate the amount of information is to divide one screen into blocks, apply orthogonal transformation to each block, and then express the fineness of the picture in the block obtained from some or all of the transformation coefficients. 4. The color image encoding apparatus according to claim 3, wherein the determination is made based on an average value of the statistics in one screen.
(6)情報量を演算する手段は、各信号成分ごとに、そ
れぞれ視覚特性を考慮した重み付け処理を行う手段を有
してなることを特徴とする請求項3記載のカラー画像符
号化装置。
(6) The color image encoding device according to claim 3, wherein the means for calculating the amount of information includes means for performing weighting processing in consideration of visual characteristics for each signal component.
JP1001981A 1988-07-27 1989-01-10 color image encoding device Pending JPH02183668A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1001981A JPH02183668A (en) 1989-01-10 1989-01-10 color image encoding device
US07/385,437 US4984076A (en) 1988-07-27 1989-07-26 Image compression coding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001981A JPH02183668A (en) 1989-01-10 1989-01-10 color image encoding device

Publications (1)

Publication Number Publication Date
JPH02183668A true JPH02183668A (en) 1990-07-18

Family

ID=11516694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001981A Pending JPH02183668A (en) 1988-07-27 1989-01-10 color image encoding device

Country Status (1)

Country Link
JP (1) JPH02183668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668021B2 (en) 1993-03-29 2003-12-23 Canon Kabushiki Kaisha Encoding apparatus
JP2010183402A (en) * 2009-02-06 2010-08-19 Panasonic Corp Video signal encoding apparatus, and video signal encoding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668021B2 (en) 1993-03-29 2003-12-23 Canon Kabushiki Kaisha Encoding apparatus
JP2010183402A (en) * 2009-02-06 2010-08-19 Panasonic Corp Video signal encoding apparatus, and video signal encoding method

Similar Documents

Publication Publication Date Title
KR0183688B1 (en) Image encoding method and device
US6490319B1 (en) Region of interest video coding
EP0449555B1 (en) Image encoding apparatus
US7194030B2 (en) Method for pre-suppressing noise of image
JPH08237669A (en) Picture signal processor, picture signal processing method and picture signal decoder
WO2019092463A1 (en) Video image processing
US8630500B2 (en) Method for the encoding by segmentation of a picture
US4803548A (en) Color video image enhancement
CN118301361A (en) Video compression method and device and electronic equipment
CN115842915A (en) Video coding method and device
US6084982A (en) Method of chroma-keying for a digital video compression system
CN111200693A (en) Image data transmission method, device and system
CN106454386B (en) A kind of method and apparatus of the Video coding based on JND
Froehlich et al. Content aware quantization: Requantization of high dynamic range baseband signals based on visual masking by noise and texture
KR100327368B1 (en) Method of video coding and decoding
JPH02183668A (en) color image encoding device
JP3845913B2 (en) Quantization control method and quantization control apparatus
JPH07203436A (en) Image coding device
US4528584A (en) Bilevel coding of color video signals
EP0112499B1 (en) Process and apparatus for bilevel coding of colour video signals
EP1465436A1 (en) Natural impression preservation for histogram equalized images
JP2543857B2 (en) Color image processing device
JPH08140088A (en) Image coding device
KR100339554B1 (en) Method of image data process for picturephone
KR100316763B1 (en) Image encoding method and apparatus