JPH02194132A - Manufacture of metal matrix composite - Google Patents
Manufacture of metal matrix compositeInfo
- Publication number
- JPH02194132A JPH02194132A JP1189589A JP1189589A JPH02194132A JP H02194132 A JPH02194132 A JP H02194132A JP 1189589 A JP1189589 A JP 1189589A JP 1189589 A JP1189589 A JP 1189589A JP H02194132 A JPH02194132 A JP H02194132A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- preform
- ceramic
- matrix
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は含浸加圧鋳造法により、セラミックス製強化材
でマトリックス金属を強化した金属基複合材料の製造方
法に係り、特に強化材として安価なセラミックス粒子を
使用し、材料中における強化材の容積比率を適正に保持
することが可能であり、強度特性値が優れた金属基複合
材料の製造方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a metal matrix composite material in which a matrix metal is reinforced with a ceramic reinforcement by an impregnation pressure casting method, and in particular, The present invention relates to a method for manufacturing a metal matrix composite material that uses inexpensive ceramic particles as a reinforcing material, can maintain an appropriate volume ratio of the reinforcing material in the material, and has excellent strength characteristics.
(従来の技術)
近年、炭化ケイ素、アルミナ等のセラミックス繊維また
はセラミックス粒子で強化された金属基複合材料が新素
材の1つとして注目されている。(Prior Art) In recent years, metal matrix composite materials reinforced with ceramic fibers or ceramic particles such as silicon carbide and alumina have attracted attention as one of the new materials.
その中でも高温強度に優れ、硬いセラミックス繊維を、
マトリックス金属中に分散させた金属基複合材料が、宇
宙機器、ロボット、自動車、航空機等の幅広い産業分野
で普及してい゛る。Among them, ceramic fibers with excellent high-temperature strength and hardness are used.
Metal matrix composite materials dispersed in a matrix metal are becoming popular in a wide range of industrial fields such as space equipment, robots, automobiles, and aircraft.
従来例えばAオ、03繊維、S i CIIaHなどセ
ラミックス繊維を強化材とし、アルミニウム合金材をマ
トリックス金属とするセラミックスIM強化材複合材料
の製造方法としては、溶湯含浸加圧鋳造法(以下「溶浸
法」という。)が一般に採用されている。Conventionally, the method for manufacturing ceramic IM reinforced composite materials using ceramic fibers such as Ao, 03 fibers, and Si CIIaH as reinforcing materials and aluminum alloy materials as matrix metals has been the molten metal impregnation pressure casting method (hereinafter referred to as "infiltration"). ) is generally adopted.
この溶浸法は、まずセラミックス繊維で所定形状および
繊維体積率(Vf)を有するセラミックスIIHの予備
成形体を加圧形成し、この予備成形体を金型内に配置し
て200〜700℃に加熱する。その後、溶融アルミニ
ウム合金を金型内に注湯し、この溶融アルミニウム合金
をラムで直接加圧することにより予備成形体の内部空間
にm4を含浸させ、アルミニウム合金をマトリックスと
する複合体を得るものである。In this infiltration method, first, a ceramic IIH preform having a predetermined shape and fiber volume fraction (Vf) is formed using ceramic fibers under pressure, and this preform is placed in a mold and heated to 200 to 700°C. Heat. Thereafter, molten aluminum alloy is poured into the mold, and the molten aluminum alloy is directly pressurized with a ram, thereby impregnating m4 into the internal space of the preform to obtain a composite with aluminum alloy as a matrix. be.
ところで上記予備成形体における強化材の体積率(Vf
)は予備成形体の見掛は上の容積に対する強化材の容積
の比率を表わし、完成した複合材料の容積に対する強化
材の容積比率に対応する。By the way, the volume fraction (Vf
) represents the ratio of the volume of the reinforcement to the apparent volume of the preform, which corresponds to the volume ratio of the reinforcement to the volume of the finished composite.
この体積率が過少であると強化材としての効宋が少ない
一方、過大な場合は相対的にマトリックス金11ffi
が低下し、強化材を保持する強度が低下し、同様に複合
材料の機械的特性が低下する。したがって、この体積率
は複合材料の強度特性値が最大となる範囲に設定され、
その具体的な値は10〜50%程度である。If this volume fraction is too small, its effectiveness as a reinforcing material will be low, while if it is too large, the matrix gold will be relatively less effective.
decreases, the strength to hold the reinforcement decreases, and the mechanical properties of the composite material decrease as well. Therefore, this volume fraction is set in the range where the strength property value of the composite material is maximum,
Its specific value is about 10 to 50%.
一方、強化材としては11M状またはウィスカ状のセラ
ミックスが主として使用されていたが、繊維状およびウ
ィスカ状のセラミックスは、二次加工品であるため、粒
子状のセラミックスと比較して数倍高価である。そのた
め複合材料の製品価格が非常に高くなり、実用化にあた
って大きな障害となっていた。On the other hand, 11M-shaped or whisker-shaped ceramics have been mainly used as reinforcing materials, but fibrous and whisker-shaped ceramics are several times more expensive than particulate ceramics because they are secondary processed products. be. As a result, the product price of composite materials has become extremely high, which has been a major obstacle to their practical application.
そこでより安価な強化材として、粒子状のセラミックス
をより多く使用し、安価な金属基複合材料とする試みも
なされている。Therefore, attempts have been made to use more particulate ceramics as a cheaper reinforcing material to create an inexpensive metal matrix composite material.
(発明が解決しようとする課題)
しかしながら従来の溶浸法による製造工程において、セ
ラミックス粒子のみで、体積率が50%以下であり、か
つ加圧vI造時に変形や破損を起こさない充分な強度を
有する予備成形体を形成1−ることは困難であった。す
なわちセラミックス粒子同士のからみ合いによって粒子
相互の位置を固定し、加圧操作に耐える予備成形体を形
成するためには第2図に示すように、体積率が50〜7
0%になるようにセラミックス粒子1を高密度で配合し
なければならない。その場合、セラミックス粒子1.1
間の空隙部2の容積は微小になるため、マトリックスと
なる溶融金属を含浸させる容積が少なくなり、得られる
複合材料の強度特性値も低下してしまう。(Problem to be solved by the invention) However, in the manufacturing process using the conventional infiltration method, the volume ratio is 50% or less using only ceramic particles, and sufficient strength is required to prevent deformation or breakage during pressurized VI manufacturing. It was difficult to form a preform with 1-. In other words, in order to fix the positions of the ceramic particles by intertwining them and form a preform that can withstand pressure operations, the volume fraction must be 50 to 7, as shown in Figure 2.
Ceramic particles 1 must be blended at a high density so that the content is 0%. In that case, ceramic particles 1.1
Since the volume of the void 2 between the two is minute, the volume for impregnating the molten metal serving as the matrix is reduced, and the strength characteristics of the resulting composite material are also reduced.
一方マトリックス金属中に比較的低い体積率でセラミッ
クス粒子を均一に分散させて金属基複合材料を形成する
ことができる方法としては、粉末冶金法、メカニカルア
ロイング法およびコンホキ1ジステイング法の3方法に
ほぼ限定されている。On the other hand, there are three methods that can form a metal matrix composite material by uniformly dispersing ceramic particles in a matrix metal at a relatively low volume fraction: powder metallurgy, mechanical alloying, and Konhoki 1 distyping. Almost limited.
粉末冶金法はマトリックスとなる原料金属粉末と強化材
としてのセラミックス粒子とを充分に混合した後に、得
られた混合体を加圧成形し、真空または不活性ガス雰囲
気において^温度に加熱したり、ホットプレスによって
複合化成形する方法である。The powder metallurgy method involves thoroughly mixing raw metal powder as a matrix and ceramic particles as a reinforcing material, then press-molding the resulting mixture and heating it to ^ temperature in a vacuum or inert gas atmosphere. This is a method of composite molding using hot pressing.
メカニカルアロイング法は、粉砕機を兼ねる撹拌槽内に
マトリックス原料金属とセラミックス粒子とを投入し、
原料を所定粒径に機械的に粉砕するとともに充分に混合
し、均一な混合物をDllし、得られた混合物を粉末冶
金法と同様に加熱圧化して複合材料を形成する方法であ
る。In the mechanical alloying method, matrix raw metal and ceramic particles are placed in a stirring tank that also serves as a pulverizer.
In this method, raw materials are mechanically pulverized to a predetermined particle size, thoroughly mixed, a homogeneous mixture is prepared, and the resulting mixture is heated and pressed in the same way as in powder metallurgy to form a composite material.
またコンポキャスティング法は、原料金属の液相と固相
とが共存する半溶融状態になるまでマトリックス原料を
加熱し、その状態でセラミックス粒子を添加混合し、粒
子が均一に分散した段階でマI・リックス原料を固化せ
しめ複合材料を形成する方法である。In addition, in the composite casting method, the matrix raw material is heated until it becomes a semi-molten state in which the liquid phase and solid phase of the raw metal metal coexist, and ceramic particles are added and mixed in this state, and when the particles are uniformly dispersed, the matrix material is・This is a method of solidifying Rix raw materials to form composite materials.
しかしながら上記粉末冶金法およびメカニカルアロイン
グ法においては、原材料混合プロセス、焼結設備、ホッ
トプレス設備、真空機器や不活性ガス設備等が必要であ
り、溶浸法と比較して設備および製造工程が複雑で生産
性が低く、複合材料の製造コストが高騰化するなどの問
題点がある。However, the powder metallurgy method and mechanical alloying method require a raw material mixing process, sintering equipment, hot press equipment, vacuum equipment, inert gas equipment, etc., and require more equipment and manufacturing processes than the infiltration method. There are problems such as complexity, low productivity, and rising costs for manufacturing composite materials.
またコンポキャスティング法では、溶融金属と強化材の
ぬれ性が一般に低く、特に微細な強化材とマトリックス
金属との複合化が困難な場合が多く、強化材の添加量が
制限され、充分な強度を有する複合材料が得られないと
いう問題点があった。In addition, in the composite casting method, the wettability of the molten metal and the reinforcing material is generally low, and it is often difficult to composite the fine reinforcing material with the matrix metal, which limits the amount of reinforcing material added, and it is difficult to obtain sufficient strength. There was a problem in that it was not possible to obtain a composite material with
本発明は上記の問題点を解消するためになされたもので
あり、安価なセラミックス粒子を主たる強化材として使
用し、高価で複雑な操作を要する設備を使用せず極めて
I!!I重な設備で製造することが可能であり、さらに
作業性が良く低コストで経済的な金属基複合材料を製造
することができる金属基複合材料の製造方法を提供する
ことを目的とする。The present invention was made to solve the above-mentioned problems, and uses inexpensive ceramic particles as the main reinforcing material, and achieves extremely high performance without using expensive and complicated equipment. ! It is an object of the present invention to provide a method for manufacturing a metal matrix composite material that can be manufactured using heavy-duty equipment, has good workability, and is economical at low cost.
また本発明の他の目的は、含浸加圧vI造する際に予備
成形体が破壊されることがなく、補強材としての予備成
形体をマトリックス金属中に低い体積率で均一に分散さ
せることができる金属基複合材料の製造方法を提供する
ことである。Another object of the present invention is that the preform is not destroyed during impregnation and pressurization, and that the preform as a reinforcing material can be uniformly dispersed at a low volume percentage in the matrix metal. It is an object of the present invention to provide a method for manufacturing a metal matrix composite material that can be produced.
(課題を解決するための手段)
上記目的を達成するため本発明は、マトリックス金属材
料に微細な強化材が分散した金属基複合材料の製造方法
において、前記強化材としてのセラミック粒子を主成分
とし、セラミックスミl維およびセラミックスウィスカ
の少なくとも一方を従成分とする予備成形体を形成し、
上記予備成形体にマトリックス金属としての溶融金属を
含浸せしめ加圧鋳造して複合化することを特徴とする。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for producing a metal matrix composite material in which a fine reinforcing material is dispersed in a matrix metal material, in which ceramic particles as the reinforcing material are the main component. , forming a preformed body containing at least one of ceramic fibers and ceramic whiskers as a subsidiary component;
The method is characterized in that the preform is impregnated with molten metal as a matrix metal and then pressure cast to form a composite.
また予備成形体中の強化材の体積率は10%以上50%
以下に設定すると良い。In addition, the volume percentage of the reinforcing material in the preform is 10% or more and 50%.
It is recommended to set it as below.
(作用)
上記構成によれば、強化材としてのセラミックス粒子を
主成分とし、従成分としてセラミックス繊HiBよびセ
ラミックスウィスカの少なくとも一方から成る強化材が
少量添加されているため、セラミックス8N1t−ラミ
ックスウィスカは立体的な繊維骨格を形成し、そのm雑
骨格に沿ってセラミックス粒子が強固に結合され、全体
として強度の高い予備成形体が形′成される。各セラミ
ックス粒子は相互に隔離して骨格上に保持され、セラミ
ックス粒子間には広い空111部が形成される結果、か
さ密度および体積率が低く、強度が高い予備成形体が得
られる。(Function) According to the above configuration, since the main component is ceramic particles as a reinforcing material, and a small amount of reinforcing material consisting of at least one of ceramic fiber HiB and ceramic whiskers is added as a subsidiary component, the ceramic 8N1t-ramix whisker forms a three-dimensional fiber skeleton, and the ceramic particles are firmly bonded along the miscellaneous skeleton, forming a preformed body with high strength as a whole. Each ceramic particle is held on the skeleton in isolation from each other, and wide voids 111 are formed between the ceramic particles, resulting in a preformed body with low bulk density and volume fraction and high strength.
そのため、含浸加圧鋳造する際に過大な加圧力が作用し
た場合においても予備成形体が破壊されることがなく、
広い空隙部にマトリックス溶融金属が充分に含浸される
ため、強度が高い金属基複合材料を提供することができ
る。Therefore, even if excessive pressure is applied during impregnation pressure casting, the preform will not be destroyed.
Since the wide voids are sufficiently impregnated with matrix molten metal, a metal matrix composite material with high strength can be provided.
特に予備成形体中の強化材の体積率を10%以上に設定
することにより、強化材による補強効果が高まり、かつ
体積率を50%以下に設定することにより、7トリツク
スと強化材との結合強度が高まり、最適な強度特性を有
する金属基複合材料とすることができる。In particular, by setting the volume percentage of the reinforcing material in the preform to 10% or more, the reinforcing effect of the reinforcing material is enhanced, and by setting the volume percentage to 50% or less, the bond between the 7 Trix and the reinforcing material is improved. A metal matrix composite material with increased strength and optimal strength characteristics can be obtained.
また本発明方法によれば、予備成形体の形成工程および
含浸加圧vI造による複合工程において、高価な設備や
高温高真空設備および雰囲気調整設備等の、操作が煩雑
な設備を使用せず、大気中において極めて簡単な設備お
よび操作で製造を行なうことができるため、金属基複合
材料を低コストでかつ高能率で生産することができる。Furthermore, according to the method of the present invention, in the process of forming a preform and the composite process of impregnating and pressurizing VI-forming, expensive equipment, equipment that is complicated to operate such as high-temperature, high-vacuum equipment, and atmosphere adjustment equipment is not used. Since the metal matrix composite material can be produced in the atmosphere with extremely simple equipment and operations, the metal matrix composite material can be produced at low cost and with high efficiency.
(実施例)
次に本発明に係る金属基複合材料のljJ造方法の一実
施例について添付図面を参照して説明する。(Example) Next, an example of the ljj manufacturing method of a metal matrix composite material according to the present invention will be described with reference to the accompanying drawings.
まず強化材として平均粒径が5μmのSiC粒子と、平
均径が7μm1長さが6麿の炭素繊維とをそれぞれの体
積含有率の比が5:1となるように混合した。この際、
バインダーとしてアルミナゾルを全重重に対して10重
量%添加した。そして得られた混合体を充分に混合した
後に、直径100jlllの金型に充填し、高さが10
0mで強化材の体積率が30%となるうに圧力200/
l/allで圧縮成形し、予備成形体を形成した。First, as a reinforcing material, SiC particles having an average particle diameter of 5 μm and carbon fibers having an average diameter of 7 μm and a length of 6 mm were mixed so that the volume content ratio of each was 5:1. On this occasion,
Alumina sol was added as a binder in an amount of 10% by weight based on the total weight. After thoroughly mixing the obtained mixture, it was filled into a mold with a diameter of 100 ml, and the height was 10 ml.
Pressure 200/ so that the volume fraction of reinforcing material is 30% at 0 m
Compression molding was performed at l/all to form a preform.
次に得られた予備成形体を一度800’Cで4時間加熱
して、添加したアルミナゾルを結晶化させることによっ
てSIG粒子相互間、炭素am相互間、およびSiC粒
子と炭素tM、H相互間の結合強度を高めた。得られた
予備成形体中のSiC粒子および炭素繊維の分布状況を
顕微鏡にて観察したところ、第1図に示すように、炭素
1113が立体的にからみ合って繊維骨格を形成し、そ
の骨格に沿ってSiC粒子1が相互に隔離して保持され
、SiC粒子1.1・・・の間に広い空隙部2が形成さ
れていることが確認された。Next, the obtained preform is heated once at 800'C for 4 hours to crystallize the added alumina sol, thereby forming a bond between SIG particles, between carbon am, and between SiC particles and carbon tM, H. Increased bond strength. When the distribution of SiC particles and carbon fibers in the obtained preform was observed using a microscope, it was found that carbon 1113 was intertwined three-dimensionally to form a fiber skeleton, as shown in Figure 1. It was confirmed that the SiC particles 1 were held separated from each other along the lines, and wide voids 2 were formed between the SiC particles 1.1.
このように少量の炭素sinの添加により予備成形体の
かさ密度が低減され、強化材の最適な体積率が保証され
ると同時に、炭素繊維が形成する繊維骨格により、強固
な予備成形体が形成される。In this way, the addition of a small amount of carbon sin reduces the bulk density of the preform, ensuring an optimal volume fraction of the reinforcement, and at the same time, the fiber skeleton formed by the carbon fibers forms a strong preform. be done.
さらに得られた予備成形体を型に配置し、溶融した60
61アルミニウム合金を型内に注渇し、溶湯をピストン
で圧力20(1/liで加圧して、予備成形体内空間に
溶湯を含浸させて複合材料とした。Furthermore, the obtained preformed body was placed in a mold and molten 60
61 aluminum alloy was poured into the mold, and the molten metal was pressurized with a piston at a pressure of 20 (1/li) to impregnate the molten metal into the space inside the preform to form a composite material.
予備成形体は加圧鋳造時において変形やつぶれを生じる
ことなく、アルミニウム合金中に均一に分散され高強度
の複合材料を得ることができた。The preform was uniformly dispersed in the aluminum alloy without deformation or crushing during pressure casting, and a high-strength composite material could be obtained.
一方比較例として炭素ilNを添加せずSiC粒子のみ
から成る強化材を使用して、体積率が30%以下の予備
成形体を形成することを試みたが、SiC粒子のかさ密
度が高いため、バインダーを添加しても、加圧鋳造に耐
える高強度を有し体積率が30%以下のものを製造する
ことは不可能であった。また圧力2008910i程度
の加圧力に充分耐え、鋳造時の加圧力に耐える予備成形
体の成形限界となる体積率は50%を超えていた。On the other hand, as a comparative example, an attempt was made to form a preform with a volume fraction of 30% or less by using a reinforcing material consisting only of SiC particles without adding carbon ilN, but due to the high bulk density of the SiC particles, Even with the addition of a binder, it has been impossible to produce a material with high strength that can withstand pressure casting and a volume fraction of 30% or less. Further, the volume fraction, which is the molding limit of the preform that can sufficiently withstand a pressure of about 2008910i and withstand the pressure during casting, exceeded 50%.
このSiC粒子のみから成り体積率が50%の予備成形
体の粒子の分布状態は第2図に示す通りであり、高密度
に集積されたSiC粒子1.1・・・の間に形成される
空隙部2は小さい。したがって空隙部2に含浸されるマ
トリックス金属Iが相対的に減少し、SIC粒子1の保
持強度が低下し複合材料全体としての強度特性値も低下
する。The particle distribution state of this preformed body consisting only of SiC particles and having a volume fraction of 50% is as shown in Fig. 2, and is formed between 1.1... of SiC particles accumulated at high density. The void 2 is small. Therefore, the matrix metal I impregnated into the voids 2 is relatively reduced, the retention strength of the SIC particles 1 is reduced, and the strength characteristic value of the composite material as a whole is also reduced.
〔発明の効果ン
以上説明の通り、本発明に係る金属基複合材料の製造方
法によれば、強化材としてのセラミックス粒子を主成分
とし、従成分としてセラミックス繊維およびセラミック
スウィスカの少なくとも一方から成る強化材が少量添加
されているため、セラミックスI維、セラミックスウィ
スカは立体的な繊維骨格を形成し、その8M骨格に沿っ
てセラミックス粒子が強固に結合され、全体として強度
の高い予備成形体が形成される。各セラミックス粒子は
相互に隔離して骨格上に保持され、セラミックス粒子問
には広い空隙部が形成される結果、かさ密度および体積
率が低く強度が高い予備成形体が得られる。[Effects of the Invention] As explained above, according to the method for producing a metal matrix composite material according to the present invention, a reinforcement consisting of ceramic particles as a main component and at least one of ceramic fibers and ceramic whiskers as a subsidiary component. Because a small amount of material is added, the ceramic I fibers and ceramic whiskers form a three-dimensional fiber skeleton, and the ceramic particles are firmly bonded along the 8M skeleton, forming a preform with high strength as a whole. Ru. The ceramic particles are held on the skeleton in isolation from each other, and wide voids are formed between the ceramic particles, resulting in a preformed body with low bulk density and volume fraction and high strength.
そのため、含浸加圧vI造する際に過大な加圧力が作用
した場合においても予備成形体が破壊されることがなく
、広い空隙部にマトリックス溶融金属が充分に含浸され
るため、強度が高い金属基複合材料を提供することがで
きる。Therefore, even if excessive pressure is applied during impregnation pressurization, the preform will not be destroyed, and the wide voids will be sufficiently impregnated with the matrix molten metal, resulting in a high-strength metal. A base composite material can be provided.
また本発明方法によれば、予備成形体の形成工程および
含浸加圧鋳造による複合工程において、8価な設備や′
B潟高真空設備および雰囲気調整9僑等の、操作が煩雑
な設備を使用せず、大気中において極めてfFiQiな
設備および操作で製造を行なうことができるため、金属
基複合材料を低コストでかつ高能率で生産することがで
きる。Furthermore, according to the method of the present invention, in the process of forming the preform and the composite process of impregnating pressure casting, octavalent equipment and
Metal matrix composite materials can be manufactured at low cost and in the atmosphere without the use of complicated equipment such as B-lagoon high-vacuum equipment and atmosphere adjustment equipment. It can be produced with high efficiency.
婦成形体の一部を拡大して示す図である。It is an enlarged view of a part of the female molded body.
1・・・セラミックス粒子(SiC粒子)、2・・・空
i部、3・・・セラミックスI1M(炭素繊維)。DESCRIPTION OF SYMBOLS 1...Ceramics particle (SiC particle), 2...Void i part, 3...Ceramics I1M (carbon fiber).
Claims (1)
属基複合材料の製造方法において、前記強化材としての
セラミック粒子を主成分とし、セラミックス繊維および
セラミックスウィスカの少なくとも一方を従成分とする
予備成形体を形成し、上記予備成形体にマトリックス金
属としての溶融金属を含浸せしめ加圧鋳造して複合化す
ることを特徴とする金属基複合材料の製造方法。 2、予備成形体中の強化材の体積率が10%以上50%
以下であることを特徴とする請求項1記載の金属基複合
材料の製造方法。[Claims] 1. A method for manufacturing a metal matrix composite material in which fine reinforcing material is dispersed in a matrix metal material, wherein ceramic particles as the reinforcing material are the main component, and at least one of ceramic fibers and ceramic whiskers is used as a secondary component. 1. A method for producing a metal matrix composite material, comprising: forming a preform as a component; impregnating the preform with molten metal as a matrix metal; and pressurizing and casting to form a composite. 2. The volume percentage of reinforcing material in the preform is 10% or more and 50%
The method for producing a metal matrix composite material according to claim 1, characterized in that:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1189589A JPH02194132A (en) | 1989-01-23 | 1989-01-23 | Manufacture of metal matrix composite |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1189589A JPH02194132A (en) | 1989-01-23 | 1989-01-23 | Manufacture of metal matrix composite |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02194132A true JPH02194132A (en) | 1990-07-31 |
Family
ID=11790464
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1189589A Pending JPH02194132A (en) | 1989-01-23 | 1989-01-23 | Manufacture of metal matrix composite |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02194132A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09157772A (en) * | 1995-02-22 | 1997-06-17 | Mazda Motor Corp | Production of partial composite light metal parts and preform used for the same |
| US6383656B1 (en) | 1999-06-11 | 2002-05-07 | Nichias Corporation | Perform for metal matrix composite material and cylinder block made of the same |
| US9429202B2 (en) | 2012-05-02 | 2016-08-30 | Intellectuall Property Holdings LLC | Ceramic preform and method |
| US9714686B2 (en) | 2014-10-20 | 2017-07-25 | Intellectual Property Holdings, Llc | Ceramic preform and method |
| US10357846B2 (en) | 2015-12-31 | 2019-07-23 | Intellectual Property Holdings, Llc | Metal matrix composite vehicle component and method |
| US10830296B2 (en) | 2017-04-21 | 2020-11-10 | Intellectual Property Holdings, Llc | Ceramic preform and method |
| US11338360B2 (en) | 2016-02-04 | 2022-05-24 | Intellectual Property Holdings, Llc | Device and method for forming a metal matrix composite vehicle component |
-
1989
- 1989-01-23 JP JP1189589A patent/JPH02194132A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09157772A (en) * | 1995-02-22 | 1997-06-17 | Mazda Motor Corp | Production of partial composite light metal parts and preform used for the same |
| US6383656B1 (en) | 1999-06-11 | 2002-05-07 | Nichias Corporation | Perform for metal matrix composite material and cylinder block made of the same |
| US9429202B2 (en) | 2012-05-02 | 2016-08-30 | Intellectuall Property Holdings LLC | Ceramic preform and method |
| US9840030B2 (en) | 2012-05-02 | 2017-12-12 | Intellectual Property Holdings, Llc | Ceramic preform and method |
| US9714686B2 (en) | 2014-10-20 | 2017-07-25 | Intellectual Property Holdings, Llc | Ceramic preform and method |
| US10357846B2 (en) | 2015-12-31 | 2019-07-23 | Intellectual Property Holdings, Llc | Metal matrix composite vehicle component and method |
| US11338360B2 (en) | 2016-02-04 | 2022-05-24 | Intellectual Property Holdings, Llc | Device and method for forming a metal matrix composite vehicle component |
| US10830296B2 (en) | 2017-04-21 | 2020-11-10 | Intellectual Property Holdings, Llc | Ceramic preform and method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE68920267T2 (en) | Process for the production of a composite material reinforced by ceramic. | |
| DE68920263T2 (en) | Method for manufacturing a composite body element reinforced by ceramics for motor vehicles. | |
| US4699849A (en) | Metal matrix composites and method of manufacture | |
| US4797155A (en) | Method for making metal matrix composites | |
| JP4429505B2 (en) | Method for producing low volume fraction metal-based preform | |
| JPH02194132A (en) | Manufacture of metal matrix composite | |
| JP6837685B2 (en) | Manufacturing method of aluminum alloy-based composite material | |
| US6044894A (en) | Method for preparing a light metal or light metal alloy based composite product | |
| EP0754659B1 (en) | Porous inorganic material and metal-matrix composite material containing the same and process therefor | |
| EP0380973B1 (en) | Reinforced materials | |
| CN114836661A (en) | Double-scale ceramic particle reinforced aluminum-based composite material and preparation method thereof | |
| JPH02310329A (en) | Manufacturing method of particle-dispersed composite material | |
| JPS60145349A (en) | Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof | |
| JP3628198B2 (en) | Preform for metal matrix composite and manufacturing method thereof | |
| JPH0564692B2 (en) | ||
| JP2788448B2 (en) | Method for producing fiber composite member | |
| JP3183804B2 (en) | Porous reinforced sintered body and method for producing the same, composite material using this porous reinforced sintered body and method for producing the same | |
| JPH01283330A (en) | Manufacture of aluminum-based composite member | |
| JP4135191B2 (en) | Method for producing partially composite light metal parts and preform used therefor | |
| JPH0435542B2 (en) | ||
| JPH0364578B2 (en) | ||
| JPS63130733A (en) | Manufacturing method of copper matrix composite material | |
| JPS63293102A (en) | Production of fe-base sintered alloy member having high strength and high toughness | |
| JPH03122051A (en) | Sintered material of whisker-compounded diamond and production thereof | |
| JP3619258B2 (en) | Manufacturing method of composite reinforcement for functionally graded metal matrix composite |