[go: up one dir, main page]

JPH02196469A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02196469A
JPH02196469A JP1015600A JP1560089A JPH02196469A JP H02196469 A JPH02196469 A JP H02196469A JP 1015600 A JP1015600 A JP 1015600A JP 1560089 A JP1560089 A JP 1560089A JP H02196469 A JPH02196469 A JP H02196469A
Authority
JP
Japan
Prior art keywords
voltage
power supply
transistor
substrate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015600A
Other languages
Japanese (ja)
Inventor
Shinichirou Ikemasu
慎一郎 池増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1015600A priority Critical patent/JPH02196469A/en
Publication of JPH02196469A publication Critical patent/JPH02196469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の概要] 半導体装置特にPチャネルMO3!−ランジスタの基板
バイアスに関し、 PチャネルMO3I−ランジスタのリーク電流や拡ii
容量の低減を目的とし、 PチャネルMOSトランジスタの基板(基板またはウェ
ル)には外部電源からの電圧を印加し、該トランジスタ
のソース、ドレインにはそれより低い内部または外部の
電圧を印加するように構成する。
[Detailed Description of the Invention] [Summary of the Invention] Semiconductor device, especially P-channel MO3! - Regarding the substrate bias of the transistor, P-channel MO3I - leakage current and expansion of the transistor
For the purpose of reducing capacitance, a voltage from an external power supply is applied to the substrate (substrate or well) of a P-channel MOS transistor, and a lower internal or external voltage is applied to the source and drain of the transistor. Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置特にPチャネルMOSトランジス
タの基板(またはウェル)へのバックバイアスに関する
The present invention relates to a back bias to the substrate (or well) of a semiconductor device, particularly a P-channel MOS transistor.

近年のMOS ICは高速化や低消費電力化の要求に伴
い、各MOSトランジスタのリーク電流や拡散層容量を
低減する課題に直面している。
In recent years, MOS ICs have been faced with the challenge of reducing leakage current and diffusion layer capacitance of each MOS transistor due to demands for higher speeds and lower power consumption.

〔従来の技術〕[Conventional technology]

従来の半導体装置では、NチャネルMOSトランジスタ
部の基板またはウェルに負のバイアスを印加する基板バ
イアス・ジェネレータを搭載し、該トランジスタのリー
ク電流や拡散層容量を低減している。
Conventional semiconductor devices are equipped with a substrate bias generator that applies a negative bias to the substrate or well of an N-channel MOS transistor section to reduce leakage current and diffusion layer capacitance of the transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、PチャネルMO3)ランジスク部で基板バイ
アスを印加するには、ソースに印加する電源電圧、ドレ
インに印加する零〜電源電圧より高い電圧を安定して供
給せねばならず、これをIC内部で発生することは現実
には不可能である。
However, in order to apply a substrate bias in the P-channel MO3) transistor section, it is necessary to stably supply a voltage higher than the power supply voltage applied to the source and the zero to power supply voltage applied to the drain, and this must be applied inside the IC. It is actually impossible for this to occur.

第5図はPチャネルMOSトランジスタべの基板バイア
スの説明図で、11はP型基板、12はN型ウェル、1
3はソース(S)、14はドレイン(D)、15はゲー
ト(G)である。これはP基板から出発する場合である
が、N基板を用いるならNウェルは形成せず、ソース、
ドレインは直接績N基板に形成する。通常ソース13に
は外部電源VCCをそのまま印加し、ドレイン14やゲ
ート15の電圧はO”” V c cの範囲で設定する
FIG. 5 is an explanatory diagram of the substrate bias of a P-channel MOS transistor, in which 11 is a P-type substrate, 12 is an N-type well, 1
3 is a source (S), 14 is a drain (D), and 15 is a gate (G). This is the case when starting from a P substrate, but if an N substrate is used, an N well is not formed and the source,
The drain is formed directly on the substrate. Normally, the external power supply VCC is directly applied to the source 13, and the voltages of the drain 14 and gate 15 are set in the range of O''''Vcc.

一般にウェル12には■、cが印加されるが、これはソ
ース13と同電位であるので基板バイアス効果は生じな
い。基板バイアス効果を生じさせるためには、ウェル1
2の印加電圧をVCC+α(これでソースにαVの基板
バイアスがか\る)にしなければならないが、これをI
C内部で安定的に発生することは困難である(安定して
動作する昇圧回路を構成することは困難)。
Generally, ■ and c are applied to the well 12, but since this is at the same potential as the source 13, no substrate bias effect occurs. In order to create a substrate bias effect, well 1
The applied voltage in step 2 must be set to VCC + α (this applies a substrate bias of αV to the source), but this
It is difficult to generate this voltage stably inside C (it is difficult to configure a booster circuit that operates stably).

本発明は、PチャネルMOSトランジスタ部の基板バイ
アスを現状の外部電源で可能にしようとするものである
The present invention is intended to enable substrate biasing of a P-channel MOS transistor section using the existing external power supply.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図で、QpはPチャネルMOSト
ランジスタ、Gはそのゲート、Sはソース、Dはドレイ
ン、SUBはN型基板(またはN型ウェル) 、VCC
I+ ■CCZは2種類の電源(但し、V cc+ >
 V ccz)である。
Figure 1 is a diagram of the principle of the present invention, where Qp is a P-channel MOS transistor, G is its gate, S is its source, D is its drain, SUB is an N-type substrate (or N-type well), and VCC.
I+ ■CCZ has two types of power supplies (however, V cc+ >
V ccz).

〔作用〕[Effect]

第1の電tXvcc+ は外部から供給し、これをN型
基板SUB (ウェルも含むが、以下単に基板という)
に印加する。P型のソースSにはこれより低い第2の電
源v cczを印加し、ゲートGとドレインDには0〜
V CC2の適当な電圧を印加する。
The first electric current tXvcc+ is supplied from the outside, and this is connected to the N-type substrate SUB (including the well, but hereinafter simply referred to as the substrate).
to be applied. A second power supply V ccz lower than this is applied to the P-type source S, and a voltage of 0 to 0 to the gate G and drain D is applied.
Apply an appropriate voltage of V CC2.

このようにすると、トランジスタQpは正常に動作する
ことができ、しかも基板SUBとソースS、ドレインD
間には(Vcc+   Vccz)以下のバンクバイア
スが印加される。この結果、PチャネルMOSトランジ
スタQpのリーク電流が減少し、またソースSやドレイ
ンDのP′″拡散層とN型基板SUBとの間の容量も減
少する。
In this way, the transistor Qp can operate normally, and the substrate SUB, source S, and drain D
A bank bias of (Vcc+Vccz) or less is applied between them. As a result, the leakage current of the P-channel MOS transistor Qp is reduced, and the capacitance between the P''' diffusion layers of the source S and drain D and the N-type substrate SUB is also reduced.

第2の電源v cczは外部から供給することもできる
が0.内部回路で発生ずれば外部電源やICの電源端子
を増加させずに済む。特に、第1の電源■66.を従来
と同じ電圧とする場合には、ユーザの電源関係の負担を
増加させずに済む利点がある。
The second power supply v ccz can be supplied externally, but it is 0. If the problem occurs in the internal circuit, there is no need to increase the number of external power supplies or IC power supply terminals. In particular, the first power supply ■66. If the voltage is the same as in the past, there is an advantage that there is no need to increase the burden on the user regarding the power supply.

〔実施例] 第2図は本発明の一実施例の回路図で、1は?’lOS
 IC12は外部電源VCCIから第2の電源V CC
2を作る内部降圧回路、3はNチャネルMOSトランジ
スタQ、のP型基板に負の基板バイアスを印加するNチ
ャネル部基板バイアス発生回路である。
[Embodiment] Figure 2 is a circuit diagram of an embodiment of the present invention. 'lOS
IC12 is connected to the second power supply V CC from the external power supply VCCI.
2 is an internal voltage step-down circuit, and 3 is an N-channel part substrate bias generation circuit that applies a negative substrate bias to the P-type substrate of the N-channel MOS transistor Q.

負の基板バイアス発生回路3は既知のチャージポンプ回
路などにより容易に構成できる。
Negative substrate bias generation circuit 3 can be easily constructed using a known charge pump circuit or the like.

第2図は、PチャネルMOSトランジスタQpとNチャ
ネルMOSトランジスタQ、を同一チップに形成し、こ
れらを直列に接続しゲートへは共通に入力電圧を印加す
るC−MOSインバータを例示しており、第2電源v 
cezは該インバータの電源となる。このインバータの
NチャネルMOSトランジスタQ、のP型基板には基板
バイアス発生回路3からアース電位Vssより低い負の
バイアス電圧が印加され、またPチャネルMO5I−ラ
ンジスタQpのN型基板にはソ7スに印加された第2電
源V CC2より高い外部電源V。9.が印加されてい
る。
FIG. 2 illustrates a C-MOS inverter in which a P-channel MOS transistor Qp and an N-channel MOS transistor Q are formed on the same chip, connected in series, and a common input voltage is applied to the gates. 2nd power supply v
cez becomes the power source for the inverter. A negative bias voltage lower than the ground potential Vss is applied from the substrate bias generation circuit 3 to the P-type substrate of the N-channel MOS transistor Q of this inverter, and a negative bias voltage lower than the ground potential Vss is applied to the N-type substrate of the P-channel MOS transistor Qp. A second power supply V applied to an external power supply V higher than CC2. 9. is applied.

従って、NチャネルのみならずPチャネルでも基板バイ
アス効果を期待できるので、リーク電流や拡散層容量は
いずれのトランジスタでも減少し、高速化や低消費電力
化を図ることができる。
Therefore, a substrate bias effect can be expected not only in the N-channel but also in the P-channel, so leakage current and diffusion layer capacitance are reduced in both transistors, making it possible to achieve higher speeds and lower power consumption.

一般に、トランジスタの微細化に伴なって生ずる耐圧低
下や信頼性低下の問題は、動作電源の電圧を低下させる
ことで防止できる。従って本回路のようにチップ内回路
の電源電圧v cczを外部から供給する電源電圧V 
CCIより低いものとすることは、この点で有効である
。また、内部降圧回路2を用い、外部電源VCCIは現
状のまま(例えば5V)とし、代りにIC内部で該内部
降圧回路によりそれより低い電源Vccz (例えば3
V)を作ると、ユーザの電源装置関係の負担を増加させ
ないようにすることができる。第3図に内部降圧回路2
の具体例を示す。
In general, the problems of lower breakdown voltage and lower reliability that occur as transistors become smaller can be prevented by lowering the voltage of the operating power supply. Therefore, as in this circuit, the power supply voltage V ccz of the circuit inside the chip is supplied from the outside.
Setting the value to be lower than the CCI is effective in this respect. In addition, by using the internal step-down circuit 2, the external power supply VCCI is left as it is (for example, 5V), and instead, a lower power supply Vccz (for example, 3V) is set inside the IC by the internal step-down circuit.
By creating V), it is possible to avoid increasing the burden on the user regarding the power supply device. Figure 3 shows the internal step-down circuit 2.
A specific example is shown below.

これはMOS)ランジスタQlのゲートをドレインに接
続したもので、該トランジスタQ1の閾値電圧Vいだけ
電源電圧VCCを降下した電圧が得られる。これは極め
て単純な回路であるが実用的である。
This is a MOS transistor Ql whose gate is connected to its drain, and a voltage lower than the power supply voltage VCC by the threshold voltage V of the transistor Q1 is obtained. This is a very simple circuit, but it is practical.

本発明のPチャネルMOSトランジスタ部の基板バイア
スはDRAMに適用すると効果的である。ダイナミック
型のメモリセルは第4図(b)のようにトランジスタと
容量Cからなるが、このトランジスタとしてはNチャネ
ルMOSトランジスタが一般的である。しかしNチャネ
ル型のメモリセルは既知のようにα線照射によるソフト
エラー発生の問題がある。この点、Pチャネル型のメモ
リセルはソフトエラー耐性に強いというメリットがある
The substrate bias of the P-channel MOS transistor section of the present invention is effective when applied to a DRAM. A dynamic memory cell consists of a transistor and a capacitor C as shown in FIG. 4(b), and this transistor is generally an N-channel MOS transistor. However, as is known, N-channel memory cells have the problem of soft errors occurring due to alpha ray irradiation. In this regard, P-channel memory cells have the advantage of being strong in soft error resistance.

しかしPチャネル型メモリセルは、埋込みチャネルのた
めソース・ドレイン間のリーク電流が太き(、実用でき
なかった。
However, since the P-channel memory cell has a buried channel, the leakage current between the source and drain is large (and it could not be put into practical use).

Pチャネル型のメモリセルでは、バックバイアスがない
と、第4図(C)のようにゲート電圧Vg=0でもドレ
イン電流1dのリークを生ずる。しかし、本発明のよう
にN−Wellにバックバイアスをかけることができれ
ば、Vg−1d特性は破線のようになり、リーク電流を
阻止できる。
In a P-channel type memory cell, if there is no back bias, leakage of drain current 1d occurs even when the gate voltage Vg=0, as shown in FIG. 4(C). However, if back bias can be applied to the N-Well as in the present invention, the Vg-1d characteristic becomes as shown by the broken line, and leakage current can be prevented.

このようにしてPチャネルのDRAMを実現できれば、
NチャネルのDRAMよりソフトエラーに強いので、保
持データの信頼性を向上させることができる。
If P-channel DRAM can be realized in this way,
Since it is more resistant to soft errors than N-channel DRAM, the reliability of retained data can be improved.

〔発明の効果] 以上述べたように本発明によれば、PチャネルMOSト
ランジスタ部に基板バイアスを印加することができ、こ
のため該トランジスタのリーク電流や拡散層容量を減少
させて高速化や低消費電力化を図ることができる。また
このための外部電源は基本的には現状のままで良いので
、ユーザの負担を増加させずに済む利点がある。
[Effects of the Invention] As described above, according to the present invention, it is possible to apply a substrate bias to the P-channel MOS transistor section, thereby reducing the leakage current and diffusion layer capacitance of the transistor, thereby increasing the speed and reducing the It is possible to reduce power consumption. Further, since the external power supply for this purpose can basically be left as is, there is an advantage that the burden on the user does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の実施例の回路図、 第3図は内部降圧回路の具体例を示す回路図、第4図は
ダイナミック型メモリの説明図、第5図はPチャネルM
OSトランジスタの説明図である。 Ver、 。 本発明の原理図 11図 本発明の実施例の回路図 第2図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a circuit diagram of an embodiment of the invention, Fig. 3 is a circuit diagram showing a specific example of an internal step-down circuit, Fig. 4 is an explanatory diagram of a dynamic type memory, Figure 5 shows P channel M
FIG. 2 is an explanatory diagram of an OS transistor. Ver. Figure 11: Principle diagram of the present invention Figure 2: Circuit diagram of an embodiment of the present invention

Claims (1)

【特許請求の範囲】 1、PチャネルMOSトランジスタ(Qp)のチャネル
が形成されるN型層(SUB)に外部電源からの電圧(
V_C_C_1)を印加し、該トランジスタのソース(
S)、ドレイン(D)にはそれより低い内部または外部
発生の電圧(V_C_C_2)を印加するようにしてな
ることを特徴とする半導体装置。 2、ソース(S)、ドレイン(D)に印加する電圧(V
_C_C_2)を、当該トランジスタ(Qp)と同じチ
ップ内に形成した内部降圧回路(2)で発生するように
してなることを特徴とする請求項1記載の半導体装置。 3、PチャネルMOSトランジスタ(Qp)は、ダイナ
ミックランダムアクセスメモリのメモリセルのトランジ
スタであることを特徴とする請求項1記載の半導体装置
[Claims] 1. A voltage from an external power supply (
V_C_C_1) is applied, and the source of the transistor (
A semiconductor device characterized in that a lower internally or externally generated voltage (V_C_C_2) is applied to the drain (D) and the drain (D). 2. Voltage (V) applied to source (S) and drain (D)
_C_C_2) is generated by an internal voltage down converter (2) formed in the same chip as the transistor (Qp). 3. The semiconductor device according to claim 1, wherein the P-channel MOS transistor (Qp) is a transistor of a memory cell of a dynamic random access memory.
JP1015600A 1989-01-25 1989-01-25 Semiconductor device Pending JPH02196469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015600A JPH02196469A (en) 1989-01-25 1989-01-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015600A JPH02196469A (en) 1989-01-25 1989-01-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02196469A true JPH02196469A (en) 1990-08-03

Family

ID=11893213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015600A Pending JPH02196469A (en) 1989-01-25 1989-01-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02196469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823098A (en) * 1993-11-30 1996-01-23 Siliconix Inc Bidirectional current blocking MOSFET and method for reducing on resistance of bidirectional current blocking MOSFET
US6018252A (en) * 1996-06-21 2000-01-25 Nkk Corporation Dual-power type integrated circuit
KR100283839B1 (en) * 1995-06-06 2001-04-02 니시무로 타이죠 Semiconductor integrated circuit device
US8625349B2 (en) 2008-11-19 2014-01-07 Kabushiki Kaisha Toshiba Potential relationship in an erasing operation of a nonvolatile semiconductor memory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120158A (en) * 1980-01-28 1981-09-21 Siemens Ag Monolithic semiconductor integrated circuit
JPS59107560A (en) * 1982-12-13 1984-06-21 Hitachi Ltd Semiconductor integrated circuit device
JPS60227460A (en) * 1984-04-26 1985-11-12 Fujitsu Ltd Complementary MIS semiconductor device
JPS60257559A (en) * 1984-06-04 1985-12-19 Nec Corp CMOS integrated circuit device
JPH02122562A (en) * 1988-11-01 1990-05-10 Matsushita Electric Ind Co Ltd semiconductor integrated circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120158A (en) * 1980-01-28 1981-09-21 Siemens Ag Monolithic semiconductor integrated circuit
JPS59107560A (en) * 1982-12-13 1984-06-21 Hitachi Ltd Semiconductor integrated circuit device
JPS60227460A (en) * 1984-04-26 1985-11-12 Fujitsu Ltd Complementary MIS semiconductor device
JPS60257559A (en) * 1984-06-04 1985-12-19 Nec Corp CMOS integrated circuit device
JPH02122562A (en) * 1988-11-01 1990-05-10 Matsushita Electric Ind Co Ltd semiconductor integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823098A (en) * 1993-11-30 1996-01-23 Siliconix Inc Bidirectional current blocking MOSFET and method for reducing on resistance of bidirectional current blocking MOSFET
KR100283839B1 (en) * 1995-06-06 2001-04-02 니시무로 타이죠 Semiconductor integrated circuit device
US6018252A (en) * 1996-06-21 2000-01-25 Nkk Corporation Dual-power type integrated circuit
WO2004079820A1 (en) * 1996-06-21 2004-09-16 Masato Imaizumi Two-power source type integrated circuit
US8625349B2 (en) 2008-11-19 2014-01-07 Kabushiki Kaisha Toshiba Potential relationship in an erasing operation of a nonvolatile semiconductor memory

Similar Documents

Publication Publication Date Title
KR970009098B1 (en) integrated circuit
US5600598A (en) Memory cell and wordline driver for embedded DRAM in ASIC process
US6433620B1 (en) Silicon-on-insulator CMOS circuit
US4485433A (en) Integrated circuit dual polarity high voltage multiplier for extended operating temperature range
KR950020709A (en) Method for reducing soft errors and memory devices and memory devices with reduced soft error
KR0153847B1 (en) Semiconductor memory
Tsukikawa et al. An efficient back-bias generator with hybrid pumping circuit for 1.5-V DRAMs
JPS63279491A (en) Semiconductor dynamic RAM
US7961498B2 (en) Leakage compensation circuit for Dynamic Random Access Memory (DRAM) cells
JPH03232269A (en) Input circuit of semiconductor device
JPH02196469A (en) Semiconductor device
US11228417B2 (en) Data sampling circuit
JP2503707B2 (en) Semiconductor memory device
GB2032211A (en) High Performance Dynamic MOS Read/Write Memory
JPH02122562A (en) semiconductor integrated circuit
Mihara et al. A 29mm/sup 2/1.8 V-only 16 Mb DINOR flash memory with gate-protected poly-diode (GPPD) charge pump
JPH0323591A (en) Word line driving circuit for dynamic ram
JP2003273352A (en) Semiconductor device
KR900002691B1 (en) The substrate potential generating system
JPS58161195A (en) Static semiconductor memory device
US4797001A (en) Substrate bias generator for use in dynamic random access memory
JPH0782753B2 (en) Dynamic memory device
JPH0258275A (en) Power supply capacitance circuit
JPS6149456A (en) MOS type semiconductor integrated circuit device
JP3394881B2 (en) Semiconductor integrated circuit device