JPH0222599A - Radiation image enlargement observation device - Google Patents
Radiation image enlargement observation deviceInfo
- Publication number
- JPH0222599A JPH0222599A JP17224688A JP17224688A JPH0222599A JP H0222599 A JPH0222599 A JP H0222599A JP 17224688 A JP17224688 A JP 17224688A JP 17224688 A JP17224688 A JP 17224688A JP H0222599 A JPH0222599 A JP H0222599A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- image
- radiation image
- sample
- light shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 88
- 230000003287 optical effect Effects 0.000 claims abstract description 26
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は紫外線、X線などの放射線によって試料を拡大
観察する装置に係り、特に明瞭な試料拡大像を得ること
が可能な放射線像拡大観察装置に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for magnifying observation of a sample using radiation such as ultraviolet rays and Regarding equipment.
従来の放射線像拡大観察装置を第4図に示す。 A conventional radiation image magnification observation device is shown in FIG.
これは、所定波長領域の放射線を出射する放射線源1と
、試料2が試料セット位置に取り付けられる試料セット
部材3と、入射窓4が開口され試料セット位置を通過し
た放射線が入射される放射線像拡大部5を備えている。This consists of a radiation source 1 that emits radiation in a predetermined wavelength range, a sample setting member 3 to which a sample 2 is attached at a sample setting position, and a radiation image into which radiation passing through the sample setting position is incident with an entrance window 4 opened. It is equipped with an enlarged part 5.
放射線源1は例えばシンクロトロン放射光(SOR光)
を出射するシンクロトロン放射型の光源が使用され、こ
のSOR光は可視光からX線に至る波長分布を有してお
り、紫外線、X線などの特定波長領域の放射線のみを選
択透過させる必要がある場合には、放射線源1の出射端
に適宜の光フィルタ(図示せず)などが設けられる。こ
の放射線源1から出射した放射線(例えばX線)は試料
セット位置に設けられた試料2に照射され、放射線が試
料2を透過すると放射線像が形成されて放射線像拡大部
5に入射する。The radiation source 1 is, for example, synchrotron radiation light (SOR light).
This SOR light has a wavelength distribution ranging from visible light to X-rays, and it is necessary to selectively transmit only radiation in specific wavelength ranges such as ultraviolet rays and X-rays. In some cases, an appropriate optical filter (not shown) or the like is provided at the output end of the radiation source 1. Radiation (for example, X-rays) emitted from this radiation source 1 is irradiated onto a sample 2 provided at a sample setting position, and when the radiation passes through the sample 2, a radiation image is formed and enters the radiation image enlarging section 5.
放射線像拡大部5は真空状態を維持されたケース6内に
斜入射反射鏡7と、ストッパ8と、フィルム9とが放射
線の光路上に順に配設されて構成される。この放射線像
拡大部5に入射した放射線は斜入射反射鏡7で反射され
、これによって放射線の波長領域にかかわりなく放射線
像は拡大される。The radiation image enlarging unit 5 is constructed by disposing an oblique incidence reflecting mirror 7, a stopper 8, and a film 9 in order on the optical path of radiation in a case 6 maintained in a vacuum state. The radiation incident on the radiation image enlarging section 5 is reflected by the oblique incidence reflecting mirror 7, thereby magnifying the radiation image regardless of the wavelength region of the radiation.
そして、不要な放射線がストッパ8でカットされたのち
、拡大放射線像がフィルム9に結像される。After unnecessary radiation is cut off by a stopper 8, an enlarged radiation image is formed on a film 9.
このような観察装置によれば、放射線によって感光した
フィルム9をケース6から取り出して、試料2の拡大像
を観察することができる。しかし、この装置ではフィル
ム9を介して試料の拡大像を観察するものであり、試料
の拡大像を直接、目で見ることができず、・観察が不便
となっている。According to such an observation device, it is possible to take out the film 9 exposed to radiation from the case 6 and observe an enlarged image of the sample 2. However, in this device, an enlarged image of the sample is observed through the film 9, and the enlarged image of the sample cannot be directly viewed with the naked eye, making observation inconvenient.
そこで出願人は試料の拡大像の直接、観察を可能とした
放射線像拡大観察装置を開発して、先に提案した(特願
昭62−27.4863号;未公開)。第5図はこの観
察装置を示し、放射線像拡大部5に電子像拡大部10が
付設された構造となっている。そして、放射線像拡大部
5における放射線の結像位置には光電面11が設けられ
ると共に、電子像拡大部10内にはマイクロチャンネル
プレート12および螢光面13が設けられ、さらに電子
像拡大部10の外側にコイル14.15が巻装されてい
る。このような構成では拡大放射線像が光電面11に結
像され、これに対応した光電子が光電面11から電子像
拡大部10に放出される。この電子像はコイル14.1
5によって拡大され、拡大された電子像はマイクロチャ
ンネルプレート12で増倍された後、螢光面13に結像
されて光学像を形成する。従って、螢光面13上の光学
像をCRTなどのモニタを介して直接、観察することが
できる。Therefore, the applicant developed and previously proposed a radiation image magnification observation device that enables direct observation of the magnified image of a sample (Japanese Patent Application No. 62-27.4863; unpublished). FIG. 5 shows this observation device, which has a structure in which an electronic image enlarging section 10 is attached to a radiation image enlarging section 5. A photocathode 11 is provided at the radiation imaging position in the radiation image enlarging section 5, and a microchannel plate 12 and a fluorescent surface 13 are provided within the electronic image enlarging section 10. Coils 14 and 15 are wound around the outside of the coil. In such a configuration, an enlarged radiation image is formed on the photocathode 11, and photoelectrons corresponding to this are emitted from the photocathode 11 to the electron image enlarging section 10. This electron image is coil 14.1
5, the magnified electron image is multiplied by a microchannel plate 12, and then focused on a fluorescent surface 13 to form an optical image. Therefore, the optical image on the fluorescent surface 13 can be directly observed through a monitor such as a CRT.
しかし第5図の観察装置では、光学像が明瞭に得られな
い不都合がある。これは、光電面11における放射線像
の視野が大きすぎると、これが光電面11から視野外の
光電子を生成させ、これによって第6図に示すような散
乱電子を生じさせるからである。また、光電面11には
拡大放射線像が結像するだけでなく、放射線像拡大部5
内で反射した散乱放射線が入射し、この入射によって不
要な光電子が放出されることもある。このような不要な
光電子の影響をなくすためには、第6図に点線で示・す
ような視野絞りを設けることが考えられる。しかし、視
野の大きさは観察対象の試料によって異なるものであり
、従って一定開口の絞りとすることはできない。また、
従来の技術(カメラの絞り技術など)によって絞り開口
を可変にすると構造が複雑になりがちである。However, the observation device shown in FIG. 5 has the disadvantage that a clear optical image cannot be obtained. This is because if the field of view of the radiation image on the photocathode 11 is too large, this will generate photoelectrons outside the field of view from the photocathode 11, thereby causing scattered electrons as shown in FIG. In addition, not only an enlarged radiation image is formed on the photocathode 11, but also a radiation image enlargement section 5
Scattered radiation that is reflected inside enters the space, and this may cause the emission of unwanted photoelectrons. In order to eliminate the influence of such unnecessary photoelectrons, it is conceivable to provide a field stop as shown by the dotted line in FIG. However, the size of the field of view varies depending on the sample to be observed, and therefore it is not possible to use a diaphragm with a constant aperture. Also,
If the aperture aperture is made variable using conventional technology (such as camera aperture technology), the structure tends to become complicated.
そこで本発明は、再現性が良好で、明瞭な光学像を得る
ことができ、しかも視野絞りの調整が容品にできる放射
線像拡大観察装置を提供することを目的とする。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a radiation image magnification observation device that can obtain clear optical images with good reproducibility and that can easily adjust the field stop.
本発明に係る放射線像拡大観察装置は、放射線を試料セ
ット位置に向けて出射する放射線源と、試料セット位置
を通過することにより形成された放射線像を拡大する放
射線像拡大部と、拡大された放射線像の結像位置に配設
されて電子像を形成する光電変換手段とを備える放射線
像拡大観察装置において、光電変換手段の前面に、放射
線の光軸上に開pが形成され少なくとも光軸方向に移動
調整が可能な遮光部材を有する視野絞り手段が設けられ
ていることを特徴とする。The radiation image magnification observation device according to the present invention includes: a radiation source that emits radiation toward a sample setting position; a radiation image magnifying section that magnifies a radiation image formed by passing through the sample setting position; In a radiation image magnifying observation device comprising a photoelectric conversion means disposed at a radiation image forming position to form an electronic image, an aperture P is formed on the optical axis of the radiation in front of the photoelectric conversion means, and at least the optical axis The present invention is characterized in that a field diaphragm means having a light shielding member whose movement can be adjusted in a direction is provided.
ここで視野絞り手段の調整は、装置外部から操作可能と
なっているのが好ましく、これにより操作性が向上する
。また、遮光部材は光軸と直交する方向に操作可能にな
ってもよい。Preferably, the field stop means can be adjusted from outside the device, which improves operability. Further, the light shielding member may be operable in a direction perpendicular to the optical axis.
上記構成によれば、光軸上に開口を有する遮光部材の光
軸方向の位置を調整することにより、散電電子の発生が
防止されかつ散乱放射線が遮断され、光電面には試料か
らの所望の視野の拡大放射線のみが入射する。According to the above configuration, by adjusting the position in the optical axis direction of the light shielding member having an aperture on the optical axis, generation of scattered electrons is prevented and scattered radiation is blocked, and the photocathode receives desired radiation from the sample. Only the expanded field of view radiation is incident.
以下、添付図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.
第1図は本発明の一実施例に係る放射線像拡大観察装置
を示し、従来例と同一の要素には同一の符号を付しであ
る。すなわち、この装置は紫外線、X線などの放射線を
出射する放射線源1と、試料2が試料セット位置に取り
付けられる試料セット部材3と、斜入射反射鏡7、スト
ッパ8が内部に配設された放射線像拡大部5と、放射線
像拡大部5の結像位置に設けられた光電変換手段として
の光電面11と、マイクロチャンネルプレート12およ
び螢光面13を有して放射線拡大部に連設された電子像
拡大部10とを備える。また、電子像拡大部10の外側
にはコイル14.15が巻装されている。このような構
成では、放射線源1から出射した放射線は試料2を透過
し、その拡大像が放射線像拡大部5の光電面11に結像
し、これにより光電面11から放出された光電子(e
)が電子像拡大部10で拡大されて螢光面13で結像
する。そして、この螢光面13の光学像はリレーレンズ
17を介して撮像管18に取り込まれ、モニタ等で表示
される。FIG. 1 shows a radiation image magnification observation apparatus according to an embodiment of the present invention, in which the same elements as in the conventional example are given the same reference numerals. That is, this device includes a radiation source 1 that emits radiation such as ultraviolet rays and X-rays, a sample setting member 3 to which a sample 2 is attached at a sample setting position, an oblique incidence reflector 7, and a stopper 8. It has a radiation image magnifying section 5, a photocathode 11 as a photoelectric conversion means provided at the imaging position of the radiation image magnifying section 5, a microchannel plate 12, and a fluorescent surface 13, and is connected to the radiation image magnifying section. and an electronic image enlarging section 10. Further, coils 14 and 15 are wound around the outside of the electronic image enlarging section 10. In such a configuration, radiation emitted from the radiation source 1 passes through the sample 2, and an enlarged image thereof is formed on the photocathode 11 of the radiation image enlarging section 5, whereby photoelectrons (e) emitted from the photocathode 11 are
) is magnified by the electronic image magnifying section 10 and formed into an image on the fluorescent surface 13. The optical image of this fluorescent surface 13 is captured into an image pickup tube 18 via a relay lens 17 and displayed on a monitor or the like.
このような構成に加えて、本実施例では視野絞り手段2
0が設けられている。視野絞り手段20は試料2の放射
線拡大像が結像する光電面11の前面側に位置するよう
に設けられる。この視野絞り手段20は放射線が通過す
る位置(光軸上の位置)に開口21を形成した遮光板2
2を有すると共に、遮光板22の光軸方向の位置が:A
整可能となっており、従って光電面11へ入射する放射
線の絞り調整が可能となっている。この遮光板22の位
置調整は直線導入端子23の操作によりなされる。この
遮光板22の位置調整により、放射線像拡大部5内で散
乱して結像に関与しない放射線が遮断されるため、光電
面11には結像のための放射線のみが入射する。また、
視野が適宜に調整されるので、第6図に示すような散乱
電子の発生も防止される。従って、光電面11から放出
される光電子(e″″)は試料2の拡大像のうち、所定
の視野に対応した電子だけとなるため、鮮明な光学像を
螢光面13に形成することができる。In addition to such a configuration, in this embodiment, a field stop means 2 is provided.
0 is set. The field stop means 20 is provided so as to be located in front of the photocathode 11 on which the radiation magnified image of the sample 2 is formed. This field stop means 20 is a light shielding plate 2 having an aperture 21 formed at a position through which radiation passes (a position on the optical axis).
2, and the position of the light shielding plate 22 in the optical axis direction is: A
Therefore, it is possible to adjust the aperture of the radiation incident on the photocathode 11. The position of the light shielding plate 22 is adjusted by operating the linear introduction terminal 23. By adjusting the position of the light shielding plate 22, radiation that is scattered within the radiation image enlarging section 5 and does not contribute to image formation is blocked, so that only radiation for image formation is incident on the photocathode 11. Also,
Since the field of view is appropriately adjusted, the generation of scattered electrons as shown in FIG. 6 is also prevented. Therefore, only the photoelectrons (e'') emitted from the photocathode 11 correspond to a predetermined field of view in the enlarged image of the sample 2, making it impossible to form a clear optical image on the fluorescent surface 13. can.
上記のように鮮明な像が得られる事情を、第2図および
第3図により説明する。The circumstances under which such a clear image can be obtained as described above will be explained with reference to FIGS. 2 and 3.
第2図は放射線の光束と遮光板゛22の位置関係を示し
ている。遮光板22が光電面11の直前(第2図中の(
A)の位置)にあるときには、試料面のS−3の位置を
通過した放射線は結像面の1−3の位置に結像する。こ
れに対し、遮光板22が光電面11から離れて同図中の
(B)の位置にきたときには、試料面のS−3の位置を
通過した放射線の一部は結像面上に届かず、遮光板22
によって遮断される。この場合、結像面に結像されるの
は試料面のI−2の位置の放射線までである。更に、遮
光板22が同図中の(C)の位置まで光電面11から離
れたときは、試料面の!−2から1−3の放射線の一部
は共に遮光板22で遮断され、■−2から1−1までの
間の放射線が結像面に届く。このように、遮光板22を
光軸方向に移動させることで放射線の視野を調整できる
ので、第6図に示すような散乱電子の発生を任意に制御
できる。また、遮光板22は散乱放射線が光電面11に
入射するのを防止する機能をも有しているので、更に明
瞭な試料の放射線像を得ることができる。FIG. 2 shows the positional relationship between the beam of radiation and the light shielding plate 22. A light shielding plate 22 is located just before the photocathode 11 ((
At position A), the radiation that has passed through position S-3 on the sample surface forms an image at position 1-3 on the imaging plane. On the other hand, when the light shielding plate 22 moves away from the photocathode 11 and comes to the position (B) in the figure, a part of the radiation that passed through the position S-3 on the sample surface does not reach the image plane. , light shielding plate 22
is blocked by In this case, only the radiation up to the position I-2 on the sample surface is imaged on the imaging plane. Furthermore, when the light shielding plate 22 moves away from the photocathode 11 to the position (C) in the same figure, the sample surface! Part of the radiation from -2 to 1-3 is blocked by the light shielding plate 22, and the radiation from -2 to 1-1 reaches the imaging plane. In this way, by moving the light shielding plate 22 in the optical axis direction, the field of view of the radiation can be adjusted, so that the generation of scattered electrons as shown in FIG. 6 can be arbitrarily controlled. Moreover, since the light shielding plate 22 also has the function of preventing scattered radiation from entering the photocathode 11, a clearer radiation image of the sample can be obtained.
ここにおいて、本発明において特に重要なことは、上記
のような視野の絞り調整が、遮光板22を光軸方向に移
動させるという簡単な操作のみで実現でき、かつその調
整を極めて微妙に行なえることである。また、遮光板2
2はマニュピレータ等により光軸と直交する方向に位置
調整しうるようにてもよい。このようにすれば、視野の
広さの調整だけでなく、光電面11上での視野の位置の
:jsfliも可能になる。Here, what is particularly important in the present invention is that the aperture adjustment of the field of view as described above can be achieved by a simple operation of moving the light shielding plate 22 in the optical axis direction, and that the adjustment can be made extremely delicately. That's true. In addition, the light shielding plate 2
2 may be configured so that its position can be adjusted in a direction perpendicular to the optical axis using a manipulator or the like. In this way, not only the width of the field of view can be adjusted, but also the position of the field of view on the photocathode 11 can be adjusted.
出願人は本発明の有用性を確認するために、下記のよう
な実験(シュミレーション)を行なった。The applicant conducted the following experiment (simulation) in order to confirm the usefulness of the present invention.
まず、遮光板22の開口を直径2龍とし、光電面11の
直前に遮光板22を位置させたとき、光電面11の50
m11および150龍前方に遮光板22を位置させたと
きのそれぞれについて、結像面上でのX線の強度分布を
調べた。なお、試料面上には10μmの間隔で点光源を
配置した。その結果を第3図に示す、図示の通り、遮光
板22を50mm、 150wmという大きい単位で移
動させることにより、視野周辺のX線量が減少し、従っ
て視野が微妙に限定されていることがわかる。First, when the opening of the light-shielding plate 22 is set to 2 mm in diameter and the light-shielding plate 22 is positioned just in front of the photocathode 11,
The intensity distribution of X-rays on the imaging plane was investigated when the light shielding plate 22 was positioned in front of the m11 and 150 dragons. Note that point light sources were placed on the sample surface at intervals of 10 μm. The results are shown in Figure 3. As shown in the figure, by moving the light shielding plate 22 in large increments of 50 mm and 150 wm, the amount of X-rays around the visual field is reduced, and therefore the visual field is slightly limited. .
以上、詳細に説明したように本発明では、光軸上に開口
を有する遮光部材の光軸方向の位置を調整することによ
り、散乱電子の発生が防止されかつ散乱放射線が遮断さ
れ、光電面には試料からの所望の視野の拡大放射線のみ
が入射することになる。従って、再現性が良好で、明瞭
な光学像を得ることができ、しかも視野絞りの調整が容
易にできる放射線像拡大観察装置を提供することが可能
となる。As described above in detail, in the present invention, by adjusting the position in the optical axis direction of the light shielding member having an opening on the optical axis, generation of scattered electrons is prevented and scattered radiation is blocked, and the photocathode is In this case, only the expanded radiation of the desired field of view from the sample is incident. Therefore, it is possible to provide a radiation image magnifying observation device that can obtain clear optical images with good reproducibility and can easily adjust the field stop.
第1図は、本発明の実施例に係る放射線像拡大観察装置
を示す構成図、第2図は、遮光板と光束の位置関係を示
す構成図、第3図は、本発明による視野絞りの効果を示
す図、第4図は、従来装置を示す構成図、第5図は、改
良された先願に係る拡大観察装置を示す構成図、第6図
は、遮光板が必要な理由を説明する図である。
1・・・放射線源、2・・・試料、3・・・試料セット
部材、5・・・放射線像拡大部、11・・・光電面(光
電変換手段)、20・・・視野絞り手段、21・・・開
口、22・・・遮光板、23・・・直線導入端子。FIG. 1 is a block diagram showing a radiation image magnifying observation device according to an embodiment of the present invention, FIG. 2 is a block diagram showing the positional relationship between a light shielding plate and a light beam, and FIG. 3 is a block diagram showing a field diaphragm according to the present invention. Figure 4 is a diagram showing the effect, Figure 4 is a configuration diagram showing a conventional device, Figure 5 is a configuration diagram showing an improved magnifying observation device according to a prior application, and Figure 6 explains why a light shielding plate is necessary. This is a diagram. DESCRIPTION OF SYMBOLS 1... Radiation source, 2... Sample, 3... Sample setting member, 5... Radiation image enlarging part, 11... Photocathode (photoelectric conversion means), 20... Field stop means, 21... Opening, 22... Light shielding plate, 23... Straight introduction terminal.
Claims (1)
と、 前記試料セット位置を通過することにより形成された放
射線像を拡大する放射線像拡大部と、拡大された放射線
像の結像位置に配設されて電子像を形成する光電変換手
段とを備える放射線像拡大観察装置において、 前記光電変換手段の前面に、前記放射線の光軸上に開口
が形成され少なくとも前記光軸方向に移動調整が可能な
遮光部材を有する視野絞り手段が設けられていることを
特徴とする放射線像拡大観察装置。 2、前記視野絞り手段は、前記遮光部材の移動調整が遠
隔操作によって行なわれる請求項1記載の放射線像拡大
観察装置。 3、前記遮光部材が前記光軸方向およびこれと直交する
方向に移動調整可能になっている請求項1記載の放射線
像拡大観察装置。[Claims] 1. A radiation source that emits radiation toward a sample setting position; a radiation image enlarging unit that enlarges a radiation image formed by passing through the sample setting position; and an enlarged radiation image. A radiation image magnifying observation device comprising: a photoelectric conversion means disposed at an imaging position to form an electronic image; 1. A radiographic image magnification observation apparatus, comprising: a field stop means having a light shielding member that can be moved in a direction. 2. The radiation image magnification observation apparatus according to claim 1, wherein the field stop means allows movement adjustment of the light shielding member to be performed by remote control. 3. The radiation image magnification observation apparatus according to claim 1, wherein the light shielding member is movable and adjustable in the optical axis direction and a direction perpendicular thereto.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17224688A JPH0222599A (en) | 1988-07-11 | 1988-07-11 | Radiation image enlargement observation device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17224688A JPH0222599A (en) | 1988-07-11 | 1988-07-11 | Radiation image enlargement observation device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0222599A true JPH0222599A (en) | 1990-01-25 |
Family
ID=15938331
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP17224688A Pending JPH0222599A (en) | 1988-07-11 | 1988-07-11 | Radiation image enlargement observation device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0222599A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016147320A1 (en) * | 2015-03-17 | 2016-09-22 | 株式会社日立製作所 | Electromagnetic wave microscope and x-ray microscope |
-
1988
- 1988-07-11 JP JP17224688A patent/JPH0222599A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016147320A1 (en) * | 2015-03-17 | 2016-09-22 | 株式会社日立製作所 | Electromagnetic wave microscope and x-ray microscope |
| JPWO2016147320A1 (en) * | 2015-03-17 | 2017-09-07 | 株式会社日立製作所 | Electromagnetic microscope and X-ray microscope |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7039157B2 (en) | X-ray microscope apparatus | |
| US5311568A (en) | Optical alignment means utilizing inverse projection of a test pattern/target | |
| JPS5917590B2 (en) | X-ray fluoroscope | |
| EP0333276A1 (en) | X-ray examination apparatus having a stray radiation grid with antivignetting effect | |
| JPH0642358B2 (en) | Transmission electron microscope | |
| US5136627A (en) | Slit diaphragm system defining x-ray examination zone with visible light and for passing x-ray radiation to the defined zone | |
| EP0314502B1 (en) | An X-ray image observing device | |
| JP2857181B2 (en) | Image tube equipment | |
| JPH0222599A (en) | Radiation image enlargement observation device | |
| US3835314A (en) | Intensifier radiographic imaging system | |
| JP3125045B2 (en) | Electron beam intensity measurement device and electron microscope | |
| JP2948662B2 (en) | Radiation image magnifying observation device | |
| JP3357164B2 (en) | Radiation image magnifying observation device | |
| JPH0787371A (en) | Imaging device | |
| JP3064335B2 (en) | Transmission electron microscope | |
| JPH0221550A (en) | X-ray image observation device | |
| US4835379A (en) | X-ray sensitive camera pick-up tube | |
| JPH05164987A (en) | Microbeam scanning method and scanning device | |
| JP2637482B2 (en) | Radiation image magnifying observation device | |
| JP3455595B2 (en) | Radiation magnification observation device | |
| JP2003346692A (en) | X-ray microscope sample room | |
| JPS58189950A (en) | electronic microscope | |
| EP0191532A1 (en) | X-ray examining device | |
| JP3331245B2 (en) | Scanning soft X-ray microscope | |
| JP2880252B2 (en) | Laser processing apparatus and method |