JPH02235583A - Welding system - Google Patents
Welding systemInfo
- Publication number
- JPH02235583A JPH02235583A JP5424789A JP5424789A JPH02235583A JP H02235583 A JPH02235583 A JP H02235583A JP 5424789 A JP5424789 A JP 5424789A JP 5424789 A JP5424789 A JP 5424789A JP H02235583 A JPH02235583 A JP H02235583A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- energization
- machines
- energized
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Resistance Welding (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は溶接システムに関し、一層詳細には、溶接シス
テムを構成する複数の溶接機の中、通電状態、非通電状
態および通電待機状態にある溶接機の台数を検知して所
定の溶接機の通電順位の決定を行い、予め設定された同
時通電可能台数に基づいて通電可否判断を行うと共に、
他の溶接機に通電状態、通電待機状態または非通電状態
を示す信号を出力することにより、複数の溶接機の同時
通電台数を前記同時通電可能台数以内に制限することを
可能とし、夫々の溶接機に供給される電力堡不足に起因
する溶接不良の発生等を未然に防止することを可能とし
た溶接システムに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a welding system, and more particularly, among a plurality of welding machines constituting the welding system, welding machines are in a energized state, a de-energized state, and a energized standby state. Detects the number of welding machines, determines the order of energization of a given welding machine, and determines whether or not to energize based on a preset number of welding machines that can be energized at the same time.
By outputting a signal indicating the energized state, energized standby state, or de-energized state to other welding machines, it is possible to limit the number of simultaneously energized multiple welding machines to within the number of simultaneously energized machines, and each welding machine can be energized simultaneously. The present invention relates to a welding system that makes it possible to prevent welding defects caused by insufficient power supply to a machine.
[発明の背景]
従来より、溶接加工ラインにおいては複数の溶接機をシ
ステム化し、これらシステム化した複数の溶接機を用い
て溶接作業が遂行されるが、システム内の溶接機が全て
同時に運転される際には、夫々の溶接機に供給される電
力量が不足し、これによって溶接不良を惹起する場合、
あるいは全ての溶接機が停止する場合がある。従って、
複数の溶接機からなる溶接システムにおいては、溶接機
の同時運転台数を供給電力量に応じて制限すべく通電制
御を行うことが望ましい。[Background of the Invention] Conventionally, a plurality of welding machines are systemized in a welding processing line, and welding work is performed using these systemized plurality of welding machines, but all the welding machines in the system are operated at the same time. When welding, if the amount of electricity supplied to each welding machine is insufficient and this causes welding defects,
Or all welding machines may stop. Therefore,
In a welding system including a plurality of welding machines, it is desirable to perform energization control to limit the number of welding machines that are operated simultaneously according to the amount of power supplied.
そこで、従来におけるこの種の技術として、実開昭60
−186980号に開示されるように、予め供給電力量
に応じた同時通電可能台数を設定し、通電状態の台数が
設定した台数より少ない場合においてのみ通電を許可す
る方式が開発されている。Therefore, as a conventional technology of this kind,
As disclosed in No. 186980, a method has been developed in which the number of devices that can be simultaneously energized is set in advance according to the amount of power supplied, and energization is permitted only when the number of devices in the energized state is smaller than the set number.
また、特開昭60−247482号に開示されるように
、複数の溶接機の中、ある溶接機が作動中において当該
溶接機の他の溶接機に対して溶接指令信号の出力を禁止
する技術も存在している。Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 60-247482, there is a technology for prohibiting a certain welding machine from outputting a welding command signal to other welding machines when the welding machine is in operation. also exists.
さらに、特開昭61−20674号に開示されるように
、3台以上の溶接機の通電インクロツクとして、溶接開
始指令信号の入力の順序に基づき溶接機の順位付けをし
、この順位に基づき3台以上の溶接機を通電制御する技
術もある。Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 61-20674, as an energization clock for three or more welding machines, the welding machines are ranked based on the input order of welding start command signals, and three or more welding machines are ranked based on the order of input of welding start command signals. There is also technology to control the energization of welding machines with a size larger than one.
然しなから、これらの従来技術においては、溶接システ
ムを構成する通電可能台数に対応する数の溶接機が通電
状態にあるとき、新たな溶接開始指令が非通電状態ある
いは通電状態にある2台以上の溶接機に対して同時にな
された場合、通電状態にある溶接機の中の1台の溶接作
業が終了して非通電状態となった際に前記2台以上の溶
接機が同時に非通電状態または同時に通電状態に至り、
インタロツタが正常に動作しない虞が存在している。However, in these conventional technologies, when the number of welding machines corresponding to the number of welding machines that constitute the welding system that can be energized is in the energized state, a new welding start command is issued to two or more welding machines that are in the de-energized state or in the energized state. If welding is performed on two or more welding machines at the same time, when one of the energized welding machines finishes welding and becomes de-energized, two or more of the welding machines are simultaneously de-energized or de-energized. At the same time, it becomes energized,
There is a possibility that Interotsuta may not operate properly.
この不都合を解消するために、ロボットやシーケンサの
インクロック機能を用いて同時停止あるいは同時通電状
態を防止することが可能であるが、これを実施すると前
記ロボットあるいはシーケンサの配線個所が増加して装
置自体が複雑化し、しかもプログラミングやティーチン
グが必要なことから溶接システムの信頼性の低下あるい
は当該溶接システムを構築するまでの時間が膨大になる
という新たな不都合が露呈する。In order to solve this problem, it is possible to use the ink lock function of the robot or sequencer to prevent simultaneous stoppage or simultaneous energization, but if this is implemented, the number of wiring points for the robot or sequencer will increase and the device Since the welding system itself becomes complicated and programming and teaching are required, new disadvantages arise, such as a decrease in the reliability of the welding system or an enormous amount of time required to construct the welding system.
[発明の目的]
本発明は前記の不都合を克服するためになされたもので
あって、溶接システムを構成する複数の溶接機の中、所
定の溶接機に通電開始指令が入力された際に当該所定の
溶接機を含む全ての溶接機の予め設定された同時通電可
能台数および前記所定の溶接機の通電優先順位に基づい
て通電順位の決定と通電可否判断を行うことにより溶接
機の同時通電台数を同時通電可能台数以内に制限するこ
とを可能とし、これによって溶接システムの元電源に定
格以上の過大な電流が流れて電圧降下等の不具合が発生
することを防止すると共に夫々の溶接機に供給される電
力量不足に起因する溶接不良を防止すること、さらには
溶接機の同時停止等を未然に回避することを可能とする
溶接システムを提供することを目的とする。[Object of the Invention] The present invention has been made in order to overcome the above-mentioned disadvantages, and when a command to start energization is input to a predetermined welding machine among a plurality of welding machines constituting a welding system, The number of welding machines that can be simultaneously energized is determined by determining the energization order and determining whether or not to energize based on the preset number of welding machines that can be energized simultaneously, including the predetermined welding machine, and the energization priority of the predetermined welding machine. This makes it possible to limit the current to the number of units that can be energized at the same time, thereby preventing problems such as voltage drop due to excessive current flowing beyond the rated power source of the welding system, and supplying power to each welding machine. It is an object of the present invention to provide a welding system that can prevent welding defects due to insufficient amount of electric power, and can also prevent simultaneous stoppage of welding machines.
[目的を達成するための手段]
前記の目的を達成するために、本発明は複数の溶接機か
らなり、当該溶接機は相互に通電状態、非通電状態およ
び通電待機状態に係る状態信号を送受すると共に当該状
態信号と溶接開始指令手段からの溶接開始指令に応じて
前記溶接機を構成する溶接ガンに通電することにより溶
接を行う溶接システムであって、前記溶接機は、少なく
とも同時に溶接開始指令が入力された際の同時通電優先
順位設定部と同時通電可能台数設定部および通電可否判
定部を有し、前記通電可否判断部は前記溶接機に同時通
電可能台数を超える溶接開始指令が入力された際に、前
記同時通電優先順位設定部に決定されている優先順位に
基づき通電優先順位を決定すると共に同時通電可能台数
設定部に設定された同時通電可能台数以内に同時通電台
数を制限するように制御することを特徴とする。[Means for Achieving the Object] In order to achieve the above object, the present invention comprises a plurality of welding machines, and the welding machines mutually transmit and receive status signals regarding energized state, de-energized state, and energized standby state. At the same time, the welding system performs welding by energizing a welding gun constituting the welding machine in accordance with the status signal and a welding start command from a welding start command means, wherein the welding machine at least simultaneously receives a welding start command. The welding machine has a simultaneous energization priority setting section, a simultaneous energization possible number setting section, and an energization propriety determination section when a welding machine is input with a welding start command exceeding the number of simultaneous energization machines. In this case, the energization priority is determined based on the priority determined in the simultaneous energization priority setting section, and the number of simultaneously energized devices is limited to within the number of devices that can be energized simultaneously set in the number of devices that can be energized simultaneously. It is characterized by controlling.
[実施態様コ
次に、本発明に係る溶接システムについて好適な実施態
様を挙げ、添付の図面を参照しながら以下詳細に説明す
る。[Embodiments] Next, preferred embodiments of the welding system according to the present invention will be described in detail with reference to the accompanying drawings.
第1図において、参照符号10は本実施態様に係る溶接
システムを示す。当該溶接システム10はN(N=1、
2、・−n )個の直流溶接機12a1乃至12a,,
(以下、溶接機という)とこれら溶接機12 a .乃
至12a,,に電力を供給する元電源PSおよび前記溶
接機12a1乃至12a,,に通電時間指定を含む溶接
開始指令を出力するロボットコントローラ14a1乃至
14a1とから構成される。この場合、元電源PSから
電源線L,を介して前記溶接機12a1乃至t2anに
夫々溶接用電力が供給される。また、前記溶接機12a
!乃至12ahは相互に通電状態、通電待機状態および
非通電状態に係る状態信号S1乃至S7を送受する信号
線Lにより夫々接続される。In FIG. 1, reference numeral 10 indicates a welding system according to this embodiment. The welding system 10 has N (N=1,
2,...-n) DC welding machines 12a1 to 12a,,
(hereinafter referred to as a welding machine) and these welding machines 12a. It is comprised of a source power source PS that supplies power to the welding machines 12a1 to 12a, and robot controllers 14a1 to 14a1 that output welding start commands including energization time specifications to the welding machines 12a1 to 12a. In this case, welding power is supplied from the original power source PS to the welding machines 12a1 to t2an via the power line L, respectively. Moreover, the welding machine 12a
! The terminals 12ah to 12ah are connected to each other by signal lines L that transmit and receive status signals S1 to S7 regarding the energized state, energized standby state, and non-energized state.
なお、ここで通電待機状態とはロボットコントローラ1
4a1乃至14a,から溶接開始指令が入力されている
が通電状態には至っていない状態をいう。また、非通電
状態とは溶接開始指令が入力されていない状態であって
且つ溶接機が停止状態にある状態をいう。Note that the energized standby state here refers to the robot controller 1.
This refers to a state in which a welding start command is input from 4a1 to 14a, but the energization state has not yet been reached. Further, the de-energized state refers to a state in which a welding start command is not input and the welding machine is in a stopped state.
ここで、前記溶接機12a1乃至12aイは夫々同一の
構成要素から構成されており、従って以下煩雑を回避す
るため溶接機12a1についてのみその構成を詳細に説
明し、その他の溶接機12a2乃至12a.については
概略的に説明する。Here, the welding machines 12a1 to 12a are each composed of the same components, and therefore, to avoid complexity, only the welding machine 12a1 will be described in detail below, and the other welding machines 12a2 to 12a. will be briefly explained.
この溶接機12a1 は溶接制御部16a1 と溶接手
段としての溶接ガン18alとから実質的に構成される
。そして、前記ロボットコントローラ14a1は溶接制
御部16a1に通電時間指定を含む溶接開始指令信号C
1を送信すると共に溶接制御部16 a .から溶接完
了信号C0を受信する。This welding machine 12a1 is substantially composed of a welding control section 16a1 and a welding gun 18al as a welding means. Then, the robot controller 14a1 sends a welding start command signal C to the welding control unit 16a1 including the energization time designation.
1 and the welding control unit 16a. The welding completion signal C0 is received from the welding completion signal C0.
前記溶接制御部16a1は同時通電防止装置20a1
と制御回路22a,とから構成され、これらは協動して
以下のように動作する。すなわち、同時通電防止装買2
0a1は他の溶接機12a2乃至12a.,の溶接制御
部16a2乃至16a.から通電状態、通電待機状態お
よび非通電状態を2値レベルで示す状態信号S2乃至S
.,と後述する?始指令対応信号CY2乃至cyrtと
を信号線Lを介して導入して通電状態、通電待機状態お
よび非通電状態にある溶接機の台数を検知し、この台数
と前記ロボットコントローラ14a,から出力される溶
接開始指令信号C1とから溶接機12a1の通電順位決
定を行うと共に予め設定された同時通電可能台数に基づ
き通電可,否判断を行うように動作する。ここで、開始
指令対応信号C■乃至CYnとは溶接開始指令信号C1
乃至coに対応して出力される信号である。The welding control section 16a1 includes a simultaneous energization prevention device 20a1.
and a control circuit 22a, which operate in cooperation as follows. In other words, simultaneous energization prevention equipment 2
0a1 is the other welding machines 12a2 to 12a. , welding control sections 16a2 to 16a. Status signals S2 to S indicate the energized state, energized standby state, and non-energized state in binary levels.
.. , will be described later? Start command corresponding signals CY2 to cyrt are introduced via the signal line L to detect the number of welding machines in the energized state, energized standby state, and de-energized state, and this number and the number of welding machines are output from the robot controller 14a. It operates to determine the energization order of the welding machines 12a1 based on the welding start command signal C1, and to determine whether or not energization is possible based on the preset number of machines that can be energized simultaneously. Here, the start command corresponding signals C■ to CYn are the welding start command signal C1.
This is a signal output corresponding to co to co.
前記制御回路22a1は溶接タイマ24a1 と溶接電
流供給回路26a1 とから構成される。この中、溶接
タイマ24 a .は、ロボットコントローラ14a1
から溶接開始指令信号CIを導入して当該溶接開始指令
信号CIに対する応答信号としての通電要求信号C,を
前記同時通電防止装置20a1に出力する一方で溶接完
了信号C.をロボットコントローラ14a1および同時
通電防止装置20 a ,に出力する。The control circuit 22a1 is composed of a welding timer 24a1 and a welding current supply circuit 26a1. Among these, welding timer 24a. is the robot controller 14a1
A welding start command signal CI is introduced from the welding start command signal CI, and an energization request signal C, as a response signal to the welding start command signal CI, is output to the simultaneous energization prevention device 20a1, while a welding completion signal C. is output to the robot controller 14a1 and the simultaneous energization prevention device 20a.
一方、前記溶接電流供給回路26a1は前記溶接タイマ
24a1の制御下に溶接システム10の元電源PSから
供給される溶接電力としての商用交流を直流に順変換し
てさらに高周波交流に逆変換し、溶接ガン18a1に供
給する。On the other hand, under the control of the welding timer 24a1, the welding current supply circuit 26a1 converts commercial alternating current as welding power supplied from the source power source PS of the welding system 10 into direct current, and further converts it back into high-frequency alternating current, and performs welding. It is supplied to the gun 18a1.
溶接ガン18a,は溶接変圧器Trlと整流器(図示せ
ず)および一対の溶接電極ELIとから構成される。当
該溶接ガン18a1は溶接電流供給回路26 a ,か
ら高周波交流を導入し、溶接変圧器Trlで変。圧し、
整流器にて直流に変換し、この直流に変換された電力を
被溶接材Wを加圧挟持する一対の溶接電極ELLに供給
し溶接を行う。Welding gun 18a is comprised of a welding transformer Trl, a rectifier (not shown), and a pair of welding electrodes ELI. The welding gun 18a1 introduces high frequency alternating current from the welding current supply circuit 26a, and transforms it by the welding transformer Trl. Press,
The rectifier converts the electric power into direct current, and the converted electric power is supplied to a pair of welding electrodes ELL which press and hold the material to be welded W to perform welding.
第2図は前記溶接制御部16a+ の中、同時通電防止
装置20a1の詳細な構成を示す。なお、他の同時通電
防止装!20 a2乃至20al,は当該同時通電防止
装置20a1と同一の構成である。FIG. 2 shows the detailed structure of the simultaneous energization prevention device 20a1 in the welding control section 16a+. In addition, other simultaneous energization prevention devices! 20a2 to 20al have the same configuration as the simultaneous energization prevention device 20a1.
前記同時通電防止装置20a1は、通電状態台数検知部
28a,と、同時通電優先順位設定部29 a .と、
通電順位決定部30a,と、同時通電可能台数設定部3
2a1と、通電可否判断部34a,および状態信号送信
部36a,を含む。前記通電状態台数検知部28a,は
、他の溶接機12a2乃至t2ahを構成する状態信号
送信部36a2乃至36a.から状態信号S2乃至S。The simultaneous energization prevention device 20a1 includes an energized state number detection unit 28a, a simultaneous energization priority setting unit 29a. and,
Energization order determining unit 30a, and number of devices that can be simultaneously energized setting unit 3
2a1, an energization determination section 34a, and a status signal transmission section 36a. The energized state number detecting section 28a is connected to the state signal transmitting sections 36a2 to 36a. which constitute the other welding machines 12a2 to t2ah. to status signals S2 to S.
を導入して通電状態(ハイレベル)にある溶接機の台数
、通電待機状Hまたは非通電状態(ローレベル)にある
溶接機の台数を検知して通電順位決定部30 a .に
検知信号Skとして出力する。is introduced to detect the number of welding machines in the energized state (high level), the number of welding machines in the energized standby state H, or the number of welding machines in the de-energized state (low level), and determine the energization order determining unit 30a. It is output as a detection signal Sk.
前記同時通電優先順位設定部29a1 には、予め複数
の溶接機に同時に溶接開始指令が入力された際、通電優
先順位が設定されており、前記通電順位決定部30a,
に通電優先順位に係る信号St (以下、優先順位信
号という)を出力する。In the simultaneous energization priority setting section 29a1, energization priorities are set in advance when welding start commands are input to a plurality of welding machines at the same time, and the energization priority determination section 30a,
A signal St related to the energization priority (hereinafter referred to as a priority signal) is output to the energization priority level.
前記通電順位決定部30a1は、この優先順位信号S,
と前記ロボットコントローラ14a,からの溶接開始指
令信号C1および通電状態台数検知928 a .から
の検知信号S,を導入して当該溶接機12a,の通電順
位決定を行い、通電順位決定に係る信号SP (以下、
通電順位決定信号という)を通電可否判断部34a1に
出力する。The energization order determination unit 30a1 receives the priority order signals S,
and the welding start command signal C1 from the robot controller 14a and the number of energized units detected 928a. The energization order of the welding machine 12a is determined by introducing the detection signal S from the welding machine 12a, and the signal SP (hereinafter referred to as
An energization priority determining signal) is output to the energization propriety determination section 34a1.
前記同時通電可能台数設定部32a,には当該溶接シス
テムlOを構成する溶接機12a,乃至12ah全台数
の中、同時に通電が可能な台数が設定されており、前記
通電可否判断部34a1にこの設定台数に係る信号SN
(以下、設定台数信号という)を出力する。The number of welding machines 12a to 12ah constituting the welding system IO that can be energized simultaneously is set in the number setting unit 32a that can be energized simultaneously, and this setting is set in the energization permission determination unit 34a1. Signal SN related to the number of units
(hereinafter referred to as the set number signal).
前記通電可否判断部34a1は通電順位決定信号SP
と前記設定台数信号S,Iに基づき当該溶接タイマ24
a.に通電可否に係る信号SY (以下、通電可否信
号という)を出力する。The energization determination unit 34a1 receives the energization priority determination signal SP.
and the welding timer 24 based on the set number signals S and I.
a. A signal SY (hereinafter referred to as the energization propriety signal) is output to the energization mode.
さらに、前記状態信号送信部36a1は溶接タイマ24
a1から状態信号Slを受け、他の溶接機12a2乃至
12a6の同時通電防止装置20a2乃至20anを構
成する通電状態台数検知部28a,乃至28a,に信号
線Lを介して出力する。Further, the status signal transmitter 36a1 is configured to control the welding timer 24.
A state signal Sl is received from a1 and outputted via a signal line L to energized state number detection units 28a, 28a, which constitute simultaneous energization prevention devices 20a2 to 20an of other welding machines 12a2 to 12a6.
本実施態様に係る溶接システムは基本的には以上のよう
に構成されるものであり、次にその作用並びに効果につ
いて以下詳細に説明する。The welding system according to this embodiment is basically configured as described above, and its operation and effects will be explained in detail below.
第3図に本実施態様に係る溶接システム10の概略的な
動作手順を説明するフローチャートを示す。FIG. 3 shows a flowchart illustrating the general operating procedure of the welding system 10 according to this embodiment.
そこで、先ず、ロボットコントローラ14a,から溶接
制御部16a1の同時通電防止装置20 a +および
制御回路22a1の溶接タイマ24 a .へ初期加圧
時間と通電時間指定を含む溶接開始指令信号C1が出力
される(STP1a)。この溶接開始指令信号C+ に
応答して当該溶接タイマ24a+から溶接変圧器Trl
の通電を行ってよいか否かの通電要求信号C,が通電順
位決定部30a1に出力される。この通電要求信号CR
をトリガとして通電順位決定部30a1から他の溶接機
12 a2乃至12a7に開始指令対応信号CY+が出
力される(STP1b)。Therefore, first, from the robot controller 14a, the simultaneous energization prevention device 20a + of the welding control section 16a1 and the welding timer 24a . A welding start command signal C1 including initial pressurization time and energization time designation is output to (STP1a). In response to this welding start command signal C+, the welding timer 24a+ outputs the welding transformer Trl.
An energization request signal C indicating whether or not to energize is outputted to the energization order determination unit 30a1. This energization request signal CR
Using this as a trigger, a start command corresponding signal CY+ is outputted from the energization order determining unit 30a1 to the other welding machines 12a2 to 12a7 (STP1b).
この場合、通電状態台数検知部28a1に他の溶接機1
2a2乃至12a.、の制御回路22a2乃至22a7
から通電状態(ハイレベル)か、通電待機状態または非
通電状態(ローレベル)かに係る状態信号S2乃至S。In this case, other welding machines 1 are detected in the energized state number detection unit 28a1.
2a2 to 12a. , control circuits 22a2 to 22a7 of
The state signals S2 to S indicate whether the current is in the energized state (high level), the energized standby state, or the non-energized state (low level).
と開始指令対応信号CY2乃至CY,,が導入される。and start command corresponding signals CY2 to CY, are introduced.
そして、前記通電状態台数検知部28 a ,において
、状態信号S2乃至S,,と開始指令対応信号CY2乃
至cvhから他の溶接機12a2乃至12a,,の通電
状,襟、通電待機状態または非通電状態にある台数が判
断され、これらの台数に係る検知信号Sゆが通電順位決
定部30a1に出力される(STP2)。Then, in the energized state number detection unit 28a, the energized state, collar, energized standby state or non-energized state of the other welding machines 12a2 to 12a, . The number of devices in the state is determined, and a detection signal S related to these numbers is output to the energization order determining section 30a1 (STP2).
次に、当該通電順位決定部30 a .において通電順
位が決定される(STP3)。Next, the energization order determining unit 30a. The energization order is determined at (STP3).
第4図にこのステップ30通電順位決定に係る詳細なフ
ローチャートを示す。この場合、先ず、前記通電順位決
定部30 a .はロボットコントローラ14a,から
導入されている溶接開始指令信号CIと通電状態台数検
知部28 a ,から導入されている検知信号SKの内
容を二度読みして正確に読み取る(STP I)。次に
、通電状態にある溶接機の有無を判定する(STPn)
。FIG. 4 shows a detailed flowchart regarding the determination of the energization order in step 30. In this case, first, the energization order determining unit 30a. reads the contents of the welding start command signal CI introduced from the robot controller 14a and the detection signal SK introduced from the energized state number detection unit 28a twice to accurately read them (STP I). Next, it is determined whether there is a welding machine in an energized state (STPn)
.
そして、他の溶接機12a2乃至12ahの通電状態に
係る信号が全く検知されなかった場合には当該溶接機1
2a1の通電順位決定信号S,を第1順位とし(STP
III) 、通電可否判断部34a1 にこの第1順位
の通電順位信号を出力する(STP■)。If no signal related to the energization state of the other welding machines 12a2 to 12ah is detected, the welding machine 1
The energization order determination signal S of 2a1 is set as the first order (STP
III) The energization order signal of the first order is output to the energization propriety judgment unit 34a1 (STP■).
一方、ステップ■において通電状態に係る信号が検知さ
れた場合には検知信号の発生タイミング(立ち上がりエ
ッジ)と溶接開始信号の発生タイミング(立ち上がりエ
ッジ)が同時か否かが判定される(STPIV)。若し
、同時でなかった場合には溶接開始信号発生のタイミン
グで通電状態にある他の溶接機の台数に1を加算した値
を当該溶接機12a1の通電順位決定信号S p (
S T P V )として通電可否判断部34a1に
出力する(STP■〉。On the other hand, if a signal related to the energization state is detected in step (2), it is determined whether the generation timing (rising edge) of the detection signal and the generation timing (rising edge) of the welding start signal are the same (STPIV). If they are not simultaneous, the value obtained by adding 1 to the number of other welding machines that are energized at the timing when the welding start signal is generated is used as the energization priority determination signal S p (
S T P V ) is output to the energization determination unit 34a1 (STP■>).
一方、同時に信号の変化があった場合には、溶接システ
ム全体における当該溶接機12a1の同時通電の際の優
先順位と現時点で通電状態にある溶接機の台数とから当
該溶接機12a,の通電順位が決定され(STPVI)
、その通電順位決定信号S,が通電可否判断部34a
1に出力される(STP■)。ここで、同時通電の際の
優先順位とは溶接ンステムを構成する複数の溶接機12
a ,乃至12a.に対して同時に溶接開始指令信号
が入力された場合の通電の優先順位をいう。On the other hand, if there is a signal change at the same time, the energization order of the welding machine 12a is determined based on the priority of simultaneous energization of the welding machine 12a1 in the entire welding system and the number of welding machines that are currently energized. is determined (STPVI)
, the energization order determining signal S, is the energization possibility determining unit 34a.
1 (STP■). Here, the priority order for simultaneous energization refers to the order of priority when energizing multiple welding machines 12 constituting the welding stem.
a, to 12a. Refers to the order of priority of energization when welding start command signals are input at the same time.
このようにして通電順位決定信号S,が通電可否判断部
34a1に出力される。In this way, the energization order determining signal S, is output to the energization propriety determination section 34a1.
この場合、当該通電可否判断部34a+ には同時通電
可能台数設定部32a1から同時通電可能な設定台数信
号SNが導入されており、前記通電順位決定信号S,と
当該設定台数信号S9に基づきこの溶接機12a,に対
して直ちに通電してよいか否かの通電可否判断がなされ
、通電可否信号S,が溶接タイマ24a1に出力される
(STP4)。すなわち、同時通電可能な設定台数を越
える場合、通電可否信号S,は通電否信号(例えば、ロ
ーレベル信号)として出力され(STP7)、設定台数
以下の場合は通電可信号(例えば、ハイレベル信号)が
出力される(STP5)。In this case, a signal SN for the number of devices that can be simultaneously energized is introduced into the energization permission determination section 34a+ from the number setting section 32a1 for the number of devices that can be energized simultaneously, and the welding is performed based on the energization order determining signal S and the set number signal S9. A determination is made as to whether the welding machine 12a can be energized immediately, and an energization permission signal S is output to the welding timer 24a1 (STP4). That is, when the set number of units that can be energized simultaneously is exceeded, the energization enable/disable signal S, is output as an energization/disable signal (for example, a low level signal) (STP7), and when the number is less than the set number, the energization enable signal (for example, a high level signal) is output. ) is output (STP5).
ここで、通電可信号としての通電可否信号S,が出力さ
れた場合に、ステップ6において溶接機12a1によっ
て実行される溶接工程を第5図に示すタイムチャートを
参照しながら説明する。この場合、時刻T。において溶
接開始指令信号C1・(第5図a参照)が入力されると
、通電可に係る通電可否信号S,(第5図b参照)が出
力される。Here, the welding process executed by the welding machine 12a1 in step 6 when the energization enable signal S, as the energization enable signal is output, will be explained with reference to the time chart shown in FIG. In this case, time T. When the welding start command signal C1 (see FIG. 5a) is input at , an energization enable/disable signal S, (see FIG. 5b) relating to energization is output.
そこで、時刻Toにおいて溶接ガン18a1の溶接電極
ELI間に被溶接材Wが扶持され時刻To乃至T1間で
初期加圧を行う(第5図C参照)。次いで、元電源PS
から溶接電流供給回路26a1および溶接変圧機TrI
を介して溶接電流が前記溶接ガン18 a .の溶接電
極ELIに供給される(第5図d、時刻T+点参照)。Therefore, at time To, the workpiece W to be welded is supported between the welding electrodes ELI of the welding gun 18a1, and initial pressure is applied between times To and T1 (see FIG. 5C). Next, the original power supply PS
from welding current supply circuit 26a1 and welding transformer TrI
Welding current is applied to the welding gun 18a through the welding gun 18a. (see FIG. 5d, time T+ point).
溶接が完了すると通電が停止され(第5図d1時刻T2
点参照)、前記被溶接材Wが固化するまで加圧保持され
る(第5図e参照)。そして、時刻T3点において溶接
ガン18 a ,による加圧保持が解除され、溶接完了
信号C6が出力される(第5図f参照)。なお、状態信
号S1 は本実施態様においては、第5図gに示すよう
に、ガン加圧時間に対応して通電状態(ハイレベル)に
係る信号となる。When welding is completed, the current supply is stopped (time T2 in Figure 5 d1).
(see point), and the material to be welded W is held under pressure until it solidifies (see Fig. 5e). Then, at time T3, the pressure retention by the welding gun 18a is released, and a welding completion signal C6 is output (see FIG. 5f). In this embodiment, the status signal S1 becomes a signal related to the energized state (high level) corresponding to the gun pressurization time, as shown in FIG. 5g.
ステップ6における溶接工程が完了すると、溶接タイマ
24a1から溶接完了信号C0がロボットコントローラ
14a1に出力される(STP10)と共に、この溶接
完了信号C.の立ち上がりエッジ部で通電順位決定部3
0a1および状態信号送信部36a1における保持デー
タが書き換えられる(STPII)。すなわち、前記通
電順位決定部30a,は溶接完了信号C8が入力される
とロボットコントローラ14a1からの次の溶接開始指
令信号C1と前記通電状態台数検知部28a1からの他
の溶接機12a2乃至12anの通電状態、通電待機状
態または非通電状態にある台数に係る検知信号Skが導
入されて当該溶接機12a1の新たな通電順位決定を行
う状態となる。また、前記状態信号送信部36a1は溶
接完了信号C.が入力されると次の溶接開始指令信号C
1が溶接タイマ24a.に入力されていない場合には非
通電状態に係る状態信号S1を出力する。When the welding process in step 6 is completed, a welding completion signal C0 is output from the welding timer 24a1 to the robot controller 14a1 (STP10), and this welding completion signal C. The energization order determining unit 3 at the rising edge of
The data held in 0a1 and status signal transmitter 36a1 is rewritten (STPII). That is, when the welding completion signal C8 is input, the energization order determining unit 30a receives the next welding start command signal C1 from the robot controller 14a1 and energizes the other welding machines 12a2 to 12an from the energization state number detection unit 28a1. A detection signal Sk related to the number of welding machines in the energized standby state or in the de-energized state is introduced, and a state is entered in which a new energization order of the welding machines 12a1 is determined. Further, the status signal transmitter 36a1 sends a welding completion signal C. When is input, the next welding start command signal C
1 is the welding timer 24a. If no input is received, a state signal S1 relating to a non-energized state is output.
一方、通電否信号としてのローレベルの通電可否信号S
,が溶接タイマ24a,に入力された場合には、溶接ガ
ン18a1には溶接電流が供給されず、溶接タイマ24
a ,から当該溶接機12aが通電待機状態にある旨
の状態信号S,を状態信号送信部36a1に出力し(S
TP8)、当該通電状態信号送信部36a1から他の溶
接機12a2乃至12a.を構成する同時通電防止装置
20a2乃至20a,,に通電待機状態に係る状態信号
Sが出力される(STP9)。この場合、再び、他の溶
接機12a2乃至12ar,を構成する同時通電防止装
置20a2乃至20a7から溶接開始指令対応信号CY
2乃至C,。および状態表示信号S2乃至Shを受信す
る状態となる。On the other hand, a low-level energization enable/disable signal S as a energization/disconnection signal
, is input to the welding timer 24a, the welding current is not supplied to the welding gun 18a1, and the welding timer 24a is inputted to the welding timer 24a.
a, outputs a status signal S, indicating that the welding machine 12a is in the energized standby state, to the status signal transmitter 36a1 (S
TP8), from the energization state signal transmitter 36a1 to other welding machines 12a2 to 12a. A status signal S related to the energization standby state is output to the simultaneous energization prevention devices 20a2 to 20a, . . . (STP9). In this case, again, the welding start command corresponding signal CY
2 to C. and enters a state of receiving status display signals S2 to Sh.
本実施態様によれば、当該溶接機12 a .の溶゛接
開始指令信号C,と他の溶接機の溶接開始指令を含む通
電情報とを導入し、当該溶接機12 a .と他の溶接
機12a2乃至12a.に同時に溶接開始指令が入力さ
れた場合、予め定められた当該溶接機12a1の同時通
電の際の通電順位と所定の同時通電可能台数に基づいて
当該溶接機の通電可否判断がなされると共に通電順位が
決定される。従って、当該システムは、常時、許容設定
台数内で通電状態となるので供給許容電力を越えること
なく、夫々の溶接機へ適性な電力供給がなされ、確実な
溶接工程がなされる。According to this embodiment, the welding machine 12a. Welding start command signal C of the welding machine 12 a . and energization information including the welding start command of the other welding machine 12 a . and other welding machines 12a2 to 12a. When a welding start command is input at the same time, a determination is made as to whether or not the welding machine can be energized based on a predetermined energization order for simultaneous energization of the welding machines 12a1 and a predetermined number of units that can be energized simultaneously, and the energization order is also determined. is determined. Therefore, since the system is always energized within the allowable set number of welding machines, appropriate power is supplied to each welding machine without exceeding the supply allowable power, and a reliable welding process is performed.
次に、本発明の理解を一層容易にするために前記本実施
態様に係る溶接システム10を構成する溶接機の台数を
5台に設定し、この5台の溶接機、例えば、参照符号1
2 a .乃至12asの溶接機に同時に溶接開始指令
が入力された際の同時通電優先順位と当該5台からなる
溶接システムの同時通電可能台数が表1に示すように設
定されている場合について、第6図に示すタイム表1
先ず、時刻t0からt1の直前まではロボットコントロ
ーラ14a1乃至14a5から溶接開始指令信号C1乃
至Csが出力されておらず、溶接機12a1乃至12a
,の状態信号S1乃至S5は全てローレベルの非通電状
態にある。この場合、第2図に示す通電可否判断部34
a,乃至34a,から溶接タイマ24a.乃至24as
に出力される通電可否信号S▼1乃至S▼5もローレベ
ルの通電否信号となっている。Next, in order to further facilitate understanding of the present invention, the number of welding machines constituting the welding system 10 according to the present embodiment is set to five, and these five welding machines, for example, reference numeral 1
2 a. Figure 6 shows the case where the simultaneous energization priority order when welding start commands are simultaneously input to the welding machines of 12as to 12as and the number of machines that can be energized simultaneously in the welding system consisting of 5 machines are set as shown in Table 1. Time table 1 shown in Figure 1 First, from time t0 to just before t1, welding start command signals C1 to Cs are not output from robot controllers 14a1 to 14a5, and welding machines 12a1 to 12a
, are all in a low level non-energized state. In this case, the energization determination unit 34 shown in FIG.
a, to 34a, to welding timer 24a. ~24as
The energization enable/disable signals S▼1 to S▼5 outputted to the terminals are also low-level energization disable signals.
次に、時刻t1において、ロボットコントローラ14a
1と14a3とから溶接開始指令信号C1およびC,(
ハイレベル)が出力されると、同時通電防止装置20a
,を構成する通電順位決定部30a1においては、溶接
開始指令信号C,と溶接開始指令信号C3に対応する状
態信号S3を同時に受信することになり、一方、同時通
電防止装置20a3は溶接開始指令信号C,と前記溶接
開始指令信号C1に対応する状態信号S1を同時に受信
することになる。Next, at time t1, the robot controller 14a
1 and 14a3 to welding start command signals C1 and C, (
When a high level) is output, the simultaneous energization prevention device 20a
, simultaneously receives the welding start command signal C and the status signal S3 corresponding to the welding start command signal C3, while the simultaneous energization prevention device 20a3 receives the welding start command signal C3. C, and the status signal S1 corresponding to the welding start command signal C1 are received at the same time.
この場合、通電順位決定部における信号の読み取りは前
記した第4図のフローチャートのステップ■に示したよ
うに、読み取りの正確性を期すべく二度読みを行ってい
る。このような状態において、通電順位決定部30a1
と30a3においてステップ■の判断は成立し、ステッ
プ■の判断を行う。この場合、溶接開始指令信号C+
,Csと検知信号Skとが同時にハイレベルとなってい
るのでステップ■の処理を行う。In this case, the reading of the signal in the energization order determining section is performed twice in order to ensure the accuracy of the reading, as shown in step (2) of the flowchart of FIG. 4 described above. In such a state, the energization order determining unit 30a1
In step 30a3, the judgment in step (2) is established, and the judgment in step (2) is made. In this case, welding start command signal C+
, Cs and the detection signal Sk are at high level at the same time, the process of step (2) is performed.
すなわち、この場合において、同時通電の際の優先順位
は、表1から諒解されるように、溶接機12 a ,が
溶接機12a3に比較して高いので、溶接機12alが
第1通電順位となり溶接機12a3が第2通電順位とな
る。That is, in this case, as can be understood from Table 1, the welding machine 12a has a higher priority in simultaneous energization than the welding machine 12a3, so the welding machine 12al has the first energization priority and welding is performed. The machine 12a3 has the second energization order.
そこで、前記第3図に示したフローチャートの第4ステ
ップの判断処理を通電可否判断部34a+Jよび34a
3において行う。前記したように、同時通電可能台数は
3台であるのでいずれの可否判断部34a,、34a3
とも通電可に係る通電可否信号SYI、SY3を制御回
路22a1を構成する溶接タイマ24 a l および
24a3に導入するく第6図a,c.通電可否信号SY
I、syt参照)。これによって溶接ガン18a,と溶
接ガン18a3による溶接作業が開始される。Therefore, the judgment process in the fourth step of the flowchart shown in FIG.
Performed in 3. As mentioned above, since the number of units that can be energized at the same time is three, which of the enable/disable determining units 34a, 34a3
The energization enable/disable signals SYI and SY3 relating to whether energization is possible are introduced into the welding timers 24a1 and 24a3 constituting the control circuit 22a1. Energization enable/disable signal SY
I, syt). As a result, welding work by welding guns 18a and welding guns 18a3 is started.
次に、時刻t2点において、第6図bに示すように、ロ
ボットコントローラ14a2から溶接開始指令信号C2
が溶接機12a2の同時通電防止装置20a2に出力さ
れるものとする。この場合、同時通電防止装置20a2
には通電状態台数検知部28a2から他の溶接機12a
1および12a3乃至12a5の状態信号S1およびS
3乃至S,を読み、その通電状態あるいは非通電状態に
係る検知信号S,を通電順位決定部30a2に導入する
。ここで、通電順位決定部30a2は、第4図に示すフ
ローチャートのステップ■の判断に基づき同時通電開始
指令が入力されていないことを判断して当該溶接機12
a.の通電順位信号を第3位として通電可否判断部3
4a2に導入する。そして、通電可否判断部34a2は
同時通電可能台数が3台であることから当該溶接機12
a2を通電してもよい旨の通電可否信号SY2(第6図
b参照)を溶接タイマ24a2に出力する。これによっ
て溶接ガン18a2によるワークW2の溶接作業が開始
される。Next, at time t2, as shown in FIG. 6b, a welding start command signal C2 is sent from the robot controller 14a2.
is output to the simultaneous energization prevention device 20a2 of the welding machine 12a2. In this case, the simultaneous energization prevention device 20a2
, from the energized state number detection unit 28a2 to other welding machines 12a.
1 and 12a3 to 12a5 status signals S1 and S
3 to S, are read, and a detection signal S, related to the energized state or non-energized state, is introduced into the energization order determination unit 30a2. Here, the energization order determination unit 30a2 determines that the simultaneous energization start command has not been input based on the determination in step (2) of the flowchart shown in FIG.
a. The energization possibility judgment unit 3 sets the energization priority signal of 3 to the 3rd place.
Introduced into 4a2. Since the number of welding machines that can be energized at the same time is three, the energization propriety determination unit 34a2
An energization permission signal SY2 (see FIG. 6b) indicating that a2 may be energized is output to the welding timer 24a2. As a result, welding work on the workpiece W2 by the welding gun 18a2 is started.
次に、時刻t3において、ロボットコントローラ14a
4と14a,とから溶接機12a4と溶接機12a,に
対して溶接開始指令信号C4 、Csが出力されるもの
とする(第6図dSe参照)。Next, at time t3, the robot controller 14a
4 and 14a output welding start command signals C4 and Cs to the welding machines 12a4 and 12a (see FIG. 6dSe).
この場合、同時通電防止装置20a4と20a,は夫々
前記したように通電順位を決定する。すなわち、溶接機
12a,は通電順位第4位と処理され、溶接機12a5
は通電順位第5位と指定される。この通電順位決定信号
SPは夫々通電可否判断部34a,および34a,に導
入される。通電可否判断部34a4および34a,はこ
れらの通電順位番号が同時通電可能台数3台に比較して
大きい値であるので、通電否に係る通電可否信号(ロー
レベル)を溶接タイマ24a,および24a,に出力す
る。In this case, the simultaneous energization prevention devices 20a4 and 20a each determine the energization order as described above. In other words, the welding machine 12a is ranked fourth in the energization order, and the welding machine 12a5
is designated as the fifth place in the energization order. This energization priority determination signal SP is introduced into the energization propriety determination sections 34a and 34a, respectively. Since these energization order numbers are larger than the number of devices that can be simultaneously energized (3), the energization determination units 34a4 and 34a send the energization capability signal (low level) regarding energization to the welding timer 24a, 24a, Output to.
このように、本発明による溶接システムは同時通電可能
台数を超えた溶接指令信号が当該溶接システムに入力さ
れた場合には、それらの通電を防止することになるので
供給電流の1氏下による溶接不良、あるいは当該溶接シ
ステムの停止状態を惹起することがないことが諒解され
よう。As described above, in the welding system according to the present invention, if welding command signals exceeding the number of welding units that can be energized simultaneously are input to the welding system, the energization is prevented, so welding with one degree less than the supplied current is possible. It will be appreciated that this will not cause any failure or shutdown of the welding system.
次いで、時刻t4点において、溶接ガン18a,による
溶接作業が終了すると(第6図a参照)、前記第5図f
に示したような溶接完了信号C.が同時通電防止装置2
0a.を構成する状態信号送信部36a1に導入される
。当該信号は溶接システムを構成する同時通電防止装置
20a2および20a5に導入される。この場合におい
て、溶接機12a2の通電順位は第2順位から第1順位
となり、溶接機12a3の通電順位は第3順位から第2
順位となり溶接機12a,の通電順位は第4順位から第
3順位となる。従って、溶接機12a,を構成する通電
可否判断部34a4における通電可否判断は通電可とな
り、通電可に係る通電可否信号SY4が溶接タイマ24
a4に導入されることで溶接ガン18a4の溶接工程が
開始される。Next, at time t4, when the welding work by the welding gun 18a is completed (see FIG. 6a), the welding operation shown in FIG.
A welding completion signal as shown in C. is simultaneous energization prevention device 2
0a. is introduced into the status signal transmitter 36a1 that constitutes the. The signal is introduced into simultaneous energization prevention devices 20a2 and 20a5 that constitute the welding system. In this case, the energization order of the welding machine 12a2 goes from the second rank to the first rank, and the energization rank of the welding machine 12a3 goes from the third rank to the second rank.
The energization order of the welding machine 12a changes from the fourth to the third. Therefore, the energization determination unit 34a4 of the welding machine 12a determines that energization is possible, and the energization capability signal SY4 indicating whether energization is possible is sent to the welding timer 24.
The welding process of the welding gun 18a4 is started by introducing the welding gun 18a4.
一方、溶接機12a5は通電順位決定部30a,におい
で通電順位が第5順位から第4順位になるが、通電可能
台数は3台であるので通電可否判断部34asにおける
判断処理は否となって未だ通電待機状態を維持する。On the other hand, the energization order of the welding machine 12a5 changes from the 5th rank to the 4th rank according to the energization rank determination unit 30a, but since the number of welding machines that can be energized is 3, the determination process in the energization availability determination unit 34as is negative. Still maintains power-on standby state.
次いで、時刻t,において、溶接機12a3における溶
接工程が終了し溶接完了信号C0が状態信号送信部36
a,に導入されると、この情報は通信線Lを通じ他の溶
接機12 a l乃至12a,および12a5に送信さ
れる。これによって、溶接機12a2の通電順位は第1
順位のままであるが、溶接機12a4の通電順位は第2
順位とされ、溶接機12asの通電順位は第3順位とさ
れる。Next, at time t, the welding process in the welding machine 12a3 is completed, and a welding completion signal C0 is sent to the status signal transmitter 36.
a, this information is transmitted via communication line L to other welding machines 12a1 to 12a and 12a5. As a result, the welding machine 12a2 is placed in the first order of energization.
Although the order remains the same, the energization order of the welding machine 12a4 is second.
The energization order of the welding machine 12as is set as the third order.
従って、溶接機122sの通電可否判断において通電可
の判断がなされ、溶接機12a,は溶接工程を開始する
。Therefore, in determining whether or not the welding machine 122s can be energized, it is determined whether the welding machine 122s can be energized, and the welding machine 12a starts the welding process.
次いで、時刻t6において再びロボットコントローラ1
4a1から溶接機12a口ご対して溶接開始指令信号C
,が導入された場合について考察する。この場合、溶接
機12a2、12a,、12a,の通電順位は夫々第1
、第2、第3と変化しない。Then, at time t6, the robot controller 1
Welding start command signal C is sent from 4a1 to the welding machine 12a port.
, is introduced. In this case, the welding machines 12a2, 12a, 12a are energized in the first order.
, the second, and the third do not change.
ところで、溶接機12 a .の通電順位は現在リセッ
トされ通電順位を付されていないので時刻t6において
新たな通電順位が決定される。この場合、溶接機12
a .の通電順位は第4順位とされる。従って、通電可
否判断部34a.における判断処理は否とされ、状態信
号S1は非通電の通電待機状態となり、溶接ガンt8
a + による溶接は開始されない。By the way, the welding machine 12a. Since the energization order has been currently reset and no energization order has been assigned, a new energization order is determined at time t6. In this case, welding machine 12
a. The energization order is set to the fourth order. Therefore, the energization determination unit 34a. The determination process at is negative, the status signal S1 is in a de-energized standby state, and the welding gun t8
Welding by a + is not started.
続いて、時刻t″,において溶接機12a2よる溶接作
業が終了した場合について考察する。この場合において
は容易に諒解されるように、溶接機12a4の通電順位
は第2順位から第1順位とされ、溶接機12a,の通電
順位は第3順位から第2順位とされ、溶接機12a,の
通電順位は第4順位から第3順位とされる。従って、溶
接機t2 a + は通電可否判断部34a+ におけ
る判断が可と処理され、溶接ガン18a,による溶接工
程が開始される。Next, we will consider the case where the welding work by the welding machine 12a2 is completed at time t''. In this case, as is easily understood, the energization order of the welding machine 12a4 is changed from the second to the first. The energization order of the welding machine 12a, is set from the third rank to the second rank, and the energization order of the welding machine 12a, is set from the fourth rank to the third rank.Therefore, the welding machine t2a + is the energization possibility judgment unit. The determination at step 34a+ is determined to be acceptable, and the welding process using the welding gun 18a is started.
次いで、時刻t,において溶接機12a,、12a,お
よび12as における溶接作業が全て終了する。これ
によって、当該溶接システム10を構成する溶接機12
a1乃至12a5は全て非通電状態とされる。Next, at time t, all welding operations in the welding machines 12a, 12a, and 12as are completed. As a result, the welding machine 12 constituting the welding system 10
All of a1 to 12a5 are de-energized.
なお、本実施態様においては溶接開始指令信号が出力さ
れた後、溶接ガンが初期加圧を開始する時点から加圧保
持を終了する時点までを通電状態としているが、これに
限らず、初期加圧の後に溶接電流が供給される期間(第
5図d参照)を通電状態として制御することも可能であ
ることは謂うまでもない。この場合、通電待機時間が短
縮され当該溶接システムの一層の高速化された稼動状態
が得られる。Note that in this embodiment, after the welding start command signal is output, the welding gun is kept energized from the time when it starts initial pressurization to the time when it ends pressurization maintenance, but this is not limited to this. Needless to say, it is also possible to control the period during which the welding current is supplied after the welding pressure (see FIG. 5d) as an energized state. In this case, the energization standby time is shortened and the welding system can operate at a higher speed.
[発明の効果]
以上のように、本発明によれば、複数の溶接機からなる
溶接システムにおいて、同時通電可能台数と同時通電に
係る溶接開始指令が同時に溶接機に入力された際の通電
優先順位を設定している。このため、溶接機の同時通電
台数を同時通電可能台数以内に必ず制限することが可能
となり、これによって供給電源の電力量不足に起因する
溶接不良あるいは溶接機の停止等を未然に防止すること
が出来、信頼性の高い溶接システムを構築することが出
来る。[Effects of the Invention] As described above, according to the present invention, in a welding system consisting of a plurality of welding machines, energization priority is given when the number of welding machines that can be energized simultaneously and a welding start command related to simultaneous energization are simultaneously input to the welding machines. The ranking is set. Therefore, it is possible to limit the number of welding machines that can be energized at the same time to within the number that can be energized at the same time, thereby preventing welding defects or welding machine stoppages due to insufficient power supply. It is possible to construct a highly reliable welding system.
以上、本発明について好適な実施態様。を挙げて説明し
たが、本発明はこの実施態様に限定されるものではなく
、本発明の要旨を逸脱しない範囲に詔いて種々の改良並
びに設計の変更が可能なことは勿論である。The preferred embodiments of the present invention have been described above. Although the present invention is not limited to this embodiment, it goes without saying that various improvements and changes in design can be made without departing from the gist of the present invention.
第1図は本発明に係る溶接システムのブロック図、
第2図は第1図に示す溶接シスデムの中、同時通電防止
装置の詳細な構成を示すブロック図、第3図は第1図に
示す溶接システムの溶接工程を説明するタイムチャート
、
第4図は第2図に示す同時通電防止装置の中、通電順位
決定部における通電順位決定の際のフローチャート、
第5図は第1図に示す溶接ガンのガン加圧時間とその他
の信号との関連を説明する図、第6図は第1図に示す溶
接システムを構成する溶接機の数が5台である場合の動
作を説明するタイムチャートである。
10・・・溶接システム
12a,〜12a1・・・直流抵抗溶接機14 a ,
〜14ah・・・ロボットコントローラ16a,〜t6
ah・・・溶接制御部
18a1〜18a7・・・溶接ガン
20 a .〜20a.・・・同時通電防止装置22
a ,
24a,
26a
28a
29 a .
30a
32a
34a1
36a1
〜22a.
〜24a.
〜26ar1
〜28a.
〜29a.
〜3oah
〜32ah
〜34a.
〜36ah
・・・制御回路
・・・溶接タイマ
・・・溶接電流供給回路
・・・通電状態台数検知部
・・・同時通電優先順位設定部
・・・通電順位決定部
・・・同時通電可能台数設定部
・・・通電可否判断部
・・・通電状態信号送信部Fig. 1 is a block diagram of the welding system according to the present invention, Fig. 2 is a block diagram showing the detailed configuration of the simultaneous energization prevention device in the welding system shown in Fig. 1, and Fig. 3 is shown in Fig. 1. A time chart explaining the welding process of the welding system. Fig. 4 is a flowchart for determining the energization order in the energization order determining section in the simultaneous energization prevention device shown in Fig. 2. Fig. 5 is a welding process shown in Fig. 1. Figure 6 is a diagram explaining the relationship between the gun pressurization time and other signals, and Figure 6 is a time chart explaining the operation when the number of welding machines configuring the welding system shown in Figure 1 is five. be. 10... Welding system 12a, ~12a1... DC resistance welding machine 14a,
~14ah...Robot controller 16a, ~t6
ah...Welding control parts 18a1 to 18a7...Welding gun 20a. ~20a. ...simultaneous energization prevention device 22
a, 24a, 26a 28a 29 a. 30a 32a 34a1 36a1 ~22a. ~24a. ~26ar1 ~28a. ~29a. ~3oah ~32ah ~34a. ~36ah... Control circuit... Welding timer... Welding current supply circuit... Energized state number of units detection section... Simultaneous energization priority setting section... Energization order determining section... Number of units that can be energized simultaneously Setting section... Energization availability judgment section... Energization status signal transmission section
Claims (1)
状態、非通電状態および通電待機状態に係る状態信号を
送受すると共に当該状態信号と溶接開始指令手段からの
溶接開始指令に応じて前記溶接機を構成する溶接ガンに
通電することにより溶接を行う溶接システムであって、
前記溶接機は、少なくとも同時に溶接開始指令が入力さ
れた際の同時通電優先順位設定部と同時通電可能台数設
定部および通電可否判定部を有し、前記通電可否判断部
は前記溶接機に同時通電可能台数を超える溶接開始指令
が入力された際に、前記同時通電優先順位設定部に決定
されている優先順位に基づき通電優先順位を決定すると
共に同時通電可能台数設定部に設定された同時通電可能
台数以内に同時通電台数を制限するように制御すること
を特徴とする溶接システム。(1) Consisting of a plurality of welding machines, the welding machines mutually transmit and receive status signals related to the energized state, de-energized state, and energized standby state, and also respond to the status signals and the welding start command from the welding start command means. A welding system that performs welding by energizing a welding gun that constitutes the welding machine,
The welding machine has at least a simultaneous energization priority setting section when a welding start command is input simultaneously, a simultaneous energization possible number setting section, and an energization propriety determination section, and the energization propriety determination section is configured to simultaneously energize the welding machine. When a welding start command exceeding the possible number of units is input, the energization priority is determined based on the priority determined in the simultaneous energization priority setting section, and simultaneous energization is possible as set in the number of simultaneous energization possible units setting section. A welding system characterized by controlling the number of simultaneously energized units to within the number of units.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1054247A JPH0771750B2 (en) | 1989-03-06 | 1989-03-06 | Welding system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1054247A JPH0771750B2 (en) | 1989-03-06 | 1989-03-06 | Welding system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02235583A true JPH02235583A (en) | 1990-09-18 |
| JPH0771750B2 JPH0771750B2 (en) | 1995-08-02 |
Family
ID=12965214
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1054247A Expired - Fee Related JPH0771750B2 (en) | 1989-03-06 | 1989-03-06 | Welding system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0771750B2 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5772783A (en) * | 1980-10-23 | 1982-05-07 | Toshiba Corp | Control device for resistance welding machine |
| JPS60186980U (en) * | 1984-05-23 | 1985-12-11 | 日産自動車株式会社 | Spot welding machine energization interlock device |
-
1989
- 1989-03-06 JP JP1054247A patent/JPH0771750B2/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5772783A (en) * | 1980-10-23 | 1982-05-07 | Toshiba Corp | Control device for resistance welding machine |
| JPS60186980U (en) * | 1984-05-23 | 1985-12-11 | 日産自動車株式会社 | Spot welding machine energization interlock device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0771750B2 (en) | 1995-08-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7330990B2 (en) | Information processing apparatus and method, and computer-readable medium | |
| US6097108A (en) | Apparatus and method for fail-safe control of events in preparation for electrical power transfers | |
| CN103941633B (en) | PLC redundancy control method and system | |
| CN100533315C (en) | insurance controller | |
| CN102611600B (en) | Method and device for locating short circuit position of CAN (Controller Area Network) network | |
| US6021356A (en) | Control system using programmable logic controller | |
| CN111360794B (en) | Teaching system adaptive to various models of robots and teaching method thereof | |
| JPH02235583A (en) | Welding system | |
| CN107463148B (en) | A kind of method of PLC redundancy switching | |
| CN108762784A (en) | A kind of traffic signal controlling machine remote upgrade method and device | |
| CN104659901A (en) | Electrical installation having an uninterruptible power supply | |
| US8566630B2 (en) | Apparatus, methods and computer program products supporting automatic network identification for power supplies | |
| CN114509981B (en) | Controller hardware redundancy control method and system | |
| CN111283327B (en) | Laser source soft starter control method, control circuit, laser welding machine and medium | |
| JP4228802B2 (en) | Lighting device and lighting system | |
| CN116107195A (en) | Systems and methods for coordinating insertion and/or removal of redundant input/output components | |
| CN106814643B (en) | A kind of control method and system of two-node cluster hot backup | |
| JP2514882B2 (en) | Communication network system of resistance welding machine | |
| CN103287941A (en) | Linkage operation test device and linkage operation test method for elevator | |
| CN106991825A (en) | The lamp system controlled based on CAN | |
| CN119652737A (en) | A fault handling and replacement method for intelligent device and intelligent device system | |
| JPH07226785A (en) | Communication device and communication diagnosis method | |
| CN117742214A (en) | Intelligent controller for camera scheduling POE power supply debugging | |
| CN108494584A (en) | The Communication topology and communication control method of multiple module paralleling active inversion device | |
| CN119937277A (en) | A control system and control method for a loading and unloading machine of a pressurized water reactor nuclear power plant |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |