[go: up one dir, main page]

JPH02267469A - Air conditioner capacity control operation method - Google Patents

Air conditioner capacity control operation method

Info

Publication number
JPH02267469A
JPH02267469A JP1084813A JP8481389A JPH02267469A JP H02267469 A JPH02267469 A JP H02267469A JP 1084813 A JP1084813 A JP 1084813A JP 8481389 A JP8481389 A JP 8481389A JP H02267469 A JPH02267469 A JP H02267469A
Authority
JP
Japan
Prior art keywords
compressor
frequency
load
air conditioner
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084813A
Other languages
Japanese (ja)
Inventor
Shinichiro Yamada
眞一朗 山田
Osamu Seki
関 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1084813A priority Critical patent/JPH02267469A/en
Publication of JPH02267469A publication Critical patent/JPH02267469A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve a follow-up characteristic of variation in load, improve an economical characteristic in operation and realize a uniform utilization of a compressor mechanism by a method wherein a capacity of an electric motor for one compressor mechanism is controlled in response to a requested load and capacities of a plurality of electric motors for compressors can be continuously and simultaneously controlled for a load larger than the requested load. CONSTITUTION:Several rotary compressor mechanisms such as scrolls arranged in an air conditioner and an electric motor are operated through an inverter. Any one of the compressors is started from a minimum frequency after starting of the air conditioner and the frequency is gradually increased toward the requested output. If the load is satisfactory under operation of one compressor, its operating frequency is stabilized between its minimum value and an intermediate value 2. In case that the load is large in value and output is insufficient, an operating frequency of the electric motor for the compressor is immediately increased up to the intermediate value 2 and further even in case of this increased state, the output is further short in value, the frequency is decreased once to the minimum frequency value and then the second compressor mechanism is started to operate. After the second compressor mechanism shows a coincidence with the same minimum frequency, the frequencies of the two compressors are simultaneously and gradually increased to make a coincidence with the required output and then a stable operation of them is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は容量制御を行う比較的大容量の空気調;to機
、冷凍装置等に係り、特に回転式圧縮機をイ/バータ?
1tlJ間する場合に最適な容を制御方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to relatively large capacity air conditioners that perform capacity control;
The present invention relates to a method for controlling the optimum capacity when 1 tlJ.

〔従来の技術〕[Conventional technology]

従来の複数台の圧a!!又は圧縮機構を有する比較的大
容量の空気調和機の容量制御運転方式は、要求される負
荷に応じて複数台の圧縮機を運転又はいずれかを停止さ
せて不連続な容量制御運転を行うか、インバータを使用
し複数台の圧縮機をそれぞれ連続制御運転を行りことに
より空g4機全体として容量制御を行ってきた。これら
の装置として関連するものには例えば実開昭58−85
159号がある。
Conventional multiple pressure a! ! Alternatively, the capacity control operation method for a relatively large capacity air conditioner with a compression mechanism involves operating multiple compressors or stopping one of them to perform discontinuous capacity control operation depending on the required load. By using an inverter to continuously control each compressor, we have been able to control the overall capacity of the G4 air compressor. Related to these devices, for example, Utility Model Application No. 58-85
There is issue 159.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は大まかな空vIL機負荷変化に対しては
対応できるが、痩内の温度変化等に対し人の出入りや日
射の変化による微少負荷対化に対しては通常の圧輔機発
停制御と同等であり、追従性が悪いため冷えすぎ暖めす
ぎを生じて不経済であり、またインバータを使用した場
合でもそれぞれ独立して発停するため、空調機全体とし
ては複数の圧縮機部分は機械的な寿命の面でも平均化に
対しての配点がなかった。さらに、低負荷から高負荷に
対応するように必要に応じ出力を増加するため圧縮機そ
のものの高効率点を考慮せずむやみに高い周波数で運転
されるか、複数の圧縮機構が異なった周波数で運転され
るため高周波数で運転される圧縮機構部は機械的な負担
が大きくなるという問題もある。また、同時に始動する
タイミングが生じることもあり、始動電流のピークも増
加する結果となった。
The above-mentioned conventional technology can deal with rough changes in the load of the empty VIL machine, but it can handle small loads caused by changes in the temperature inside the cage, changes in the coming and going of people, and changes in solar radiation using normal pressure machine start/stop methods. This is equivalent to control, and the poor follow-up performance results in excessive cooling and overheating, which is uneconomical.Also, even when an inverter is used, each part starts and stops independently, so the multiple compressor parts of the air conditioner as a whole are In terms of mechanical life, no points were given for averaging. Furthermore, in order to increase the output as necessary to cope with low to high loads, the compressor itself is operated at an unnecessarily high frequency without considering its high efficiency, or multiple compression mechanisms are operated at different frequencies. There is also the problem that the compression mechanism section, which is operated at a high frequency, is subject to a heavy mechanical load. In addition, simultaneous starting times may occur, resulting in an increase in the peak starting current.

本発明はこれらの状況を考慮し、負荷変化の追従と経済
性の改善、圧縮機構の使用平均化を実現すると共に複数
台の圧縮機始動電流の抑制を目的とする。
Taking these circumstances into consideration, the present invention aims to follow load changes, improve economic efficiency, equalize the use of compression mechanisms, and suppress the starting current of multiple compressors.

csgを解決するための手段J 上記目的を達成するために、空気v4相機に設けられ九
複数台のスクロール等の回転式圧縮機構と電動機をイン
バータにより運転するようにし、かつ複数台の電動機を
互いに関連づけ、始動は1台先に運転の後インバータの
周波数をしだいに増加し、負荷によって次に他の電ih
機を運転させる等の方法をとる。また、1台の圧縮機構
用電動機な運転するときは、インバータの最低駆動周波
数から最高m動周波数手前の中間周波数までとし、圧縮
機の高効率領域で使用するようにし、複数台で使用する
ときは最低周波数から複数台同一の周波数で運転するよ
うにし九ものである。
Means for solving csg J In order to achieve the above purpose, the rotary compression mechanisms such as nine or more scrolls and electric motors installed in the air v4 phase machine are operated by inverters, and the electric motors are connected to each other. After starting one inverter, the frequency of the inverter is gradually increased, and then the other inverter is started depending on the load.
Take measures such as operating the machine. In addition, when operating one electric motor for a compression mechanism, it should be set to an intermediate frequency from the inverter's lowest drive frequency to the highest m dynamic frequency, so that it is used in the high efficiency range of the compressor, and when using multiple units. There are 9 types that allow multiple units to operate at the same frequency starting from the lowest frequency.

〔作用〕[Effect]

インバータを使用して圧縮機を駆動するため、負荷に追
従する特性を良好に維持するが比較的大容量のため複数
の電動機と圧縮機構に対し互いに密接に連動するように
制御を行う。始動時はビーり電流を抑制するため先行の
1白目の圧縮機構と電動機をしだいに周波数を増加する
ように運転し、負荷の状況によって他の電動機をも駆動
して空fJ4flJl容量を調節させる。運転停止fl
k最初に停止している圧#I機構側を次の始動時に優先
して始動させることにより運転時間の平均化を図る。ま
た、1台運転中は圧J機の高効率運転範囲を考慮し、イ
ンバータ駆動周波数に制限を加え、空調機が最大出力を
必要とする場合のみ複数台の圧縮機用電動機を高い周波
数で駆動させ必要な出力を確保する。
Since the compressor is driven using an inverter, it maintains good load following characteristics, but due to its relatively large capacity, multiple electric motors and compression mechanisms are controlled so that they work closely with each other. At the time of starting, in order to suppress the beep current, the first compression mechanism and the electric motor are operated to gradually increase the frequency, and depending on the load condition, other electric motors are also driven to adjust the empty fJ4flJl capacity. Operation stop fl
k The pressure #I mechanism side which is stopped first is started preferentially at the next start-up to average out the operating time. In addition, while one compressor is in operation, the inverter drive frequency is limited in consideration of the high-efficiency operating range of the compressor, and multiple compressor motors are driven at a high frequency only when the air conditioner requires maximum output. and ensure the necessary output.

〔実施例〕〔Example〕

以下、本発明の一実施例を第2図、第8図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 8.

本発明は空調機に内蔵される圧#機構とその駆動用型l
Ih機が2対の場合を示す。第2図は横軸に圧ia機電
動機運転インバータ周波数縦軸に出力をと01は圧縮機
構駆動電動機が1台制御運転され九場合の空調機出力線
図を示し、2は同様に2台制御運転された場合の空調機
出力線図を示す。また、第8図は横軸に圧m@電動機運
転インバータ周波数、縦軸に圧縮機効率をとり、3は圧
ita機を低周波数から高周波数まで運転していく場合
の圧縮機効率特性を示したものである。なお、第2図、
第8図の横軸上の最小、最大はインバータの電動機駆動
周波数の最小、最大を示しており中間又は中間l、中間
2等はその間の任意の周波数を示すものである。また、
第1図は本発明の制−フローの例を示す。本発明によれ
ば空g4機の運転開始により任意の圧縮機構1台を最小
周波数より始動させ要求式れる出力に向かって徐々に周
波数を増して行く。この状態を第2図の圧縮機電動機1
台運転時の出力lの線上に示す。
The present invention relates to a pressure mechanism built into an air conditioner and its driving type l.
The case where there are two pairs of Ih machines is shown. In Figure 2, the horizontal axis shows the output of the pressure ia machine motor operation, the inverter frequency, and the vertical axis shows the output. 01 shows the air conditioner output diagram when one compression mechanism drive motor is controlled and operated, and 2 shows the air conditioner output diagram when two motors are controlled in the same way. The air conditioner output diagram when it is operated is shown. In addition, in Fig. 8, the horizontal axis shows the pressure m @ motor operating inverter frequency, and the vertical axis shows the compressor efficiency, and 3 shows the compressor efficiency characteristics when the pressure ita machine is operated from low frequency to high frequency. It is something that In addition, Figure 2,
The minimum and maximum on the horizontal axis of FIG. 8 indicate the minimum and maximum of the motor drive frequency of the inverter, and the middle, middle 1, middle 2, etc. indicate any frequency between them. Also,
FIG. 1 shows an example of the control flow of the present invention. According to the present invention, when the empty G4 machine starts operating, one arbitrary compression mechanism is started from the minimum frequency and the frequency is gradually increased toward the required output. In this state, the compressor motor 1 in Fig.
It is shown on the line of output l during platform operation.

もし負荷が圧縮機a1台運転で満足されればその運転周
波数は最小から中間20間で安定する。
If the load is satisfied by operating one compressor a, its operating frequency will be stable between the minimum and intermediate 20 degrees.

また負荷が大きく出力不屈を生じた場合はただちに圧縮
機電動機運転周波数は中間2まで上昇しそれでも不足す
る場合は一度最小周波数に低下し2白目の圧縮機構を始
動する。そして2金目圧縮機構が同一の最小周波数に一
致した後、2合同時に周波数を徐々に上昇して必要出力
に一致させて安定運転させるものである。この場合圧縮
機1台運転時の中間周波数の出力と圧縮機2台運転時の
最小周波数時の出力は同等かその前後の出力を出すこと
としており1台と2台の切換による出力の不連続性を防
止している。さらに出力が必要な場合は2白兵最大周波
数に向は上昇させ出力アップする。一方、出力低下が要
求された場合は今と逆に作動することによって連続的に
追従させる。この制御方法に関する7a−チャートの例
は第1図に示す通りである。
Further, if the load is large and the output is unyielding, the compressor motor operating frequency is immediately increased to intermediate 2, and if it is still insufficient, it is once lowered to the minimum frequency and the second white compression mechanism is started. After the second compression mechanism reaches the same minimum frequency, the frequency of the two compression mechanisms is gradually increased to match the required output and stable operation is achieved. In this case, the output at the intermediate frequency when one compressor is operated and the output at the minimum frequency when two compressors are operated are the same or around it, and the output is discontinuous due to switching between one and two compressors. Preventing sex. If more output is required, increase the output to the maximum frequency for 2 melee. On the other hand, if a reduction in output is requested, it will operate in the opposite direction to continuously comply with the request. An example of a 7a-chart relating to this control method is shown in FIG.

また、第8図はメクロール等回転式圧m@構を運転した
場合の周波数に対する効率を示しているが、第2図との
関連を説明する。圧縮機構1台運転時は最小から中間2
までの周波数を使用しており第8図で示す比較的効率の
良い人の領域を意識している。またBの領域は比較的周
波数が高く効率が低い部分であり出力が必要な場合に@
り使用することにより省エネ性を向上させることとなる
。第1図にも示した通り圧縮機j式次始動を行うことに
より運転時間の平均化とともに連続的かつ負荷追従性も
良好に保つことができる。
Further, FIG. 8 shows the efficiency with respect to frequency when a rotary pressure m@ structure such as Meklor is operated, and the relationship with FIG. 2 will be explained. When operating one compression mechanism, from minimum to middle 2
We are conscious of the relatively efficient human area shown in Figure 8, which uses frequencies up to . In addition, the region B has a relatively high frequency and low efficiency, so when output is required, @
By using more energy, energy saving will be improved. As shown in FIG. 1, by starting the compressor one after another, it is possible to equalize the operating time and maintain continuity and good load followability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧縮機複数台を連続的に効率よく運転
できるのでg!、v4機全体として高効率となる。例え
ば、第8図において最高効率のA領域と最大周波数の効
率では約1011後の差が通常生じておoqv4磯の平
均負荷率が40〜60チであることを考えるとg!調横
機効率常に高く運転できることとなる。また、本発明の
制−運転によりてローテーシ、1ノ運転による圧18機
平均化(運転時間)も達成され、効率の高い連続制御と
なる等の効果がある。
According to the present invention, multiple compressors can be operated continuously and efficiently. , the overall efficiency of the v4 machine is high. For example, in Fig. 8, there is usually a difference of about 1011 between the highest efficiency region A and the maximum frequency efficiency, and considering that the average load factor of oqv4 iso is 40 to 60 g! This means that the horizontal adjustment machine can always be operated with high efficiency. In addition, by controlling the operation of the present invention, it is possible to achieve pressure averaging (operation time) of 18 machines by rotary operation and one-stroke operation, and there are effects such as highly efficient continuous control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すittIjgl運転の
フローチャートを示す。 第2図は圧縮機運転周波数と出力の関係線図、第8図は
圧縮機の特性図である。 l・・・圧Ia機区動機1台運転時の出力  2・・・
圧i#A機電!jb機2台運転時の出力  8・・・圧
縮機効率特性線。 弔1図 1 r1事[hlH4,。 1瞥運に時の51!力 2 圧mオ船tシ刈5 2セl軟時n出力 圧−1昧を動4(1転l液駁 圧處オ蛛勧き ′#r性糾ω
FIG. 1 shows a flowchart of the ittIjgl operation showing one embodiment of the present invention. FIG. 2 is a relationship diagram between compressor operating frequency and output, and FIG. 8 is a characteristic diagram of the compressor. l...Output when operating one pressure Ia unit 2...
Pressure i#A mechanical electricity! Output when two JB machines are operated 8...Compressor efficiency characteristic line. Condolence 1 Figure 1 r1 thing [hlH4,. 51 hours of luck at first glance! Force 2 Pressure m O ship t cutting 5 2 cells soft time n output pressure - 1

Claims (1)

【特許請求の範囲】 1、圧縮機、熱交換器、減圧機構、送風装置、これらを
収納する空気調和機において、前記圧縮機の駆動用電動
機と圧縮機構を複数台持ち、当該電動機をインバータ等
により個別に容量制御運転し、要求される負荷に応じイ
ンバータ駆動可能最小周波数から最高周波数手前の中間
周波数までを1台の圧縮機構用電動機を容量制御し、そ
れ以上の大きな負荷に対しては複数の圧縮機構用電動機
を同時にインバータ駆動可能最小周波数から最大周波数
の間で容量制御運転し微小負荷から大負荷まで連続的に
容量制御可能としたことを特徴とする空気調和機の容量
制御運転方法。 2、請求項1記載のものにおいて、運転始動時はいずれ
か1台の圧縮機構用電動機を始動させ、負荷に見合うよ
うしだいに運転周波数を増加させていき、負荷に対し容
量が多すぎるときは複数台の圧縮機構運転中は最初に始
動した電動機から先に停止させ、また全てを停止後、次
に始動する時は先に停止している電動機から始動させる
ことを特徴とする空気調和機の容量制御運転方法。
[Scope of Claims] 1. A compressor, a heat exchanger, a pressure reduction mechanism, a blower device, and an air conditioner housing these, which includes a plurality of electric motors and compression mechanisms for driving the compressor, and the electric motors are connected to an inverter, etc. The capacity of one compressor motor is controlled individually from the minimum frequency that can be driven by the inverter to an intermediate frequency before the maximum frequency according to the required load, and multiple motors are operated for larger loads. A capacity control operation method for an air conditioner, characterized in that the electric motor for the compression mechanism of is simultaneously operated under capacity control between the minimum frequency and the maximum frequency that can be driven by an inverter, thereby making it possible to continuously control the capacity from a minute load to a large load. 2. In the apparatus according to claim 1, when starting operation, one of the compressor mechanism electric motors is started, and the operating frequency is gradually increased to match the load, and when the capacity is too large for the load, An air conditioner characterized in that when a plurality of compressor mechanisms are in operation, the electric motor that started first is stopped first, and after all the compressors are stopped, when starting the next time, the electric motor that has stopped first is started. Capacity control operation method.
JP1084813A 1989-04-05 1989-04-05 Air conditioner capacity control operation method Pending JPH02267469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084813A JPH02267469A (en) 1989-04-05 1989-04-05 Air conditioner capacity control operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084813A JPH02267469A (en) 1989-04-05 1989-04-05 Air conditioner capacity control operation method

Publications (1)

Publication Number Publication Date
JPH02267469A true JPH02267469A (en) 1990-11-01

Family

ID=13841173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084813A Pending JPH02267469A (en) 1989-04-05 1989-04-05 Air conditioner capacity control operation method

Country Status (1)

Country Link
JP (1) JPH02267469A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271066A (en) * 1995-03-31 1996-10-18 Takasago Thermal Eng Co Ltd Number of refrigerator control device
JP2001272080A (en) * 2000-03-27 2001-10-05 Chofu Seisakusho Co Ltd Multi air conditioner
JP2011052897A (en) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp Heat storage control method of ice thermal storage unit
JP2011202888A (en) * 2010-03-25 2011-10-13 Daikin Industries Ltd Air conditioner
JP2011202891A (en) * 2010-03-25 2011-10-13 Daikin Industries Ltd Air conditioner
JP2015098976A (en) * 2013-11-19 2015-05-28 株式会社東芝 Air conditioner
EP3034966A1 (en) 2014-12-04 2016-06-22 Mitsubishi Electric Corporation Air-conditioning system
CN107255350A (en) * 2017-06-28 2017-10-17 广东美的暖通设备有限公司 The energy-saving control method and device of multiple on-line system, multiple on-line system
WO2020177307A1 (en) * 2019-03-04 2020-09-10 青岛海尔空调电子有限公司 Control method for air-cooled magnetic levitation unit, and air-cooled magnetic levitation unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271066A (en) * 1995-03-31 1996-10-18 Takasago Thermal Eng Co Ltd Number of refrigerator control device
JP2001272080A (en) * 2000-03-27 2001-10-05 Chofu Seisakusho Co Ltd Multi air conditioner
JP2011052897A (en) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp Heat storage control method of ice thermal storage unit
JP2011202888A (en) * 2010-03-25 2011-10-13 Daikin Industries Ltd Air conditioner
JP2011202891A (en) * 2010-03-25 2011-10-13 Daikin Industries Ltd Air conditioner
JP2015098976A (en) * 2013-11-19 2015-05-28 株式会社東芝 Air conditioner
EP3034966A1 (en) 2014-12-04 2016-06-22 Mitsubishi Electric Corporation Air-conditioning system
US10047992B2 (en) 2014-12-04 2018-08-14 Mitsubishi Electric Corporation Air-conditioning system using control of number of compressors based on predetermined frequency ranges
CN107255350A (en) * 2017-06-28 2017-10-17 广东美的暖通设备有限公司 The energy-saving control method and device of multiple on-line system, multiple on-line system
WO2020177307A1 (en) * 2019-03-04 2020-09-10 青岛海尔空调电子有限公司 Control method for air-cooled magnetic levitation unit, and air-cooled magnetic levitation unit

Similar Documents

Publication Publication Date Title
TWI279509B (en) System and method for capacity control in a multiple compressor chiller system
CN106121982B (en) Compressor control method and device, the convertible frequency air-conditioner of convertible frequency air-conditioner
JP5016894B2 (en) Air conditioning / power generation apparatus and control method thereof
JPH02267469A (en) Air conditioner capacity control operation method
JPS6349640Y2 (en)
JP5478959B2 (en) Grid interconnection system using gas heat pump air conditioner
JP2007010291A (en) Air conditioner
JP2003097873A (en) Operation method for refrigeration unit for land transportation, and refrigeration unit for land transportation
JP2007218480A (en) Gas heat pump air conditioner
CN104180573A (en) Cooling system
JP2000179911A (en) Air conditioner
JP2019120208A (en) Compression air storage power generation device and compressed-air storage power generation method
JP2001272115A (en) Cooling water flow control method used for heat exchanger
JP2007017026A (en) Gas heat pump type air conditioner with power generation function
JP3297356B2 (en) Air conditioner
JP4905293B2 (en) Engine-driven air conditioner
JP5576185B2 (en) Hybrid heat supply device
JPS6220461B2 (en)
JP3298471B2 (en) Storage type air conditioner
JPS59211790A (en) Refrigerating plant
JPH0623879Y2 (en) Air conditioner
JPH07310959A (en) Air conditioner
JP3782478B2 (en) Compressor preheating device
JPS6315715Y2 (en)
JPS6262276B2 (en)