JPH02263937A - Manufacture of rare earth magnetic alloy - Google Patents
Manufacture of rare earth magnetic alloyInfo
- Publication number
- JPH02263937A JPH02263937A JP1084952A JP8495289A JPH02263937A JP H02263937 A JPH02263937 A JP H02263937A JP 1084952 A JP1084952 A JP 1084952A JP 8495289 A JP8495289 A JP 8495289A JP H02263937 A JPH02263937 A JP H02263937A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- alloy
- cooling
- solution treatment
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 8
- 229910001004 magnetic alloy Inorganic materials 0.000 title 1
- 238000001816 cooling Methods 0.000 claims abstract description 19
- 230000032683 aging Effects 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 239000000956 alloy Substances 0.000 claims abstract 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract 6
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 abstract description 9
- 238000005245 sintering Methods 0.000 abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 abstract description 2
- 229910002549 Fe–Cu Inorganic materials 0.000 abstract 1
- 230000001276 controlling effect Effects 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000009740 moulding (composite fabrication) Methods 0.000 abstract 1
- 238000010298 pulverizing process Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/086—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、希土類磁石材の製造方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing rare earth magnet materials.
希土類元素Rとコバルトとからなる希土類磁石は、特に
小型化の要求される機器や強磁界の必要な機器に使用さ
れている。最近はますます高性能磁石が求められ、時に
薄形化や逆磁界がかかるもの、高温度にさらされる機器
には高い保磁力、Hcをもつ磁石が要求されている。例
えば通信衛星用進行波管、航空機用回転機である。今ま
ではRCo。Rare earth magnets made of the rare earth element R and cobalt are used particularly in equipment that requires miniaturization and equipment that requires a strong magnetic field. Recently, there has been an increasing demand for high-performance magnets, and magnets with high coercive force and Hc are required for devices that are sometimes made thinner, subjected to reverse magnetic fields, and exposed to high temperatures. Examples include traveling wave tubes for communication satellites and rotary machines for aircraft. Until now, it was RCo.
を使用していた。IHcは高いがエネルギー積(B)I
)、□〜18 MGOeと低く、小型化には十分対処で
きない。したがって高いHHc、 (BH)sawのJ
Co+7系磁石を使用する必要がある。was using. Although IHc is high, the energy product (B)I
), □ ~ 18 MGOe, which is low and cannot sufficiently cope with miniaturization. Therefore high HHc, J of (BH)saw
It is necessary to use a Co+7 magnet.
第1図にR,Co、、系磁石の一般的な製造工程を示す
。Figure 1 shows a general manufacturing process for R, Co, and magnets.
その製造方法は、目標組成となるように希土類R,Co
、 Fe、 Cu、 Zrの各元素を調合し、次でこの
混合物を溶解してインゴットを得る。このインゴットを
粗粉砕、微粉砕して原料粉とする。この原料粉を5〜1
5KOe程度の磁場中でプレス成形し、成形物を115
0〜1230℃の温度で1〜2時間程度焼結する。その
後、1100〜1200℃で1時間以上溶体化処理を行
なう。その後急冷する。溶体化処理後750〜950℃
5時間以上の時効して、さらに1〜b
〔発明が解決しようとする問題点〕
上記の製造方法で希土類磁石を製造した場合、特に溶体
化処理後、急冷(2,2℃/5eC)シた場合、第1図
より rHc 10 koe近傍しか得られない。また
特開公昭58−136757にある1℃/sec以上の
速度で製造すると、保磁力、HclO〜30 kOeの
巾で磁気特性がバラツキが大きく、品質上問題である。The manufacturing method uses rare earths R, Co, etc. to achieve the target composition.
, Fe, Cu, and Zr are mixed, and then this mixture is melted to obtain an ingot. This ingot is coarsely crushed and finely crushed to obtain raw material powder. This raw material powder is 5 to 1
Press molding is performed in a magnetic field of about 5 KOe, and the molded product is
Sintering is performed at a temperature of 0 to 1230°C for about 1 to 2 hours. Thereafter, solution treatment is performed at 1100 to 1200°C for 1 hour or more. Then cool quickly. 750-950℃ after solution treatment
After aging for 5 hours or more, further In this case, only the vicinity of rHc 10 koe can be obtained from FIG. Furthermore, when manufactured at a speed of 1° C./sec or higher as described in Japanese Patent Application Laid-Open No. 58-136757, the magnetic properties vary widely in the range of coercive force and HClO to 30 kOe, which is a quality problem.
本発明の目的は、このような特性のバラツキを小さくし
、かつ保磁力+Hc25〜30kOeと高性能な希土類
磁石を製造する方法を提供するものである。An object of the present invention is to provide a method for manufacturing a high-performance rare earth magnet with a coercive force +Hc of 25 to 30 kOe while reducing such variations in characteristics.
本発明は、製造工程中の溶体化処理後の冷却速度を0.
5〜1.5℃/secで制御冷却し、最適時効処理を施
し、高、Hc化することを特徴とする希土類磁石の製造
方法である。The present invention reduces the cooling rate after solution treatment during the manufacturing process to 0.
This is a method for manufacturing rare earth magnets, which is characterized by controlling cooling at a rate of 5 to 1.5° C./sec, performing optimal aging treatment, and increasing Hc.
本発明において溶体化処理後の冷却速度と、Hcの関係
を第1図に示した。第1図において冷却速度0.5〜1
.5℃/secの間で25kOe以上が得られ、特に1
.0℃/secで3QkOeが得られる。材質5I12
CO+7、(Smo、s Ceo、5)zco17 、
CegCoHにおいても冷却速度0.5〜1.5℃/s
ecで、Hc25kOe以上を得る。参考に今までの溶
体化の冷却速度、急冷と云う2.2℃/sec以上では
IQ kOe前後しか得られてない。なお組成R(GO
+−5−b−cFe、CubMc)wにおける各元素に
ついては希土類元素の総量に対する他元素の総量の比2
が6.5未満では、Hcが低下すると共に、飽和磁化が
低下するためにBrも低下する。また2が8.7越える
と、Hcが急激に低下するため、6.7≦z≦8.7が
適当である。In the present invention, the relationship between the cooling rate after solution treatment and Hc is shown in FIG. In Figure 1, the cooling rate is 0.5 to 1.
.. More than 25 kOe can be obtained at 5°C/sec, especially 1
.. 3QkOe is obtained at 0°C/sec. Material 5I12
CO+7, (Smo, s CEO, 5)zco17,
Even in CegCoH, the cooling rate is 0.5-1.5℃/s
ec to obtain Hc of 25kOe or more. For reference, at the cooling rate of solution treatment up to now, which is called rapid cooling, of 2.2° C./sec or more, an IQ of only around kOe can be obtained. Note that the composition R (GO
For each element in +-5-b-cFe, CubMc)w, the ratio of the total amount of other elements to the total amount of rare earth elements is 2
When is less than 6.5, Hc decreases and Br also decreases due to a decrease in saturation magnetization. Furthermore, if 2 exceeds 8.7, Hc decreases rapidly, so 6.7≦z≦8.7 is appropriate.
Feは、飽和磁化を増加させてBrを増加させる効果が
あるが、aが0.05未満ではその効果が少なく、0.
35を越えると、Hcが低下するため0.05≦a≦0
.35が適当である。Fe has the effect of increasing saturation magnetization and increasing Br, but this effect is small when a is less than 0.05;
If it exceeds 35, Hc decreases, so 0.05≦a≦0
.. 35 is appropriate.
Cuは、2相分離反応を起こさせるために必要な元素で
あり、IHcを増加させる効果がある。しかしながら、
bが0.03未満では2相分離反応が十分に進行しない
ために磁石として十分な、Hcが得られず、またbが0
.15を越えると飽和磁化が低下してBrが低下するた
め、0.03≦b≦0.15が適当である。Cu is an element necessary for causing a two-phase separation reaction, and has the effect of increasing IHc. however,
If b is less than 0.03, the two-phase separation reaction will not proceed sufficiently, and sufficient Hc for a magnet will not be obtained, and if b is 0.
.. If it exceeds 15, the saturation magnetization decreases and Br decreases, so 0.03≦b≦0.15 is appropriate.
MとしてTi、 Zr、 Hf、 Nbの少なくとも1
種を添加することにより1.Hcを増加させる効果があ
る。しかしながら、Cが0.005未満ではこの効果が
顕著に現われず、また0、05を越えると逆に、Hcが
急激に減少するため、0.005≦X≦0.05が適当
である。M is at least one of Ti, Zr, Hf, and Nb;
By adding seeds 1. It has the effect of increasing Hc. However, if C is less than 0.005, this effect will not be noticeable, and if C exceeds 0.05, Hc will decrease rapidly, so 0.005≦X≦0.05 is suitable.
以下、実施例用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using Examples.
実施例1
先ず、組成Sm(Cobst、 Feo、zcuo、
ossZro、 624) 8.3になるように溶解し
、その後、30メツシユ以下に粗粉砕した。その粗粉砕
をジェットミルで微粉砕して平均粒度3.7μとした。Example 1 First, the composition Sm (Cobst, Feo, zcuo,
ossZro, 624) It was dissolved to a particle size of 8.3, and then coarsely ground to 30 mesh or less. The coarsely ground powder was finely ground using a jet mill to give an average particle size of 3.7μ.
この原料粉を磁場と垂直に成形した。焼結を1200℃
で1時間行なった。溶体化処理を1180℃で2時間施
した。その後第2図に示した0、 5〜1.5℃/se
cで500℃まで制御急冷した。その試料の時効処理を
830℃で2時間保持、その後1℃/分で300℃まで
冷却した。この時効を2回繰返した。得られた試料を磁
気測定した結果、Br : 10800 G mHc
: 95000e rHc : 270000e、
(BH)、、、 28.5 MGOeを得た。This raw material powder was molded perpendicular to the magnetic field. Sintering at 1200℃
I went there for an hour. Solution treatment was performed at 1180° C. for 2 hours. After that, 0, 5~1.5℃/se shown in Figure 2
Controlled quenching was performed at c to 500°C. The sample was aged at 830°C for 2 hours and then cooled to 300°C at 1°C/min. This aging process was repeated twice. As a result of magnetic measurement of the obtained sample, Br: 10800 G mHc
: 95000e rHc : 270000e,
(BH)...28.5 MGOe was obtained.
実施例2
組成Sm6.5ceo、 s (Cobmt Fea、
zcuo、 osJro、 025) ?、 ?を実
施例1と同様にして原料粉を作成した。その原料粉を磁
場と平行に成形し、焼結を1170“Cで2時間施し後
、溶体化処理を1140℃で1時間行ないその後0.5
〜1.5℃/secで500℃まで制御冷却した。その
試料を740℃で2時間保持して1.0℃/分で300
℃まで冷却した。その試料を再び730℃で24時間保
持後0.6℃/分で300℃まで冷却の2段時効を施し
た。その磁気特性はBr96000e 、 sHc
85000e rHc 255000e(BH) s
ex 22.5 MGOeを得た。Example 2 Composition Sm6.5ceo, s (Cobmt Fea,
zcuo, osJro, 025)? , ? A raw material powder was prepared in the same manner as in Example 1. The raw material powder was molded parallel to the magnetic field, sintered at 1170"C for 2 hours, and then solution treated at 1140"C for 1 hour.
Controlled cooling was performed to 500°C at ~1.5°C/sec. The sample was held at 740°C for 2 hours and then heated at 1.0°C/min for 300°C.
Cooled to ℃. The sample was again held at 730°C for 24 hours and then subjected to two-stage aging by cooling to 300°C at a rate of 0.6°C/min. Its magnetic properties are Br96000e, sHc
85000e rHc 255000e(BH)s
ex 22.5 MGOe was obtained.
実施例3
組成Ce(CobaLFeo、 zcuo、 ollZ
ro、 ago) ?、 oを実施例1と同様にして原
料粉を作成した。その原料粉を磁場と垂直に成形し、焼
結を1140℃で2時間施し、溶体化処理を1120℃
で1時間行ない、その後0.5〜1.5℃/secで5
00℃まで制御冷却した。Example 3 Composition Ce (CobaLFeo, zcuo, ollZ
ro, ago)? , o in the same manner as in Example 1 to prepare raw material powder. The raw material powder was molded perpendicular to the magnetic field, sintered at 1140°C for 2 hours, and solution treated at 1120°C.
for 1 hour, then at 0.5-1.5℃/sec for 5
Controlled cooling was carried out to 00°C.
その試料を730℃で4時間保持して300℃まで1.
0℃/分で冷却後、次に720℃で11時間保持後0,
5℃/分で300℃まで冷却した2段時効を施した。そ
の試料の磁気特性はBr9500 Gm Hc8000
0e IHc 250000e (BH)、、、 22
MGOeを得た。The sample was held at 730°C for 4 hours and then heated to 300°C.
After cooling at 0°C/min and then holding at 720°C for 11 hours,
Two-stage aging was performed by cooling to 300°C at a rate of 5°C/min. The magnetic properties of the sample are Br9500 Gm Hc8000
0e IHc 250000e (BH),,, 22
Obtained MGOe.
本発明によれば従来溶体化後急冷(2,2℃/sec以
上)で、Hc 10 kOeであったが溶体化後の冷却
を0.5〜1.5℃/secと制御するとr Hc 2
5 kOe以上が得られ最高で30KOeを達成できる
。According to the present invention, Hc 10 kOe was obtained by rapid cooling after solution treatment (at least 2.2°C/sec), but when cooling after solutionization is controlled at 0.5 to 1.5°C/sec, r Hc 2
More than 5 kOe can be obtained and a maximum of 30 KOe can be achieved.
第2図は本発明にか・かわる溶体化後の冷却速度と保磁
力I Heの関係を示したものである。FIG. 2 shows the relationship between the cooling rate after solution treatment and the coercive force I He according to the present invention.
Claims (1)
Cu_bM_c)_z(ただしRは希土類元素の少なく
とも一種または2種以上の組合せ、MはTi,Zr,H
f,Nbの少なくとも一種、また0.05≦a≦0.3
5、0.03≦b≦0.15、0.005≦c≦0.0
5、6.5≦z≦8.7)で示される組成を有する合金
を粉砕、成形、焼結、溶体化、時効の各工程から磁石化
する製法において溶体化処理を1100℃〜1200℃
の温度範囲で少なくとも1時間以上保持し、その後50
0℃以下まで0.5〜1.5℃/sec間の冷却速度で
冷却し、時効することにより_IHcを25kOe以上
得ることを特徴とする希土類磁石合金の製造方法。General formula R(Co_1_-_a_-_b_-_cFe_a
Cu_bM_c)_z (where R is at least one rare earth element or a combination of two or more, M is Ti, Zr, H
at least one of f, Nb, and 0.05≦a≦0.3
5, 0.03≦b≦0.15, 0.005≦c≦0.0
5, 6.5≦z≦8.7) In a production method in which an alloy having a composition shown by
temperature range for at least 1 hour, then 50℃
1. A method for producing a rare earth magnet alloy, comprising cooling to 0° C. or lower at a cooling rate of 0.5 to 1.5° C./sec and aging to obtain _IHc of 25 kOe or more.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1084952A JPH02263937A (en) | 1989-04-04 | 1989-04-04 | Manufacture of rare earth magnetic alloy |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1084952A JPH02263937A (en) | 1989-04-04 | 1989-04-04 | Manufacture of rare earth magnetic alloy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02263937A true JPH02263937A (en) | 1990-10-26 |
Family
ID=13844971
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1084952A Pending JPH02263937A (en) | 1989-04-04 | 1989-04-04 | Manufacture of rare earth magnetic alloy |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02263937A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5173245A (en) * | 1991-02-01 | 1992-12-22 | Inco Limited | Tuyere injector |
| WO1997035331A1 (en) * | 1996-03-18 | 1997-09-25 | Seiko Epson Corporation | Process for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet |
-
1989
- 1989-04-04 JP JP1084952A patent/JPH02263937A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5173245A (en) * | 1991-02-01 | 1992-12-22 | Inco Limited | Tuyere injector |
| WO1997035331A1 (en) * | 1996-03-18 | 1997-09-25 | Seiko Epson Corporation | Process for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet |
| US6001272A (en) * | 1996-03-18 | 1999-12-14 | Seiko Epson Corporation | Method for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPS6187825A (en) | Manufacture of permanent magnet material | |
| JPH06340902A (en) | Production of sintered rare earth base permanent magnet | |
| JP7515233B2 (en) | Method for producing PrNd-Fe-B sintered magnetic material | |
| JPH10106875A (en) | Manufacturing method of rare-earth magnet | |
| JPH01219143A (en) | Sintered permanent magnet material and its production | |
| JPS6181606A (en) | Preparation of rare earth magnet | |
| JPS6181603A (en) | Preparation of rare earth magnet | |
| JPH02263937A (en) | Manufacture of rare earth magnetic alloy | |
| JPH06128610A (en) | Production of anisotropic rare-earth alloy powder for permanent magnet | |
| JPS6181607A (en) | Preparation of rare earth magnet | |
| JPH08181009A (en) | Permanent magnet and its manufacturing method | |
| JPH0685369B2 (en) | Permanent magnet manufacturing method | |
| JPH1092617A (en) | Permanent magnet and its manufacture | |
| DE3752160T2 (en) | Magnetic alloy and manufacturing process | |
| JPS6181604A (en) | Preparation of rare earth magnet | |
| JPH05144621A (en) | Rare earth element-bonded magnet | |
| JP3222919B2 (en) | Method for producing nitride-based magnetic material | |
| JP3227613B2 (en) | Manufacturing method of powder for rare earth sintered magnet | |
| JP7695309B2 (en) | Rare earth cobalt permanent magnet, manufacturing method thereof, and device | |
| JPH0328503B2 (en) | ||
| JPH0328504B2 (en) | ||
| JPH02259038A (en) | Rare earth magnetic alloy | |
| JPH06112027A (en) | Manufacture of high-quality magnet material | |
| JP2677498B2 (en) | Method for manufacturing iron-rare earth-nitrogen permanent magnet material | |
| JPH0362775B2 (en) |