JPH02275765A - Production of sintered aluminum nitride - Google Patents
Production of sintered aluminum nitrideInfo
- Publication number
- JPH02275765A JPH02275765A JP1095385A JP9538589A JPH02275765A JP H02275765 A JPH02275765 A JP H02275765A JP 1095385 A JP1095385 A JP 1095385A JP 9538589 A JP9538589 A JP 9538589A JP H02275765 A JPH02275765 A JP H02275765A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- weight
- aluminum nitride
- parts
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000005245 sintering Methods 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 23
- 239000012298 atmosphere Substances 0.000 claims abstract description 10
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 8
- 230000001590 oxidative effect Effects 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052796 boron Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 3
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- 150000001875 compounds Chemical class 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- 239000011701 zinc Substances 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 7
- 239000011574 phosphorus Substances 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052987 metal hydride Inorganic materials 0.000 claims description 6
- 150000004681 metal hydrides Chemical class 0.000 claims description 6
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 229910021332 silicide Inorganic materials 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 4
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011812 mixed powder Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 18
- 239000000758 substrate Substances 0.000 abstract description 18
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract 2
- 230000003746 surface roughness Effects 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- 238000007606 doctor blade method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000007088 Archimedes method Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- NJSUFZNXBBXAAC-UHFFFAOYSA-N ethanol;toluene Chemical compound CCO.CC1=CC=CC=C1 NJSUFZNXBBXAAC-UHFFFAOYSA-N 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- -1 111111 element Chemical compound 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は窒化アルミニウム焼結体の製造方法に関し、特
に産業上の要求の高い熱伝導率の高い窒化アルミニウム
焼結体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an aluminum nitride sintered body, and particularly to a method for producing an aluminum nitride sintered body having high thermal conductivity, which is in high demand in industry.
[従来の技術]
高熱伝導率/IN焼結体の用途は具体的には半導体用基
鈑材料を代表例として絶縁材料として使われる。[Prior Art] High thermal conductivity/IN sintered bodies are specifically used as insulating materials, with semiconductor substrate materials being a typical example.
半導体の高集積化、高速化、高出力化などの動向に伴っ
て、以下のような問題がクローズアップされてきている
。すなわち、
■ 半導体チップの発熱を如何に効率よく系外に逃すか
。With the trend toward higher integration, higher speed, and higher output of semiconductors, the following problems have been brought into focus. In other words, ■ How to efficiently release the heat generated by the semiconductor chip to the outside of the system.
■ 動作速度の向上につれて基板またはパッケージ部分
の信号の遅延が問題となる。■ As operating speeds increase, signal delays on the board or package become a problem.
■ チップサイズの増大によりチップと基板との熱膨張
差が太き(なり、接合の信頼性が低下する。■ As the chip size increases, the difference in thermal expansion between the chip and the substrate increases, reducing the reliability of the bonding.
■ 高電力チップでは使用電圧がますます増大しており
、基板の絶縁破壊が問題となりつつある。■ As the voltages used in high-power chips continue to increase, dielectric breakdown of substrates is becoming a problem.
半導体が抱えるこのような問題を解決し得る、従来のア
ルミナに代る基板、パッケージ用セラミックスとしては
、
■ 熱伝導率が高い。Ceramics for substrates and packages that can replace conventional alumina and can solve these problems faced by semiconductors include: ■ High thermal conductivity.
■ 電気絶縁性が優れる。■ Excellent electrical insulation.
■ 高周波特性が良い。(低誘電率、低誘電損失)■
熱膨張率がSLまたはGaAsに近い。■ Good high frequency characteristics. (Low dielectric constant, low dielectric loss)■
The coefficient of thermal expansion is close to SL or GaAs.
■ 化学的に安定である。■ Chemically stable.
■ 機械的な強度が大きい。■ High mechanical strength.
■ 回路形成が容易である。■ Circuit formation is easy.
■ 気密封止ができる。■ Can be airtightly sealed.
などの特性を有することが望ましい。It is desirable to have the following characteristics.
このような特性を基本的に有するものとしてAl2Nが
有望視されているわけである。Al2N is considered to be promising as a material basically having such characteristics.
しかし、具体的にA42Nセラミツクスを適用しようと
すると、以下の最低限特性項目を満たす必要がある。す
なわち、
(1)焼結体が均一で緻密′であること。機械的強度が
大なること。相対密度が95%以上あることが望ましい
。However, when A42N ceramics is specifically applied, it is necessary to satisfy the following minimum characteristics. That is, (1) The sintered body is uniform and dense. High mechanical strength. It is desirable that the relative density is 95% or more.
(2)熱伝導率ができるだけ高いこと。(2) Thermal conductivity should be as high as possible.
(3)体積抵抗が高いこと。1012Ω・cm以上必要
。(3) High volume resistance. 1012Ω・cm or more is required.
(4)焼結体表面が平滑・平坦であること。(4) The surface of the sintered body is smooth and flat.
上記のうち、(4)の項目は必須ではないといいながら
、大量生産で基板を製造する際には、加工を省略し製造
コストを下げるという意味があり、製造技術上は必須で
ある。具体的には、焼き放して表面粗さがRaで0.5
μm以下、反りが0.1 mm/ 50 mm以下であ
ることが望ましい。Among the above items, item (4) is said to be not essential, but it is essential in terms of manufacturing technology since it means omitting processing and lowering manufacturing costs when manufacturing substrates in mass production. Specifically, the surface roughness is 0.5 in Ra after baking.
It is desirable that the warpage is 0.1 mm/50 mm or less.
従来の技術では上記項目の(1)、(2ンを満足させる
ため、特公昭46−41003に示されるように、Y2
O3を焼結助剤として用いたり、または特公昭58−4
9510に示されるように、Cab、Bad、SrOな
どを焼結助剤として用い、熱伝導率が100W/m、に
程度のセラミクスが得られている。しかし、使用者側か
ら、用途によって更に高い熱伝導特性を有する焼結体が
要求されている。In the conventional technology, in order to satisfy the above items (1) and (2), as shown in Japanese Patent Publication No. 46-41003, Y2
O3 is used as a sintering aid, or
As shown in No. 9510, ceramics with a thermal conductivity of about 100 W/m have been obtained using Cab, Bad, SrO, etc. as sintering aids. However, users are demanding sintered bodies with even higher thermal conductivity properties depending on the intended use.
これまで、高熱伝導率AffN焼結体を得る方法として
は、
(i)AI2N粉末を非酸化性雰囲気中1600℃以上
で熱処理し、粉末の酸素含有量を低減した後焼結する方
法、(特開昭6l−201(ii)熱処理後のAρN粉
末を1800〜2300℃、非酸化性雰囲気下で20
k g/crn”以上の圧力下でホットプレスし、最高
210W/m、にの熱伝導率を得る方法(特開昭61−
201668)
がある。Up to now, methods for obtaining high thermal conductivity AffN sintered bodies include (i) a method in which AI2N powder is heat treated at 1600°C or higher in a non-oxidizing atmosphere to reduce the oxygen content of the powder, and then sintered; Kaisho 6l-201(ii) AρN powder after heat treatment was heated at 1800 to 2300°C in a non-oxidizing atmosphere for 20
A method of hot-pressing under a pressure of 210 W/m or higher (Japanese Unexamined Patent Application Publication No. 1983-1989)
201668).
しかし、これらの方法はAI2.N表層の薄い酸素膜を
取り除くため、Al2Nの難焼結性が顕著に現われ、焼
結助剤を添加しても生産性が低く、高価なホットプレス
によらないと所望の焼結体が得られず、大量生産向きで
はない。However, these methods are limited to AI2. Since the thin oxygen film on the N surface layer is removed, the difficulty of sintering of Al2N becomes noticeable, and even if a sintering aid is added, the productivity is low, and the desired sintered body cannot be obtained without expensive hot pressing. It is not suitable for mass production.
また、窯業協会誌、第2.5回窯業基礎討論会、1DO
3,3HO3(昭和62年1月)ではAf2N成形体を
還元雰囲気中、1850〜1950℃で2〜96hr焼
結することにより、高熱伝導率のAl2N焼結体を得る
方法を示しているが、これとて高熱伝導性に優れたAR
N基板となり得る焼結体が得られない。In addition, the journal of the Ceramics Industry Association, the 2.5th Ceramics Industry Basics Forum, 1DO
3,3HO3 (January 1988) describes a method of obtaining an Al2N sintered body with high thermal conductivity by sintering an Af2N compact at 1850 to 1950°C for 2 to 96 hours in a reducing atmosphere. This is an AR with excellent thermal conductivity.
A sintered body that can be used as an N substrate cannot be obtained.
一方、特開昭62−52181に、Al2Nに焼結助剤
として炭素換算で0.2〜3.4重量部の炭素、酸化イ
ツトリウム0.1〜10重量部を含有させた成形体を1
600〜2100℃で焼結することを特徴とするAl2
N焼結体の製造方法が開示されている。しかし、この発
明は以下の点に全く触れておらずまた、以下の問題のた
めAβN基板の製造方法として満足なものとはいえなか
った。すなわち、
(1)焼結体密度が低いこと。On the other hand, in JP-A No. 62-52181, a molded body made of Al2N containing 0.2 to 3.4 parts by weight of carbon and 0.1 to 10 parts by weight of yttrium oxide as sintering aids in Al2N was disclosed.
Al2 characterized by being sintered at 600-2100°C
A method for manufacturing a N sintered body is disclosed. However, this invention does not address the following points at all, and due to the following problems, it could not be said to be a satisfactory method for manufacturing an AβN substrate. That is, (1) The density of the sintered body is low.
(2)電気絶縁特性が得られない。(2) Electrical insulation properties cannot be obtained.
(3)着色・焼結ムラが発生する。(3) Uneven coloring and sintering occur.
また、特開昭61−127667号、61−21976
3号にはAl2N、Y203 、Cを助剤として添加し
た技術が開示されているが、上述と同様の理由でAl2
N基扱としては適さない。また、特開昭63−2367
65についても同じである。Also, JP-A-61-127667, 61-21976
No. 3 discloses a technique in which Al2N, Y203, and C are added as auxiliaries;
Not suitable for N-group treatment. Also, JP-A No. 63-2367
The same applies to 65.
[発明が解決しようとする課題] 以上の従来の方法による焼結体では、 (a)熱伝導率が不十分である。[Problem to be solved by the invention] In the sintered body produced by the above conventional method, (a) Thermal conductivity is insufficient.
(b)ホットプレス等設備コストが高く、生産性の低い
炉でしか焼結できない。(b) Sintering can only be done in a furnace with high equipment costs and low productivity, such as a hot press.
(c)電気絶縁性がない。(c) No electrical insulation.
(d)安定、した品質が得られない。(d) Stable quality cannot be obtained.
といった問題点があった。このようにこれまでの発明は
前記(a)〜(d)の4項目をすべて満足するものとは
言い難かった。There were some problems. As described above, it is difficult to say that the previous inventions satisfy all of the four items (a) to (d) above.
従って、このような点を改善するため、新たな高熱伝導
率12N焼結体の製造方法の開発が望まれていた。Therefore, in order to improve these points, it has been desired to develop a new method for producing a 12N sintered body with high thermal conductivity.
本発明は前記(a)〜(d)の4項目の問題点を全て満
たすAl2N焼結体の高熱伝導化方法を提供することを
目的とするものである。すなわち、緻密で熱伝導率およ
び電気抵抗が高く、電気絶縁基板に代表される材料とし
て好適な性能を有する安価なARN焼結体の製造方法を
提供することにある。The object of the present invention is to provide a method for increasing the thermal conductivity of an Al2N sintered body that satisfies all of the four problems (a) to (d) above. That is, the object of the present invention is to provide a method for producing an inexpensive ARN sintered body that is dense, has high thermal conductivity and electrical resistance, and has properties suitable as a material typified by electrically insulating substrates.
[課題を解決するための手段1
本発明者らは、以上述べた従来技術の問題点に鑑み、窒
化アルミニウム焼結体の熱伝導率を向上し、基板として
必要な特性を具備させるべ(研究を重ねた結果、以下に
示す新規事項を発見し本発明に至ったものである。[Means for Solving the Problems 1] In view of the problems of the prior art described above, the present inventors have conducted research to improve the thermal conductivity of an aluminum nitride sintered body and provide it with the characteristics necessary as a substrate. As a result of repeated research, the following novel matters were discovered, leading to the present invention.
すなわち、ARN粉末にREMおよび金属リチウム、金
属ベリリウム、金属マグネシウム、硼素、珪素、硫黄、
燐、砒素および金属亜鉛の群より選ばれた単体の1種ま
たは2種以上を添加したシート成形体を非酸化性雰囲気
中で焼結したところ、熱伝導率の高いセラミックス焼結
体を得た。That is, REM and metallic lithium, metallic beryllium, metallic magnesium, boron, silicon, sulfur,
When a sheet molded body to which one or more elements selected from the group of phosphorus, arsenic, and metal zinc were added was sintered in a non-oxidizing atmosphere, a ceramic sintered body with high thermal conductivity was obtained. .
ここにREMとはイツトリウム、スカンジウムおよびラ
ンタノイドを相称する。REM here refers to yttrium, scandium, and lanthanoids.
上記焼結体は前記絶縁基板として要求される上記(a)
〜(d)の要求を全て満足するものであった。The above-mentioned sintered body is the above-mentioned (a) required as the insulating substrate.
All of the requirements of (d) to (d) were satisfied.
この事実に基づき、上記要求の最適添加範囲、他の元素
および化合物について広範囲な検討を行った結果、本発
明を完成した。添加元素、またはその化合物およびその
添加範囲を限定して選択すれば、相対密度が95%以上
、熱伝導率が160W/m、、 K以上、焼き上がりの
表面の粗さがRaで0.5 u m以下、体積抵抗が1
012Ω・cm以上で、焼きムラのない窒化アルミニウ
ム高熱伝導性・電気絶縁性焼結体が得られる。Based on this fact, the present invention was completed as a result of extensive studies regarding the optimal addition range, other elements, and compounds that meet the above requirements. If the additive element or its compound and its addition range are selected in a limited manner, the relative density is 95% or more, the thermal conductivity is 160 W/m or more, the baked surface roughness is Ra 0.5. um or less, volume resistance is 1
0.012 Ω·cm or more, a highly thermally conductive and electrically insulating sintered body of aluminum nitride with no uneven firing can be obtained.
上記焼結体の製造方法は以下の通りである。The method for manufacturing the above sintered body is as follows.
すなわち、窒化アルミニウム粉末100重量部に次の(
イ)〜(ホ)の群から選ばれた成分の組合わせからなる
焼結助剤を添加し、これを成形し、得られた成形体を非
酸化性雰囲気中で1400〜2000℃の温度範囲で焼
成することにより達成することができる。これらの成分
の群は次の通りである。That is, the following (
Add a sintering aid consisting of a combination of components selected from the group of (a) to (e), mold this, and mold the obtained molded product in a non-oxidizing atmosphere at a temperature range of 1400 to 2000°C. This can be achieved by firing. The groups of these ingredients are:
(イ)イツトリウム、スカンジウムおよびランクノイド
の酸化物の群から選ばれた1種または2種以上を酸化物
に換算して0.05〜5屯量部
(ロ)金属リチウム、金属ベリリウム、金属マグネシウ
ム、111111素、珪素、硫黄、燐、砒素および金属
亜鉛の群より選ばれた単体の1種または2種以上を0.
01〜5重量部
(ハ)アルカリ金属の酸化物および2000°C以下の
加熱により酸化物となるアルカリ金属化合物並びに硼素
、珪素、ゲルマニウム、砒素および燐の酸化物および2
000℃以下の加熱によりこれらの酸化物となる化合物
の群から選ばれた1種または2種以上を酸化物に換算し
て0.01〜5重量部
(ニ)金属硼化物、金属窒化物、金属燐化物、金属硫化
物、金属珪化物、および金属水素化物の群より選ばれる
化合物の群より選ばれた化合物のうち1f!または2種
以上を0.01〜5重量部
(ホ)アルミニウム、ガリウム、インジウム、タングス
テン、ビスマス、鉛、アンチモン、カドミウム、亜鉛の
酸化物および2000°C以下の加熱によりこれらの酸
化物となる化合物の1種または2種以上を酸化物に換算
して0.01〜2重量部
上記の成分の群の組合わせは次の通りである。(a) 0.05 to 5 parts by volume of one or more selected from the group of oxides of yttrium, scandium, and ranknoids (b) Metallic lithium, metal beryllium, metal magnesium , 111111 element, silicon, sulfur, phosphorus, arsenic, and metal zinc.
01 to 5 parts by weight (c) Alkali metal oxides and alkali metal compounds that become oxides when heated at 2000°C or less, and oxides of boron, silicon, germanium, arsenic, and phosphorus, and 2
0.01 to 5 parts by weight in terms of oxide of one or more selected from the group of compounds that become these oxides when heated at 000°C or less (d) Metal boride, metal nitride, 1f of compounds selected from the group of compounds selected from the group of metal phosphides, metal sulfides, metal silicides, and metal hydrides! or 0.01 to 5 parts by weight of two or more (e) Oxides of aluminum, gallium, indium, tungsten, bismuth, lead, antimony, cadmium, and zinc, and compounds that become these oxides when heated at 2000°C or less 0.01 to 2 parts by weight in terms of oxide of one or more of the above.The combinations of the above component groups are as follows.
■ (イ)+(ロ)
■ (イ)+(ロ)+(ハ)
■ Cイ)+(ロ)+(ニ)
■ (イ +(ロ)+(ハ)+(ニ)
■ (イ +(ロ)+(ホ)
■ (イ +0口)+(ボ)+(ハ)
■ (イ +(ロ)+(ホ)+(ニ)
■ (イ +(ロ)+(ホ)+(ハ)+(ニ)〔作用1
これらの焼結助剤の複合添加が有効であるメカニズムに
ついては十分解明されてはいないが、以下のように考え
られる。■ (a) + (b) ■ (a) + (b) + (c) ■ C a) + (b) + (d) ■ (a + (b) + (c) + (d) ■ (a) + (B) + (E) ■ (A +0) + (Bo) + (C) ■ (A + (B) + (E) + (D) ■ (A + (B) + (E) + ( c) + (d) [Effect 1 The mechanism by which the combined addition of these sintering aids is effective has not been fully elucidated, but is thought to be as follows.
Al2Nの表層には、完全なAβ203にはなっていな
いくともある種のへβ酸化物が存在している。この酸化
物を仮にAJ2203とすると、加えた上記(イ)成分
、例えばY203との間に液相xAj220a ・、Y
Y20aを生成する。次に、(ロ)成分である金属リチ
ウム、金属ベリリウム、金属マグネシウム、硼素、珪素
、硫黄、燐、砒素、金属亜鉛は、いずれも強い還元剤で
あり、窒化アルミニウム中の不純物酸素と反応し、これ
を除去する。すなわち、液相の生成から粒成長に至る段
階で、へ9.N表面の酸素は上記(ロ)成分により還元
され減量しながらAl2N粒を浄化していく。On the surface layer of Al2N, there is at least some type of heb oxide, which is not a complete Aβ203. Assuming that this oxide is AJ2203, a liquid phase xAj220a ・, Y
Generate Y20a. Next, component (b) metal lithium, metal beryllium, metal magnesium, boron, silicon, sulfur, phosphorus, arsenic, and metal zinc are all strong reducing agents and react with impurity oxygen in aluminum nitride. Remove this. That is, at the stage from liquid phase generation to grain growth, step 9. Oxygen on the N surface is reduced by the above component (b) and purifies the Al2N grains while reducing the amount.
この結果として得られた焼結体は、高熱伝導・電気絶縁
性基板用焼結体として理想的なものができ上がるものと
考えられる。The resulting sintered body is considered to be ideal as a highly thermally conductive and electrically insulating sintered body for substrates.
上記(イ)成分の添加量がAgN100重量部に対して
0.05重量部より少ないと熱伝導率が上がらないため
、要求を満たさない。5重量部より多いとやはり粒界相
の量が多くなるため熱伝導率が低下する。If the amount of the component (a) added is less than 0.05 parts by weight per 100 parts by weight of AgN, the thermal conductivity will not increase and the requirements will not be met. When the amount is more than 5 parts by weight, the amount of grain boundary phase increases, resulting in a decrease in thermal conductivity.
また、上記(ロ)成分すなわち還元剤成分の添加量は、
A42N100重量部に対して0.01重量部より少な
いと粒界相の分布が不均一となり、縞状の模様が生ずる
。2重量部より多いとYNが残存し、部分的な着色が発
生し、見映えが悪い。さらに、添加量を増やすと、昇温
時の収縮速度が遅くなり、粒界相が揮発してしまうため
、よく焼結しない。In addition, the amount of the above component (b), that is, the reducing agent component, is as follows:
If the amount is less than 0.01 part by weight per 100 parts by weight of A42N, the distribution of the grain boundary phase will become non-uniform, resulting in a striped pattern. If the amount is more than 2 parts by weight, YN will remain, causing partial coloring and poor appearance. Furthermore, if the amount added is increased, the shrinkage rate upon temperature rise will be slow and the grain boundary phase will volatilize, resulting in poor sintering.
次に上記(イ)成分、(ロ)成分に(ハ)成分を加える
と、(ハ)成分はアルカリ金属酸化物、またはグラスフ
ォーマ−元素酸化物であって、より低温で液相を生成す
るため粒界液相による焼結促進に寄与し、AgNの表面
酸化物を除去し、またガラス生成により粒界の均一化、
および浸透によるA42N結晶粒の異常成長を抑制する
。従って粒径が均一となり高熱伝導率、高密度で絶縁抵
抗が高く、メタライズ性のばらつきの少ない焼結体を得
ることができる。Next, when component (C) is added to components (A) and (B) above, component (C) is an alkali metal oxide or a glass former element oxide, which forms a liquid phase at a lower temperature. Therefore, the grain boundary liquid phase contributes to the promotion of sintering, removes surface oxides of AgN, and homogenizes the grain boundaries by glass formation.
and suppresses abnormal growth of A42N crystal grains due to infiltration. Therefore, it is possible to obtain a sintered body with uniform particle size, high thermal conductivity, high density, high insulation resistance, and little variation in metallization properties.
(ハ)成分の添加量は0.01重量部より少ないと残存
する粒界相の分布不均一による焼きムラが生じやすい。If the amount of component (c) added is less than 0.01 part by weight, uneven baking is likely to occur due to non-uniform distribution of the remaining grain boundary phase.
5重量部より多いと、焼結時に異常粒成長の発生が見ら
れ、機械的強度が低くなる。If the amount is more than 5 parts by weight, abnormal grain growth will occur during sintering, resulting in lower mechanical strength.
また、前記(イ)成分、(ロ)成分に(ニ)成分、すな
わち金属硼化物、金属窒化物、金属燐化物、金属硫化物
、金属珪化物、金属水素化物を加えると、これらは、い
ずれも酸素と化合し易く、AffN結晶中の不純物酸素
と容易に反応し、これを除去すると同時に、反応生成物
が液相となって粒界に浸透し、焼結を促進する効果を発
揮する。Furthermore, when component (2), that is, a metal boride, metal nitride, metal phosphide, metal sulfide, metal silicide, or metal hydride, is added to the components (a) and (b), these components It also easily combines with oxygen and easily reacts with the impurity oxygen in the AffN crystal to remove it, and at the same time, the reaction product becomes a liquid phase and penetrates into the grain boundaries, exerting the effect of promoting sintering.
同時に添加した(イ)成分は、高温で液相となって焼結
を著しく促進する。また、(ロ)成分の強い還元作用に
よって、粒成長過程において酸素と化合し、揮散させ、
さらにAgNの熱伝導率を高めることができる。Component (a) added at the same time turns into a liquid phase at high temperatures and significantly accelerates sintering. In addition, due to the strong reducing action of the component (b), it combines with oxygen during the grain growth process and volatilizes it.
Furthermore, the thermal conductivity of AgN can be increased.
上記(ニ)成分の添加量はA42N100重量部に対し
て0.01〜5重量部である。0,01重量部未満では
不純物酸素除去の効果が乏しく、5重量%を越えて添加
しても、添加効果の向上がない。The amount of the component (d) added is 0.01 to 5 parts by weight per 100 parts by weight of A42N. If it is less than 0.01 parts by weight, the effect of removing impurity oxygen is poor, and if it is added in excess of 5% by weight, there is no improvement in the effect of addition.
さらに、前記(イ)成分、(ロ)成分に(ハ)成分およ
び(ニ)成分を複合添加すると、酸素の低減効果と、液
相生成温度の低下効果の相乗効果によって、熱伝導率の
高いA9.N基板を得ることができる。この場合、(ハ
)成分および(ニ)成分の添加量はA42N 100重
量部に対してそれぞれ0,01〜5重量部とすればよい
。Furthermore, when component (C) and component (D) are added in combination to component (A) and component (B), the synergistic effect of the oxygen reduction effect and the liquid phase formation temperature reduction effect results in high thermal conductivity. A9. N substrates can be obtained. In this case, the amount of component (c) and component (d) added may be 0.01 to 5 parts by weight, respectively, per 100 parts by weight of A42N.
これらの(ハ)、(ニ)成分に代わり、前記(イ)成分
、(ロ)成分に、(ホ)成分すなわち両性酸化物である
アルミニウム、ガリウム、インジウム、タングステン、
ビスマス、鉛、アンチモン、カドミウム、亜鉛の酸化物
を添加することによって、高熱伝導率のAl2Nを得る
ことができる。(ホ)成分の作用は次のように考えられ
る。Instead of these components (c) and (d), the components (e), namely amphoteric oxides such as aluminum, gallium, indium, tungsten, are added to the components (a) and (b).
Al2N with high thermal conductivity can be obtained by adding oxides of bismuth, lead, antimony, cadmium, and zinc. (e) The effects of the components can be considered as follows.
(ホ)成分の化合物は焼結過程中でAffN中に存在す
るFe、Ti等の不純物と反応して粒界に化合物を形成
し、これらをトラップする。AfiN中に存在するFe
、Ti等は熱伝導を妨げるもので、これが除去されると
熱伝導率が向上する。The compound of component (e) reacts with impurities such as Fe and Ti present in AffN during the sintering process to form compounds at grain boundaries and trap them. Fe present in AfiN
, Ti, etc. impede heat conduction, and when they are removed, the thermal conductivity improves.
(ホ)成分の添加量はA42N 100重量部に対して
0.01〜5重量部である。0.01重量部未満ではF
e、Ti等と反応して化合物を生成する効果が乏しく、
5重量%を越えて添加しても、添加効果の向上がない。The amount of component (e) added is 0.01 to 5 parts by weight per 100 parts by weight of A42N. F if less than 0.01 part by weight
It has a poor effect of reacting with e, Ti, etc. to generate compounds,
Even if it is added in an amount exceeding 5% by weight, there is no improvement in the effect of addition.
上記(イ)成分、(ロ)成分、(ホ)成分にさらに(ハ
)成分または/および(ニ)成分を加えた四元または三
元の焼結助剤も有効である。この場合、それぞれの成分
の有する特性が発揮され、その相乗効果によって、Al
2Nの熱伝導率が向上する。Also effective are quaternary or ternary sintering aids in which the above-mentioned components (a), (b), and (e) are further added with components (c) and/or (d). In this case, the characteristics of each component are exhibited, and due to their synergistic effect, Al
2N thermal conductivity is improved.
次に、(イ)成分としてY2O3、(ロ)の成分として
金属Znを例として本発明の製品の製造方法の具体例に
ついて述べる。Next, a specific example of the method for manufacturing the product of the present invention will be described using Y2O3 as the component (a) and metal Zn as the component (b).
平均粒径0.1〜3μmの窒化アルミニウム粉100重
量部にY2O3を0.5〜5重量部、金属Znを0.0
1〜0.5重量部の範囲で添加し、混合、分散を行い、
バインダを添加し成形体を作成する。成形法としては、
ドクターブレード法、プレス成形法、鋳込み成形法、押
出し成形法等の、−Mによく知られた方法をとることが
できる。これより得られた成形体を非酸化性雰囲気中で
1400〜2000℃で焼成する。0.5 to 5 parts by weight of Y2O3 and 0.0 parts by weight of metal Zn to 100 parts by weight of aluminum nitride powder with an average particle size of 0.1 to 3 μm.
Add in a range of 1 to 0.5 parts by weight, mix and disperse,
A binder is added to create a molded body. As a molding method,
Well-known methods for -M, such as a doctor blade method, press molding method, cast molding method, and extrusion molding method, can be used. The molded body thus obtained is fired at 1400 to 2000°C in a non-oxidizing atmosphere.
高熱伝導率のAffN焼結体を得るには、Af2Nの不
純物酸素が低いほど望ましいが約1重量部以下であれば
よい。In order to obtain an AffN sintered body with high thermal conductivity, it is desirable that the impurity oxygen content of Af2N is as low as possible, but it is sufficient that it is about 1 part by weight or less.
焼成は/INルツボ中にて行うが焼成温度は1400℃
以下では、焼結が中途で停止しており、Af2N粒の昇
華によるミクロボアが発生し、熱伝導率を低減させる。Firing is performed in a /IN crucible, and the firing temperature is 1400°C.
Below, sintering is stopped midway, and microbores are generated due to sublimation of Af2N grains, reducing thermal conductivity.
酸素濃度500ppm以上の雰囲気で焼成するとAl2
Nの酸化が起こり、高熱伝導性の焼結体は得られない。When fired in an atmosphere with an oxygen concentration of 500 ppm or more, Al2
Oxidation of N occurs, and a sintered body with high thermal conductivity cannot be obtained.
[発明の効果]
本発明により160W/m、に以上の熱伝導率を有する
窒化アルミニウム焼結体とそれを基材にする電気絶縁体
が提供でき、ハイブリッドIC用基板、サーデイツプ用
基板、パワートランジスタ、パワダイオード、レーザー
ダイオード用のヒートシンク等、産業上の応用が可能で
ある。[Effects of the Invention] According to the present invention, an aluminum nitride sintered body having a thermal conductivity of 160 W/m or more and an electric insulator using the same as a base material can be provided, and can be used as a substrate for hybrid ICs, substrates for cer-deep circuits, and power transistors. Industrial applications such as heat sinks for , power diodes, and laser diodes are possible.
[実施例]
実施例1
平均粒径1μmのAf2N粉末100重量部に、第1表
に示す量の平均粒径1μmのY2O3粉末と、平均粒径
6μmのMg粉末とをトルエン−エタノール混合溶媒と
共に添加し、ボールミルにて十分混合、解砕した後、バ
インダとしてポリビニルブチラール樹脂を添加し、Ag
Nスラリーを調製した。これを用い、ドクターブレード
法にてグリーンシートを作成し、65X65mm角に打
ち抜き加工し、グリーン成形体を得た。[Example] Example 1 To 100 parts by weight of Af2N powder with an average particle size of 1 μm, Y2O3 powder with an average particle size of 1 μm and Mg powder with an average particle size of 6 μm in the amounts shown in Table 1 were added together with a toluene-ethanol mixed solvent. Ag
A N slurry was prepared. Using this, a green sheet was created by a doctor blade method and punched into a 65 x 65 mm square to obtain a green molded body.
これらをN2中にて700℃で脱脂した後、N2雰囲気
中常圧下で1800℃で3時間焼成し、AffN板を得
た。After degreasing these in N2 at 700°C, they were fired at 1800°C for 3 hours under normal pressure in N2 atmosphere to obtain an AffN plate.
得られたAl2N板について、外観、相対密度、熱伝導
率、絶縁抵抗、表面粗度等絶縁性基板として一般に必要
とされる特性を測定した。その結果を第1表に示す。Properties generally required for an insulating substrate, such as appearance, relative density, thermal conductivity, insulation resistance, and surface roughness, of the obtained Al2N board were measured. The results are shown in Table 1.
特性のうち、相対密度はアルキメデス法にて焼結体密度
を求め、真密度で除して、%表示で示した。Among the characteristics, the relative density was determined by calculating the density of the sintered body using the Archimedes method, divided by the true density, and expressed as a percentage.
熱伝導率はレーザーフラッシュ法を用いて測定した。絶
縁抵抗率は絶縁計を用い測定した。表面粗度(Ra)は
触針式表面粗度計にて測定した。Thermal conductivity was measured using the laser flash method. Insulation resistivity was measured using an insulation meter. The surface roughness (Ra) was measured using a stylus type surface roughness meter.
実施例2
原料のうち、Mg粉末に替えて第2表に示す各種元素を
用いた他は、実施例1と同一の方法にてAffN板を作
成し、その外観、相対密度、熱伝導率、絶縁抵抗、表面
粗度を測定し、その結果を第2表に示した。Example 2 An AffN plate was prepared in the same manner as in Example 1, except that various elements shown in Table 2 were used instead of Mg powder among the raw materials, and its appearance, relative density, thermal conductivity, Insulation resistance and surface roughness were measured and the results are shown in Table 2.
実施例3
原料のうち、Y203に替えて第3表に示す各種希土類
酸化物を用いた他は、実施例1と同一の方法にてAff
N板を作成し、その外観、相対密度、熱伝導率、絶縁抵
抗、表面粗度を測定し、その結果を第3表に示した。Example 3 Aff was produced in the same manner as in Example 1, except that various rare earth oxides shown in Table 3 were used instead of Y203 among the raw materials.
N plates were prepared, and their appearance, relative density, thermal conductivity, insulation resistance, and surface roughness were measured, and the results are shown in Table 3.
実施例4
平均粒径1μmの/IN粉末100重量部に、第4表に
示す量の平均粒径1μmのY2 oa扮末と、平均粒径
3μmのB、および第4表に示した各種酸化物をトルエ
ン−エタノール混合溶媒と共に添加し、ボールミルにて
十分混合、解砕した後、バインダとしてポリビニルブチ
ラール樹脂を添加し、AρNスラリーを調製した。これ
を用い、ドクターブレード法にてグリーンシートを作成
し、65X65mm角に打ち抜き加工し、グリーン成形
体を得た。Example 4 To 100 parts by weight of /IN powder with an average particle size of 1 μm, Y2 oa powder with an average particle size of 1 μm in the amounts shown in Table 4, B with an average particle size of 3 μm, and various oxidations shown in Table 4 were added. The mixture was added with a toluene-ethanol mixed solvent, sufficiently mixed and crushed in a ball mill, and then polyvinyl butyral resin was added as a binder to prepare an AρN slurry. Using this, a green sheet was created by a doctor blade method and punched into a 65 x 65 mm square to obtain a green molded body.
これらをN2中にて700℃で脱脂した後、N2雰囲気
中常圧下で1800℃で3時間焼成し、AffN板を得
た。After degreasing these in N2 at 700°C, they were fired at 1800°C for 3 hours under normal pressure in N2 atmosphere to obtain an AffN plate.
得られたAJ2N板について、外観、相対密度、熱伝導
率、絶縁抵抗、表面粗度等絶縁性基板として一般に必要
とされる特性を測定した。その結果を第4表に示す。The obtained AJ2N board was measured for characteristics generally required as an insulating substrate, such as appearance, relative density, thermal conductivity, insulation resistance, and surface roughness. The results are shown in Table 4.
特性のうち、相対密度はアルキメデス法にて焼結体密度
を求め、真密度で除して、%表示で示した。Among the characteristics, the relative density was determined by calculating the density of the sintered body using the Archimedes method, divided by the true density, and expressed as a percentage.
熱伝導率はレーザーフラッシュ法を用いて測定した。絶
縁抵抗率は絶縁計を用い測定した。表面粗度(Ra)は
触針式表面粗度計に測定した。Thermal conductivity was measured using the laser flash method. Insulation resistivity was measured using an insulation meter. The surface roughness (Ra) was measured using a stylus type surface roughness meter.
実施例5
平均粒径ILLmのAl2N粉末100重量部に、第5
表に示す量の平均粒径1μmのY2O3粉末、平均粒径
3umのB、および第5表に示した各種化合物をトルエ
ン−エタノール混合溶媒と共に添加し、ボールミルにて
十分混合、解砕した後、バインダとしてポリビニルブチ
ラール樹脂を添加し、AI;!、Nスラリーを調製した
。これを用い、ドクターブレード法にてグリーンシート
を作成し、65X65mm角に打ち抜き加工し、グリー
ン成形体を得た。Example 5 To 100 parts by weight of Al2N powder with an average particle size ILLm, a fifth
After adding the amounts of Y2O3 powder with an average particle size of 1 μm shown in the table, B with an average particle size of 3 μm, and various compounds shown in Table 5 together with a toluene-ethanol mixed solvent, thoroughly mixing and crushing in a ball mill, Adding polyvinyl butyral resin as a binder, AI;! , N slurry was prepared. Using this, a green sheet was created by a doctor blade method and punched into a 65 x 65 mm square to obtain a green molded body.
これらをN2中にて700℃で脱脂した後、N2雰囲気
中常圧下で1800℃で3時間焼成し、AgN板を得た
。After degreasing these in N2 at 700°C, they were fired at 1800°C for 3 hours under normal pressure in N2 atmosphere to obtain an AgN plate.
得られたAβNiについて、外観、相対密度、熱伝導率
、絶縁抵抗、表面粗度等絶縁性基板として一般に必要と
される特性を測定した。その結果を第5表に示す。Properties generally required for an insulating substrate, such as appearance, relative density, thermal conductivity, insulation resistance, and surface roughness, of the obtained AβNi were measured. The results are shown in Table 5.
特性のうち、相対密度はアルキメデス法にテ焼結体密度
を求め、真密度で除して、%表示で示した。Among the characteristics, the relative density was determined by using the Archimedes method to determine the density of the sintered body, divided by the true density, and expressed as a percentage.
熱伝導率はレーザーフラッシュ法を用いて測定した。絶
縁抵抗率は絶縁計を用い測定した。表面粗度(Ra)は
触針式表面粗度計にて測定した。Thermal conductivity was measured using the laser flash method. Insulation resistivity was measured using an insulation meter. The surface roughness (Ra) was measured using a stylus type surface roughness meter.
実施例6
原料に、Y2O3、B、および第6表に示す各種化合物
を用いた他は、実施例5と同一の方法にてAffN板を
作成し、その外観、相対密度、熱伝導率、絶縁抵抗、表
面粗度を測定し、その結果を第6表に示した。Example 6 An AffN plate was prepared in the same manner as in Example 5 except that Y2O3, B, and various compounds shown in Table 6 were used as raw materials, and its appearance, relative density, thermal conductivity, and insulation were The resistance and surface roughness were measured and the results are shown in Table 6.
実施例7
原料に、Y203 、B、および第7表に示す各種化合
物を用いた他は、実施例5と同一の方法にてAβN板を
作成し、その外観、相対密度、熱伝導率、絶縁抵抗、表
面粗度を測定し、その結果を第7表に示した。Example 7 An AβN plate was prepared in the same manner as in Example 5 except that Y203, B, and various compounds shown in Table 7 were used as raw materials, and its appearance, relative density, thermal conductivity, and insulation were The resistance and surface roughness were measured and the results are shown in Table 7.
実施例8
原料に、Y2O3、Zn粉末、および第8表に示す各種
化合物を用いた他は、実施例5と同一の方法にてAff
N板を作成し、その外観、相対密度、熱伝導率、絶縁抵
抗、表面粗度を測定し、その結果を第8表に示した。Example 8 Af was produced in the same manner as in Example 5, except that Y2O3, Zn powder, and various compounds shown in Table 8 were used as raw materials.
N plates were prepared, and their appearance, relative density, thermal conductivity, insulation resistance, and surface roughness were measured, and the results are shown in Table 8.
実施例9
原料に、Y203、金属Li、および第9表に示す各種
化合物を用いた他は、実施例5と同一の方法にてAff
N板を作成し、その外観、相対密度、熱伝導率、絶縁抵
抗、表面粗度を測定し、その結果を第9表に示した。Example 9 Af was produced in the same manner as in Example 5, except that Y203, metal Li, and various compounds shown in Table 9 were used as raw materials.
N plates were prepared, and their appearance, relative density, thermal conductivity, insulation resistance, and surface roughness were measured, and the results are shown in Table 9.
実施例10
原料に、Y2O3、B、および第10表に示す各種化合
物を用いた他は、実施例5と同一の方法にてARN板を
作成し、その外観、相対密度、熱伝導率、絶縁抵抗、表
面粗度を測定し、その結果を第10表に示した。Example 10 An ARN board was prepared in the same manner as in Example 5, except that Y2O3, B, and various compounds shown in Table 10 were used as raw materials, and its appearance, relative density, thermal conductivity, and insulation were The resistance and surface roughness were measured and the results are shown in Table 10.
Claims (1)
の酸化物の群から選ばれた1種または2種以上を酸化物
に換算して0.05〜5重量部 (ロ)金属リチウム、金属ベリリウム、金属マグネシウ
ム、硼素、珪素、硫黄、燐、砒 素および金属亜鉛の群より選ばれた単体の1種または2
種以上を0.01〜5重量部 を添加し、該混合粉末を成形し、非酸化性雰囲気中で1
400℃〜2000℃の温度範囲において焼成すること
を特徴とする窒化アルミニウム焼結体の製造方法。 2 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ハ)アルカリ金属の酸化物および2000℃以下の加
熱により酸化物となるアルカリ金属化合物並びに硼素、
珪素、ゲルマニウム、砒素および燐の酸化物および20
00℃以下の加熱によりこれらの酸化物となる化合物の
群から選ばれた1種または2種以上を酸化物に換算して
0.01〜5重量部 を添加することを特徴とする請求項1記載の窒化アルミ
ニウム焼結体の製造方法。 3 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ニ)金属硼化物、金属窒化物、金属燐化 物、金属硫化物、金属珪化物、および金属 水素化物の群より選ばれる化合物の群より 選ばれた化合物のうち1種または2種以上を0.01〜
5重量部 添加することを特徴とする請求項1記載の窒化アルミニ
ウム焼結体の製造方法。 4 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ニ)金属硼化物、金属窒化物、金属燐化 物、金属硫化物、金属珪化物、および金属 水素化物の群より選ばれる化合物の群より 選ばれた化合物のうち1種または2種以上を0.01〜
5重量部 添加することを特徴とする請求項2記載の窒化アルミニ
ウム焼結体の製造方法。 5 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ホ)アルミニウム、ガリウム、インジウ ム、タングステン、ビスマス、鉛、アンチ モン、カドミウム、亜鉛の酸化物および 2000℃以下の加熱によりこれらの酸化物となる化合
物の1種または2種以上を酸化物に換算して0.01〜
2重量部 を添加することを特徴とする請求項1記載の窒化アルミ
ニウム焼結体の製造方法。 6 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ハ)アルカリ金属の酸化物および2000℃以下の加
熱により酸化物となるアルカリ金属化合物並びに硼素、
珪素、ゲルマニウム、砒素および燐の酸化物および20
00℃以下の加熱によりこれらの酸化物となる化合物の
群から選ばれた1種または2種以上を酸化物に換算して
0.01〜5重量部 を添加することを特徴とする請求項5記載の窒化アルミ
ニウム焼結体の製造方法。 7 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ニ)金属硼化物、金属窒化物、金属燐化 物、金属硫化物、金属珪化物、および金属 水素化物の群より選ばれる化合物の群より 選ばれた化合物のうち1種または2種以上を0.01〜
5重量部 を添加することを特徴とする請求項5記載の窒化アルミ
ニウム焼結体の製造方法。 8 窒化アルミ粉末100重量部に焼結助剤としてさら
に、 (ニ)金属硼化物、金属窒化物、金属燐化 物、金属硫化物、金属珪化物、および金属 水素化物の群より選ばれる化合物の群より 選ばれた化合物のうち1種または2種以上を0.01〜
5重量部 を添加することを特徴とする請求項6記載の窒化アルミ
ニウム焼結体の製造方法。[Claims] 1. 100 parts by weight of aluminum nitride powder, as a sintering aid, (a) one or more selected from the group of oxides of yttrium, scandium, and lanthanoids, calculated as 0 .05 to 5 parts by weight (b) One or two elements selected from the group of metallic lithium, metallic beryllium, metallic magnesium, boron, silicon, sulfur, phosphorus, arsenic, and metallic zinc.
Add 0.01 to 5 parts by weight of seeds or more, mold the mixed powder, and heat it in a non-oxidizing atmosphere.
A method for producing an aluminum nitride sintered body, the method comprising firing in a temperature range of 400°C to 2000°C. 2. 100 parts by weight of aluminum nitride powder and as a sintering aid, (c) an alkali metal oxide and an alkali metal compound that becomes an oxide when heated at 2000°C or less, and boron;
Oxides of silicon, germanium, arsenic and phosphorus and 20
Claim 1, characterized in that 0.01 to 5 parts by weight of one or more compounds selected from the group of compounds that become oxides when heated at 00°C or below is added in terms of oxides. The method for producing the aluminum nitride sintered body described above. 3. 100 parts by weight of aluminum nitride powder, further added as a sintering aid, (d) a group of compounds selected from the group of metal borides, metal nitrides, metal phosphides, metal sulfides, metal silicides, and metal hydrides. One or more of the selected compounds from 0.01 to
2. The method for producing an aluminum nitride sintered body according to claim 1, wherein 5 parts by weight are added. 4 100 parts by weight of aluminum nitride powder, further added as a sintering aid, (d) a group of compounds selected from the group of metal borides, metal nitrides, metal phosphides, metal sulfides, metal silicides, and metal hydrides. One or more of the selected compounds from 0.01 to
3. The method for producing an aluminum nitride sintered body according to claim 2, wherein 5 parts by weight are added. 5 Add to 100 parts by weight of aluminum nitride powder as a sintering aid; (e) oxides of aluminum, gallium, indium, tungsten, bismuth, lead, antimony, cadmium, and zinc; 0.01 to 0.01 in terms of oxide of one or more compounds
2. The method for producing an aluminum nitride sintered body according to claim 1, wherein 2 parts by weight of the aluminum nitride sintered body is added. 6. 100 parts by weight of aluminum nitride powder and as a sintering aid, (c) an alkali metal oxide and an alkali metal compound that becomes an oxide when heated at 2000°C or less, and boron;
Oxides of silicon, germanium, arsenic and phosphorus and 20
Claim 5, characterized in that 0.01 to 5 parts by weight of one or more selected from the group of compounds that become oxides when heated at 00° C. or lower, calculated as oxides, is added. The method for producing the aluminum nitride sintered body described above. 7 100 parts by weight of aluminum nitride powder, and further added as a sintering aid, (d) a group of compounds selected from the group of metal borides, metal nitrides, metal phosphides, metal sulfides, metal silicides, and metal hydrides. One or more selected compounds from 0.01 to
The method for producing an aluminum nitride sintered body according to claim 5, characterized in that 5 parts by weight of the aluminum nitride sintered body is added. 8. 100 parts by weight of aluminum nitride powder, and as a sintering aid, (d) a group of compounds selected from the group of metal borides, metal nitrides, metal phosphides, metal sulfides, metal silicides, and metal hydrides. One or more selected compounds from 0.01 to
7. The method for producing an aluminum nitride sintered body according to claim 6, wherein 5 parts by weight of the aluminum nitride sintered body is added.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1095385A JPH02275765A (en) | 1989-04-17 | 1989-04-17 | Production of sintered aluminum nitride |
| EP19900107079 EP0393524A3 (en) | 1989-04-17 | 1990-04-12 | Method of making a sintered body of aluminium nitride |
| KR1019900005260A KR900016068A (en) | 1989-04-17 | 1990-04-16 | Manufacturing method of aluminum nitride sintered body |
| CA002014630A CA2014630A1 (en) | 1989-04-17 | 1990-04-17 | Method of making a sintered body of aluminium nitride |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1095385A JPH02275765A (en) | 1989-04-17 | 1989-04-17 | Production of sintered aluminum nitride |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02275765A true JPH02275765A (en) | 1990-11-09 |
Family
ID=14136182
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1095385A Pending JPH02275765A (en) | 1989-04-17 | 1989-04-17 | Production of sintered aluminum nitride |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02275765A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04182358A (en) * | 1990-11-16 | 1992-06-29 | Kyocera Corp | Aluminum nitride sintered body |
| US5641718A (en) * | 1994-09-16 | 1997-06-24 | Kabushiki Kaisha Toshiba | Sintered aluminum nitride and circuit substrate using sintered aluminum nitride |
| JP2003243494A (en) * | 2002-10-28 | 2003-08-29 | Ibiden Co Ltd | Ceramic substrate |
| US6861165B2 (en) | 2000-02-24 | 2005-03-01 | Ibiden Co., Ltd. | Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck |
| US6936343B1 (en) | 2000-03-06 | 2005-08-30 | Ibiden Co., Ltd. | Ceramic substrate |
| JP2006044980A (en) * | 2004-08-04 | 2006-02-16 | Sumitomo Electric Ind Ltd | Aluminum nitride sintered body |
| KR100756619B1 (en) * | 2005-03-25 | 2007-09-10 | 니뽄 가이시 가부시키가이샤 | Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body |
| KR100940456B1 (en) * | 2005-12-30 | 2010-02-04 | 주식회사 코미코 | Aluminum nitride sintered body and member for semiconductor manufacturing apparatus including same |
| JP2022052090A (en) * | 2020-09-23 | 2022-04-04 | 日本特殊陶業株式会社 | Aluminum nitride sintered body, and electrostatic chuck |
| WO2025094690A1 (en) * | 2023-10-30 | 2025-05-08 | デンカ株式会社 | Aluminum nitride sintered body, method for producing same, and circuit board |
-
1989
- 1989-04-17 JP JP1095385A patent/JPH02275765A/en active Pending
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04182358A (en) * | 1990-11-16 | 1992-06-29 | Kyocera Corp | Aluminum nitride sintered body |
| US5641718A (en) * | 1994-09-16 | 1997-06-24 | Kabushiki Kaisha Toshiba | Sintered aluminum nitride and circuit substrate using sintered aluminum nitride |
| US6861165B2 (en) | 2000-02-24 | 2005-03-01 | Ibiden Co., Ltd. | Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck |
| US6929874B2 (en) | 2000-02-24 | 2005-08-16 | Ibiden Co., Ltd. | Aluminum nitride sintered body, ceramic substrate, ceramic heater and electrostatic chuck |
| US6936343B1 (en) | 2000-03-06 | 2005-08-30 | Ibiden Co., Ltd. | Ceramic substrate |
| JP2003243494A (en) * | 2002-10-28 | 2003-08-29 | Ibiden Co Ltd | Ceramic substrate |
| JP2006044980A (en) * | 2004-08-04 | 2006-02-16 | Sumitomo Electric Ind Ltd | Aluminum nitride sintered body |
| KR100756619B1 (en) * | 2005-03-25 | 2007-09-10 | 니뽄 가이시 가부시키가이샤 | Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body |
| US7422992B2 (en) | 2005-03-25 | 2008-09-09 | Ngk Insulators, Ltd. | Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body |
| KR100940456B1 (en) * | 2005-12-30 | 2010-02-04 | 주식회사 코미코 | Aluminum nitride sintered body and member for semiconductor manufacturing apparatus including same |
| JP2022052090A (en) * | 2020-09-23 | 2022-04-04 | 日本特殊陶業株式会社 | Aluminum nitride sintered body, and electrostatic chuck |
| WO2025094690A1 (en) * | 2023-10-30 | 2025-05-08 | デンカ株式会社 | Aluminum nitride sintered body, method for producing same, and circuit board |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7617290B2 (en) | Method for making silicon nitride ceramic substrate with copper plate | |
| US4571610A (en) | Semiconductor device having electrically insulating substrate of SiC | |
| CN103503130B (en) | Ceramic circuit board | |
| CN103492345A (en) | Ceramic circuit board | |
| WO2010082478A1 (en) | Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module | |
| JPH02275765A (en) | Production of sintered aluminum nitride | |
| US5409869A (en) | Aluminum nitride sintered body, method for manufacturing the same, and ceramic circuit board | |
| WO2022210517A1 (en) | Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate | |
| WO2024190346A1 (en) | Aluminum nitride sintered body, and method for manufacturing aluminum nitride sintered body | |
| JPH0492864A (en) | Aluminum nitride powder, sintered material and production thereof | |
| CN112750692B (en) | Composite sintered body and method for producing composite sintered body | |
| JPS6221764A (en) | Manufacture of aluminum nitride | |
| JPH02275770A (en) | Production of sintered aluminum nitride | |
| JP2975882B2 (en) | Silicon nitride heatsink for pressure welding and pressure welding structural parts using it | |
| JPH0442861A (en) | Preparation of highly strong aluminum nitride sintered product | |
| JP3450400B2 (en) | Aluminum nitride sintered body and aluminum nitride multilayer circuit board | |
| Norton | Characterisation of aluminium nitride ceramic substrates | |
| JP3230861B2 (en) | Silicon nitride metallized substrate | |
| JPH04144967A (en) | Aluminum nitride sintered body and its manufacturing method | |
| JP4516057B2 (en) | Silicon nitride wiring board and method for manufacturing the same | |
| JPH01300584A (en) | multilayer wiring circuit board | |
| JPH03197366A (en) | Preparation of aluminum nitride sintered product | |
| JP3297768B2 (en) | Manufacturing method of aluminum nitride sintered body | |
| JPH0725663A (en) | Aluminum nitride sintered body and manufacturing method thereof | |
| JP3204520B2 (en) | Manufacturing method of heat sink for thyristor |