[go: up one dir, main page]

JPH0227037B2 - - Google Patents

Info

Publication number
JPH0227037B2
JPH0227037B2 JP58039184A JP3918483A JPH0227037B2 JP H0227037 B2 JPH0227037 B2 JP H0227037B2 JP 58039184 A JP58039184 A JP 58039184A JP 3918483 A JP3918483 A JP 3918483A JP H0227037 B2 JPH0227037 B2 JP H0227037B2
Authority
JP
Japan
Prior art keywords
wastewater
water
microbial
support
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58039184A
Other languages
Japanese (ja)
Other versions
JPS59166291A (en
Inventor
Tsuruhira Urano
Mitsuru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWAKEN
Original Assignee
KANAGAWAKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWAKEN filed Critical KANAGAWAKEN
Priority to JP58039184A priority Critical patent/JPS59166291A/en
Publication of JPS59166291A publication Critical patent/JPS59166291A/en
Publication of JPH0227037B2 publication Critical patent/JPH0227037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は生活雑排水の簡易処理方法に関し、よ
り詳細には一般家庭、食堂、商店、病院などから
排出される生活系排水のうち、生し尿を除く生活
雑排水を簡易に処理する方法に関する。 従来、生活系排水は河川、湖沼、海域等の水質
汚濁に大きな影響を与えており、都市部の河川に
おける有機系汚濁や、湖沼や内海等の閉鎖性水域
における富栄養化現象はほとんど生活系排水に起
因している。 ところで生活系排水の汚濁物質の約3/4は生し
尿以外の生活雑排水中に含まれており、各家庭の
生活雑排水中の固形物をスクリーンにより除去す
る方法や沈殿槽を設置して固形物や懸濁物質を除
去する方法などが試みられている。 しかしながら、これらの方法では設備は安価で
あるものの汚濁物質、たとえばBODおよびCOD
の除去率が10〜30%程度にしかならない問題点が
あつた。 一方、微生物によつて生活排水中の汚濁物質を
分解する従来の方法は、いずれも装置が高価であ
り、大きな設置面積を必要とし、据付工事や維持
管理も複雑で、大規模生活体からの生活排水の処
理には有効であるものの、一般家庭のような小規
模生活体からの生活雑排水の処理には使用できな
い欠点があつた。 そこで本発明は、かかる現状にかんがみてなさ
れたものであり、生し尿を含まない生活雑排水中
の有機質汚濁物質を、水質、水量および水温等の
非常に大きな変動にかかわらず小型の装置で安定
して除去することができ、特に一般家庭用等の小
規模な生活雑排水処理方法として好適であるなど
の特長を有するものである。 すなわち本発明の生活雑排水の簡易処理方法
は、生し尿を含まない、流量変動の大きい生活雑
排水を滞留させ、固形物を分離して水質を調整
し、この排水を、表面積が充填容積1m3あたり
300m2以上であり、比重が1.5以下、かつ水に沈む
多孔質粒状体を微生物支持体として充填した槽に
上向流として供給すると共に、この微生物支持体
の下方から空気を5cm/分以上で供給して該槽あ
たりの微生物濃度を5〜15g/に維持しながら
前記生活雑排水の流量変動に応じて該微生物支持
体の浮遊、沈降を繰り返させ、該微生物支持体の
洗浄操作を行わずに前記排水中の有機質汚濁物質
を微生物により分解させることを特徴とするもの
である。 以下、本発明を図面にもとづき説明する。 第1図は本発明の工程を示し、生し尿を含まな
い生活雑排水1は調整槽2に導かれる。調整槽2
は固形物を除去して水質を均一化する機能を有す
る。 好ましくは、予め生活雑排水1をスクリーン槽
3を通して大型の固形物や毛髪などを除去してお
くのが良い。 ここで生活雑排水とは、生し尿を含まない家庭
の炊事、風呂、洗濯などに付随して発生する排水
や食堂、商店、病院等からの類似の排水であり、
通常、野菜、米粒その他の食物類、及びそれらか
らの溶出物、毛髪、洗剤、繊維片などが含まれて
いる。また生活雑排水は、その特長として時間帯
による流量変動がきわめて大きい。すなわち、朝
食〜洗濯時、夕食〜入浴時および風呂の排水時に
は、他の時間帯に比較して排水流量が著るしく増
加する。かかる生活雑排水は調整槽2に滞留する
ことによつて固形物の大部分が分離される。平均
滞留時間は生活雑排水の水質、流量などによつて
変更するが、通常では2〜12時間であり、新規な
生活雑排水の流入につれて固形物が除去された生
活雑排水は、調整槽2から微生物処理槽4に上向
流として供給される。微生物処理槽4には、その
全体に微生物支持体が充填されており、かつこの
微生物支持体の下方から空気が空筒線速度5cm/
分以上で供給される。微生物支持体としては、人
工軽量骨材または砕石、繊維あるいは各種形状の
プラスチツク材などが任意の形状、大きさで用い
られるが、特に表面積が200m2/m3以上、浮力が
働く水中での重さが0.5g/cm3以下、すなわち比
重が1.5以下で、かつ水に沈む多孔質粒状体が好
ましい。微生物支持体の充填量は通常日平均排水
量の1/10以上、1/3以下であり、BOD負荷は0.5
〜1.5Kg/m3・日である。 また、空気を空筒線速度5cm/分以上で供給す
ることによつて、排水が十分に撹拌されて微生物
支持体と排水の接触が向上すると共に、気泡が充
填された微生物支持体の間隙をぬつて上昇するの
で排水中の懸濁物質や増殖した微生物による微生
物支持体の閉塞を防止することができる。特に比
重が1.5以下、かつ水に沈む多孔質粒状体を微生
物支持体として使用し、生活雑排水の流量変動に
応じて微生物支持体に浮遊、沈降を繰り返させる
ことは、空気流速と共に微生物支持体の閉塞防止
に有効である。 さらに本発明においては、微生物処理槽4中の
微生物濃度が5〜15g/であることが重要であ
る。ここで微生物濃度とは、微生物処理槽4の単
位容積あたりの微生物の乾燥重量を意味し、従来
の生活排水の微生物処理法における槽内の微生物
濃度2〜3g/に比較して本発明では著るしく
高濃度にある。 かかる高濃度の微生物濃度は、上述のように小
型の微生物処理槽4の全体に適切な微生物支持体
を充填すると共に、この支持体に対して上向流で
排水を供給することによつて達成される。微生物
濃度が5g/に満たないと、排水中の有機質汚
濁物質の分解能力が低下するので処理装置は大型
化し、装置が高価になつて一般家庭等では設置が
困難になる。また微生物濃度が15g/を越るよ
うにすることは、閉塞の危険が大きく、実現の可
能性は少ない。 本発明においては、上述のような微生物濃度、
排水の供給方向と空気の空筒線速度によつて、微
生物支持体の表面に形成された、繁殖した多様な
微生物による緻密で活性な多量の微生物膜により
排水中の有機質汚濁物質の分解が促進される。ま
た、発生する余剰汚泥量もきわめて少なくでき、
微生物処理後の汚泥の沈殿分離を要しない。 また微生物支持体の閉塞が防止され、特別な洗
浄操作を行なわずに排水中の有機汚濁物質が微生
物により分解される。 微生物処理槽4における排水の平均滞留時間は
通常2〜8時間であり、処理された生活雑排水
は、通常の下水溝に放流されるか、または土壌中
に浸透される。 この結果、装置あたりの微生物濃度が高いの
で、装置を小型化することができ、一般家庭用等
として好適な、安価で、設置面積の少ない、生活
雑排水の簡易処理方法が提供される。 第2図は本発明にリン除去の工程を付加した場
合を示し、上述した本発明に従つて排水中の固形
物が分離され、有機質汚濁物質が微生物によつて
分解された後に、排水はリン除去槽5に導かれ
る。 リン除去槽5には、リン除去剤が充填されてお
り、排水中のリンはリン除去剤との物理的吸着ま
たは化学反応によつて除去される。 ここでリン除去剤としては、アルミニウム、
鉄、マグネシウムおよびカルシウム等を含む粘土
鉱物、たとえばアロフエンにアルミニウム、鉄、
マグネシウムまたはカルシウム塩などを加え、こ
れを造粒、成形して用いられる。 なお、リン除去剤の形状は任意に選択すること
ができ、粒状、塊状あるいは板状などで用いられ
る。また、リン除去剤の充填量も排水中のリン含
有量に応じて適宜決定することができ、排水のリ
ン除去槽における平均滞留時間は、通常1〜3時
間である。 次に上述した本発明における通水量とBOD除
去率との関係を下記第1表に示す。 すなわち、1.5〜3cmの人工軽量骨材、または
繊維マツトを充填した10の小型処理槽にグルコ
ース、ペプトン、コーンステイーブリカーおよび
直鎖アルキルベンゼンスルホン酸塩(LASと略
記)を混合してBOD約150mg/に調整したモデ
ル雑排水を、約20℃で通水量を変えて流しなが
ら、空筒線速度10cm/分でばつ気した場合の
BOD除去率をしらべた。
The present invention relates to a simple method for treating gray water, and more particularly to a method for easily treating gray water, excluding human waste, among domestic wastewater discharged from ordinary homes, restaurants, shops, hospitals, etc. Traditionally, domestic wastewater has had a major impact on water pollution in rivers, lakes, and sea areas, and organic pollution in urban rivers and eutrophication in closed water bodies such as lakes and inland seas are mostly caused by domestic wastewater. This is caused by drainage. By the way, about 3/4 of the pollutants in domestic wastewater are contained in gray water other than raw human waste, and there are methods to remove solids from gray water in each household using screens or by installing settling tanks. Attempts have been made to remove solids and suspended solids. However, although these methods require inexpensive equipment, they produce pollutants such as BOD and COD.
There was a problem that the removal rate was only about 10 to 30%. On the other hand, conventional methods for decomposing pollutants in domestic wastewater using microorganisms require expensive equipment, a large installation area, complicated installation work and maintenance, and are difficult to manage from large-scale living organisms. Although it is effective in treating domestic wastewater, it has the drawback that it cannot be used to treat gray water from small-scale living entities such as ordinary households. Therefore, the present invention was made in view of the current situation, and uses a small device to stabilize organic pollutants in gray water that does not contain human waste, regardless of extremely large fluctuations in water quality, water volume, water temperature, etc. It has the advantage of being particularly suitable as a small-scale domestic gray water treatment method. In other words, the simple method for treating gray water of the present invention is to stagnate gray water that does not contain human waste and have large flow rate fluctuations, separate solids to adjust the water quality, and collect this waste water into a container with a surface area of 1 m2 of filling volume. around 3
300 m 2 or more, specific gravity 1.5 or less, and sinking porous granules are supplied as a microbial support as an upward flow, and air is blown from below the microbial support at a rate of 5 cm/min or more. While maintaining the microorganism concentration per tank at 5 to 15 g per tank, the microorganism support is repeatedly suspended and sedimented according to the fluctuation in the flow rate of the gray water, and the microorganism support is not washed. The method is characterized in that organic pollutants in the wastewater are decomposed by microorganisms. Hereinafter, the present invention will be explained based on the drawings. FIG. 1 shows the process of the present invention, in which gray water 1 containing no human waste is led to a regulating tank 2. Adjustment tank 2
has the function of removing solid matter and equalizing water quality. Preferably, the gray water 1 is passed through a screen tank 3 in advance to remove large solids, hair, etc. Here, gray water refers to wastewater generated from household cooking, bathing, laundry, etc. that does not contain human waste, and similar wastewater from restaurants, shops, hospitals, etc.
Usually, it contains vegetables, rice grains and other foods, as well as their extractables, hair, detergents, fiber fragments, etc. Another characteristic of gray water is that its flow rate fluctuates significantly depending on the time of day. That is, the flow rate of wastewater increases significantly during the time from breakfast to washing, from dinner to bathing, and when draining the bath compared to other times. Most of the solid matter is separated from this domestic wastewater by retaining it in the adjustment tank 2. The average residence time varies depending on the quality of gray water, flow rate, etc., but it is normally 2 to 12 hours, and gray water from which solids have been removed as new gray water flows into the adjustment tank 2. It is supplied to the microbial treatment tank 4 as an upward flow. The entire microbial treatment tank 4 is filled with a microbial support, and air is blown from below the microbial support at a linear velocity of 5cm/
Delivered in minutes or more. As microbial supports, artificial lightweight aggregates, crushed stones, fibers, or plastic materials of various shapes can be used in any shape and size, but especially those with a surface area of 200 m 2 / m 3 or more, and those with heavy weight in water where buoyancy acts. Preferably, the porous particles have a density of 0.5 g/cm 3 or less, that is, a specific gravity of 1.5 or less, and that sink in water. The amount of microbial support packed is usually more than 1/10 and less than 1/3 of the average daily wastewater volume, and the BOD load is 0.5.
〜1.5Kg/ m3・day. In addition, by supplying air at a linear velocity of 5 cm/min or more, the waste water is sufficiently agitated, improving the contact between the microorganism support and the waste water, and filling the gaps between the microorganism supports filled with air bubbles. Since the water rises through the water, it is possible to prevent the microorganism support from being clogged by suspended matter in the wastewater or grown microorganisms. In particular, using porous granules with a specific gravity of 1.5 or less and sinking in water as a microbial support, and allowing the microbial support to repeatedly float and settle in response to fluctuations in the flow rate of gray water, is an effective way to improve the microbial support as well as the air flow rate. It is effective in preventing blockage. Furthermore, in the present invention, it is important that the microorganism concentration in the microorganism treatment tank 4 is 5 to 15 g/. Here, the microorganism concentration refers to the dry weight of microorganisms per unit volume of the microorganism treatment tank 4, and compared to the microorganism concentration in the tank of 2 to 3 g/in the conventional domestic wastewater microbial treatment method, the present invention has a significantly higher microorganism concentration. It has a very high concentration. Such a high microbial concentration is achieved by filling the entire small microbial treatment tank 4 with an appropriate microbial support as described above, and by supplying wastewater to the support in an upward flow. be done. When the microorganism concentration is less than 5 g/min, the ability to decompose organic pollutants in wastewater decreases, and the treatment equipment becomes larger and more expensive, making it difficult to install in a general household. In addition, increasing the microorganism concentration to more than 15 g/g increases the risk of clogging and is unlikely to be realized. In the present invention, the microorganism concentration as described above,
Decomposition of organic pollutants in the wastewater is promoted by a dense and active microbial film formed on the surface of the microbial support by a variety of microorganisms, depending on the feeding direction of the wastewater and the linear velocity of the air. be done. Additionally, the amount of excess sludge generated can be extremely reduced.
Sedimentation and separation of sludge after microbial treatment is not required. In addition, clogging of the microbial support is prevented, and organic pollutants in the wastewater are decomposed by the microorganisms without special cleaning operations. The average residence time of wastewater in the microbial treatment tank 4 is usually 2 to 8 hours, and the treated gray water is discharged into a regular sewer or permeated into the soil. As a result, since the microorganism concentration per device is high, the device can be downsized, and a simple method for treating gray water, which is suitable for general household use, is inexpensive, and requires a small installation area, is provided. Figure 2 shows a case where a phosphorus removal step is added to the present invention, and after solid matter in wastewater is separated and organic pollutants are decomposed by microorganisms according to the above-mentioned invention, wastewater is phosphorus-removed. It is led to the removal tank 5. The phosphorus removal tank 5 is filled with a phosphorus removal agent, and phosphorus in the waste water is removed by physical adsorption or chemical reaction with the phosphorus removal agent. Here, as the phosphorus remover, aluminum,
Clay minerals containing iron, magnesium and calcium, such as allofen, aluminum, iron,
It is used by adding magnesium or calcium salt, etc., and granulating and molding it. Note that the shape of the phosphorus removing agent can be arbitrarily selected, and may be used in the form of granules, blocks, plates, or the like. Moreover, the filling amount of the phosphorus removing agent can also be appropriately determined according to the phosphorus content in the waste water, and the average residence time of the waste water in the phosphorus removal tank is usually 1 to 3 hours. Next, the relationship between water flow rate and BOD removal rate in the present invention described above is shown in Table 1 below. That is, glucose, peptone, corn staple liquor, and linear alkylbenzene sulfonate (abbreviated as LAS) are mixed in 10 small treatment tanks filled with 1.5 to 3 cm of artificial lightweight aggregate or fiber mat to produce approximately 150 mg of BOD/ What happens when model gray water adjusted to
We investigated the BOD removal rate.

【表】 第1表から、1日あたり、微生物処理槽容量の
3〜10倍の通水量、BOD負荷0.5〜1.5Kg/m2・日
でも十分なBOD除去率が得られること、すなわ
ち、有効容量が日平均排水量の1/10〜1/3の大き
さの微生物処理槽で有機質汚濁物質の約70%から
90%を除去できることが明らかである。 特に表面積が充填容積1m3あたり300m2以上あ
る多孔質の粒状体である人工軽量骨材は、従来の
微生物支持体に比較して特段に微生物が付着しや
すく、汚濁物質除去性能が優れている。 また比重が1.1〜1.2で軽量な人工軽量骨材は上
向流で排水を供給すると骨材が浮上、沈降を繰返
して骨材の洗浄効果が期待でき、容易に閉塞を防
止することができる。この人工軽量骨材は建材と
して利用されているものであり、また下水処理場
等の汚泥から製造することもでき、安価に入手す
ることができる。 次に上記と同様に人工軽量骨材を充填した200
の微生物処理槽に、上記にモデル生活雑排水を
流量変動の大きい一般家庭の排水量にあわせて午
前6時から11時までと、午後6時から9時までの
間は毎時100、他の時間は毎時20、1日合計
1200流しながらBODおよびCODの除去率を調
べた。結果を下記第2表に示す。なお、空気の空
筒線速度は10cm/分とした。また、微生物処理槽
中の微生物濃度は7g/となり、処理水中の懸
濁物質濃度は5〜20mg/であつた。
[Table] From Table 1, it is clear that a sufficient BOD removal rate can be obtained even with a water flow rate of 3 to 10 times the capacity of the microbial treatment tank per day and a BOD load of 0.5 to 1.5 kg/ m2 /day, that is, effective A microbial treatment tank with a capacity of 1/10 to 1/3 of the average daily wastewater volume removes approximately 70% of organic pollutants.
It is clear that 90% can be removed. In particular, artificial lightweight aggregate, which is a porous granular material with a surface area of 300 m 2 or more per 1 m 3 of filling volume, is particularly susceptible to the attachment of microorganisms and has superior pollutant removal performance compared to conventional microbial supports. . In addition, when artificial lightweight aggregates with a specific gravity of 1.1 to 1.2 and light weight are supplied with drainage in an upward flow, the aggregates repeatedly float and settle, which can be expected to have an aggregate cleaning effect and easily prevent blockages. This artificial lightweight aggregate is used as a building material, and can also be produced from sludge from sewage treatment plants, etc., and can be obtained at low cost. Next, 200 pieces were filled with artificial lightweight aggregate in the same way as above.
The above model gray water was added to the microbial treatment tank at a rate of 100 per hour between 6:00 a.m. and 11:00 a.m. and from 6:00 p.m. to 9:00 p.m., and at other times. 20 every hour, total for the day
The removal rate of BOD and COD was investigated while flowing at 1200 ml. The results are shown in Table 2 below. The linear velocity of the air in the cylinder was 10 cm/min. The microorganism concentration in the microorganism treatment tank was 7 g/, and the suspended solids concentration in the treated water was 5 to 20 mg/.

【表】 この第2表から、一日合計1200の排水を生ず
る家庭においても良好なBODおよびCOD除去率
を達成できることが理解できる。 また生活雑排水の水質変動、特に高濃度の洗剤
の流入の影響を調べるために、同様に200の微
生物処理槽に人工軽量骨材を充填し、空筒線速度
10cm/分で通気しながら、上記と同様に人工雑排
水を流し、1日1回濃度を変えたLASを含む水
を10分間に120流入させて流入60分後のBOD除
去率および発泡状況を調べた。結果を第3表に示
す。
[Table] From Table 2, it can be seen that a good BOD and COD removal rate can be achieved even in a household that generates a total of 1200 effluents per day. In addition, in order to investigate changes in the water quality of gray water, especially the effects of the inflow of highly concentrated detergents, we similarly filled 200 microbial treatment tanks with artificial lightweight aggregate and
While aerating at a rate of 10 cm/min, artificial gray water was flowed in the same manner as above, and water containing LAS with a different concentration was flowed in at 120 times per 10 minutes once a day, and the BOD removal rate and foaming status were measured 60 minutes after the flow. Examined. The results are shown in Table 3.

【表】 この結果から、LAS濃度は40mg/以下にす
る必要があると考えられる。 ところで一般家庭での洗濯排水中のLAS濃度
は最高250mg/程度であり、洗濯槽の容量を30
とすると、少なくとも1家庭あたり約200の
調整槽を設ければ良いことになる。この容量は5
人家庭の日平均排水量の1/5に相当し、さらに大
人数の家庭の場合には余裕をみて1/2、すなわち
500程度の調整槽を設けることが好ましい。 数家庭の排水を合併して処理する場合には、全
家庭が濃厚な洗濯水を同時に排出することはない
ので、日平均排水量の1/10程度の調整槽で良いこ
とになる。この容量は、従来の生活排水の微生物
処理における調整槽容量の1/3〜1/20に相当する。 次に同様の試験を12℃の人工雑排水で行なつた
ところ、通水量が大きい時刻のBOD除去率が約
2%低下するのみで、低温度でも十分な処理がで
きることがわかつた。 更に本発明においては、前述のように有機質汚
濁物質を除去した後の排水をリン除去剤と接触さ
せることができる。今、粘土鉱物、たとえばアロ
フエン1Kgあたりアルミニウム塩溶液1〜2を
加え、造粒、成形し、この成形物1を小型のリ
ン除去槽に充填し、上記のモデル生活雑排水を微
生物処理槽で処理した後に、リン濃度を約4mg/
に調整した水を通水量を変えて流し、リンの日
平均除去率が50%以下となるまでの使用可能日数
をしらべた。結果を下記第4表に示す。
[Table] From this result, it is considered that the LAS concentration needs to be 40mg/or less. By the way, the maximum concentration of LAS in washing waste water in ordinary households is about 250 mg/kg, and the capacity of the washing tank is reduced to 30 mg/kg.
If this is the case, it would be sufficient to install at least about 200 regulating tanks per household. This capacity is 5
It corresponds to 1/5 of the average daily wastewater discharge of a household, and in the case of a large household, it is equivalent to 1/2, i.e.
It is preferable to provide about 500 adjustment tanks. If wastewater from several households is to be treated together, a regulating tank with a capacity of about 1/10 of the average daily wastewater volume will suffice, since all households will not discharge concentrated washing water at the same time. This capacity corresponds to 1/3 to 1/20 of the capacity of the adjustment tank in conventional microbial treatment of domestic wastewater. Next, a similar test was conducted using artificial gray water at 12°C, and it was found that the BOD removal rate decreased by only about 2% during times of high water flow, indicating that sufficient treatment could be achieved even at low temperatures. Furthermore, in the present invention, wastewater after organic pollutants have been removed as described above can be brought into contact with a phosphorus removing agent. Now, add 1 to 2 parts of aluminum salt solution per 1 kg of clay mineral, for example, allofene, granulate and mold, fill this molded product 1 into a small phosphorus removal tank, and treat the above model gray water in the microbial treatment tank. After that, reduce the phosphorus concentration to about 4mg/
We ran water adjusted to the same amount at different flow rates to determine the number of days it could be used until the average daily phosphorus removal rate was 50% or less. The results are shown in Table 4 below.

【表】 この結果から、1日あたりリン除去剤体積の30
倍以下の通水量で60日間以上、リンを除去できる
こと、すなわち有効容量が日平均通水量の1/30以
上の小型のリン除去槽にリン除去剤を充填して排
水と接触させることによつて排水中のリンの50%
以上を長期間除去できることがわかる。 本発明において使用される簡易処理装置の1例
として5人用家庭の生活雑排水処理装置を第3図
AおよびBに示す。家庭からの生活雑排水1は調
整槽2の上部から供給され、固形物が除去されて
調整された排水は、隔壁6を介して下方から上向
流として微生物処理槽4に供給され、散気装置7
から気泡が供給される。 微生物処理槽4には微生物支持体8が全体に充
填されており、有機質汚染物が除去された排水は
更にリン除去槽5に導かれ、リン除去剤9で脱リ
ン後に排出される。なお、第3図AおよびBにお
いて、数字の単位はmmである。 調整槽2内には水切かごを入れておけば、かご
内に蓄積した固形物を必要に応じて容易に取り出
すことができる。また、リン除去剤は、網状プラ
スチツク容器に充填しておき、性能が低下したら
取り出して交換するようにしても良い。 以上述べたように本発明によれば、比重が1.5
以下で、かつ水に沈む多孔質粒状体が微生物支持
体として使用される。 また、生活雑排水特有の大きな流量変動を利用
して微生物支持体を流動させるようにしてある。 更に、これら条件に加えて、多孔質粒状体の表
面積が充填容積1m3あたり300m2以上であり、排
水を上向流として供給し、空気を5cm/分以上で
供給することの総ての条件を同時に満たすことに
よつて、微生物支持体の閉塞、目詰りを防止し、
微生物支持体の洗浄操作を行わずに排水が処理さ
れる。 すなわち本発明においては、排水流量が少ない
ときは微生物支持体は沈降傾向にあつて固定床状
となり、一方、排水流量が多いときには微生物支
持体は浮遊、沈降を繰り返して流動床状となる。 微生物支持体のかかる浮上、沈降は、微生物支
持体の間隙をぬつて上昇する気泡による作用と共
に、微生物支持体の閉塞、目詰りを防止し、定期
的な微生物支持体を洗浄操作なしで排水中の有機
汚濁物質を微生物処理することができる 従つて本発明によれば、微生物支持体の洗浄操
作を行なわないので、洗浄のための装置、操作が
全く不要であり、装置が小型、安価であり、維持
管理が容易である。 従つて本発明は、生活雑排水の簡易処理方法と
して好適である。さらに微生物の繁殖が著るしく
促進されるので、微生物処理槽内にバクテリアを
はじめとして原生動物、後生動物その他の多種類
の生物が高濃度で共生し、この結果、余剰汚泥の
生成量を大巾に減少することができ、従来のよう
に沈殿分離した汚泥の処理が全く不要になる。 従つて、処理後の排水を下水溝などに直接放流
することができ、装置の維持に手間がかからな
い。このことは本発明の方法が一般家庭用等の小
規模生活体からの排水の簡易な処理方法として更
に好ましいものであることを裏付けている。 以下、本発明の実施例を述べる。 実施例 1 5人家族の家庭の炊事、風呂、洗濯などによる
1日平均980の生活雑排水を、第3図Aおよび
Bに示した排水処理装置を用いて処理した。 微生物処理槽4には直径1.5〜3cmの人工軽量
骨材を充填し、通気は10cm/分とした。 この結果、排水中のBODは8〜25mg/、
CODは7〜15mg/に保たれ、1日のBOD負荷
量の約83%、COD負荷量の約75%を除去するこ
とができた。なお、この場合の微生物処理槽内の
微生物濃度は約7.5g/であり、また送風機の
電力消費量は、1日約1KWhにすぎなかつた。 実施例 2 実施例1によつて有機質汚濁物質が除去された
排水を前記した如くアロフエンにアルミニウム塩
を添加したリン除去剤30と接触させたところ、
排水中の全リン濃度は61日間1.0mg/以下に保
たれ、1日のリン負荷量の約60%を除去すること
ができた。 実施例 3 飲食店の1日平均8.3m3の厨房排水を、1m3
調整槽と、人工軽量骨材を充填した2m3の微生物
処理槽で14cm/分で通気して処理したところ、処
理水中のBODを20mg/以下、CODを15mg/
以下に保つことができた。 比較実施例 1 微生物支持体として下記第5表に性質を示した
砕石、ラシヒリング、ハニカムチユーブ、比重の
大きな多孔質粒状体である人工軽量骨材A、およ
び実施例1,3で用いたと同様な比重の小さな多
孔質粒状体である人工軽量骨材Bを充填した10
の小型処理槽にBOD約140mg/の実際の家庭の
生活雑排水を120/日で上向流で供給しながら、
微生物支持体の下方から10cm/分で通気した場合
の微生物濃度、BOD除去率ならびに閉塞による
偏流の有無を第6表に示す。
[Table] From this result, 30% of the volume of phosphorus remover per day
Phosphorus can be removed for more than 60 days with less than twice the amount of water flowing through the tank, that is, by filling a small phosphorus removal tank with an effective capacity of 1/30 or more of the average daily water flow rate and bringing it into contact with wastewater. 50% of phosphorus in wastewater
It can be seen that the above can be removed for a long period of time. As an example of a simple treatment device used in the present invention, a gray water treatment device for a five-person household is shown in FIGS. 3A and 3B. Domestic gray water 1 is supplied from the upper part of the adjustment tank 2, and the regulated wastewater with solids removed is supplied to the microbial treatment tank 4 as an upward flow from below through the partition wall 6, where it is aerated. Device 7
Air bubbles are supplied from The microbial treatment tank 4 is entirely filled with a microbial support 8, and the wastewater from which organic contaminants have been removed is further led to the phosphorus removal tank 5, dephosphorized with a phosphorus removal agent 9, and then discharged. In addition, in FIGS. 3A and 3B, the units of numbers are mm. If a draining basket is placed in the adjustment tank 2, the solids accumulated in the basket can be easily taken out as needed. Alternatively, the phosphorus remover may be filled in a mesh plastic container and removed and replaced when performance deteriorates. As described above, according to the present invention, the specific gravity is 1.5.
Below and submerged porous granules are used as microbial supports. In addition, the microbial support is made to flow by utilizing the large flow rate fluctuations peculiar to gray water. Furthermore, in addition to these conditions, the surface area of the porous granules is 300 m 2 or more per 1 m 3 of filling volume, the drainage is supplied as an upward flow, and the air is supplied at a rate of 5 cm / min or more. By simultaneously filling the
Wastewater is treated without washing the microbial support. That is, in the present invention, when the drainage flow rate is low, the microbial support tends to settle and forms a fixed bed, whereas when the drainage flow is large, the microorganism support repeatedly floats and settles, forming a fluidized bed. Such flotation and sedimentation of the microbial support, together with the action of air bubbles rising through the gaps in the microbial support, prevents blockage and clogging of the microbial support, and allows the microbial support to be drained without periodic cleaning operations. Therefore, according to the present invention, since the microbial support is not cleaned, there is no need for cleaning equipment or operations, and the equipment is small and inexpensive. , easy to maintain and manage. Therefore, the present invention is suitable as a simple method for treating gray water. Furthermore, as the proliferation of microorganisms is significantly promoted, bacteria, protozoa, metazoa, and many other types of organisms coexist in the microbial treatment tank at high concentrations, resulting in a large amount of surplus sludge being produced. There is no need to treat sludge that has been precipitated and separated as in the past. Therefore, the treated wastewater can be directly discharged into a sewage ditch, etc., and maintenance of the device does not require much effort. This proves that the method of the present invention is more preferable as a simple method for treating wastewater from small-scale living entities such as general households. Examples of the present invention will be described below. Example 1 An average of 980 grey-water wastewater generated per day from cooking, bathing, washing, etc. of a family of five people was treated using the wastewater treatment equipment shown in FIGS. 3A and B. The microbial treatment tank 4 was filled with artificial lightweight aggregate having a diameter of 1.5 to 3 cm, and the ventilation rate was 10 cm/min. As a result, the BOD in wastewater was 8 to 25 mg/,
COD was maintained at 7 to 15 mg/day, and approximately 83% of the daily BOD load and approximately 75% of the COD load could be removed. In this case, the concentration of microorganisms in the microorganism treatment tank was about 7.5 g/day, and the power consumption of the blower was only about 1 KWh per day. Example 2 When the wastewater from which organic pollutants were removed according to Example 1 was brought into contact with the phosphorus removal agent 30, which was prepared by adding aluminum salt to allofene as described above,
The total phosphorus concentration in the wastewater was maintained at less than 1.0 mg/day for 61 days, and approximately 60% of the daily phosphorus load was removed. Example 3 An average of 8.3 m 3 of kitchen wastewater per day at a restaurant was treated in a 1 m 3 regulating tank and a 2 m 3 microbial treatment tank filled with artificial lightweight aggregate by aerating at 14 cm/min. BOD in water less than 20mg, COD 15mg/
I was able to keep it below. Comparative Example 1 As a microorganism support, crushed stone, Raschig ring, honeycomb tube, whose properties are shown in Table 5 below, artificial lightweight aggregate A which is a porous granular material with a large specific gravity, and the same material as used in Examples 1 and 3 were used. 10 filled with artificial lightweight aggregate B, which is a porous granular material with a small specific gravity.
While supplying actual domestic gray water with a BOD of approximately 140 mg/day to a small treatment tank in an upward flow at 120/day,
Table 6 shows the microorganism concentration, BOD removal rate, and presence or absence of uneven flow due to blockage when ventilation was performed from below the microorganism support at a rate of 10 cm/min.

【表】【table】

【表】 第5表、第6表から、従来の微生物支持体であ
る砕石、ラシヒリング、ハニカムチユーブなどで
は微生物濃度が5g/以下にしかならないた
め、BOD除去率が高くならないのに対して、比
表面積が300m2/m3以上ある多孔質粒状体である
人工軽量骨材AおよびBでは、他の微生物支持体
に比べて特段に微生物濃度が高くなることが明ら
かである。 また比重が2.8の砕石、2.6のラシヒリング、1.6
の人工軽量骨材Aでは、閉塞して水および空気の
流れが偏るが、比重が1.2のハニカムチユーブお
よび1.1の人工軽量骨材Bでは閉塞しないことが
明らかである。 すなわち、表面積が充填容積1m3あたり300m2
以上ある人工軽量骨材(人工石)などの多孔質の
粒状体は、特段に微生物が付着しやすく、微生物
濃度を5〜15g/の高濃度とすることができ
る。 また特に人工軽量骨材Bのように比重が1.5以
下の軽量な多孔質の粒状体を用いて排水を上向流
で供給し、かつ空気を5cm/分以上の速度で微生
物支持体の下方から供給することによつて、微生
物支持体が排水流量の変動に伴つて、浮上、沈降
を繰り返して洗浄され、容易に閉塞を防止するこ
とができる。
[Table] Tables 5 and 6 show that conventional microbial supports such as crushed stone, Raschig rings, and honeycomb tubes have a microbial concentration of only 5 g/or less, so the BOD removal rate is not high. It is clear that artificial lightweight aggregates A and B, which are porous granules with a surface area of 300 m 2 /m 3 or more, have a particularly high microbial concentration compared to other microbial supports. In addition, crushed stone with a specific gravity of 2.8, Raschig ring with a specific gravity of 2.6, and 1.6
It is clear that artificial lightweight aggregate A with a specific gravity of 1.2 and artificial lightweight aggregate B with a specific gravity of 1.1 do not clog, although the flow of water and air is biased due to blockage. That is, the surface area is 300 m 2 per 1 m 3 of filling volume.
Porous granular materials such as the above-mentioned artificial lightweight aggregates (artificial stones) are particularly susceptible to attachment of microorganisms, and the microorganism concentration can be as high as 5 to 15 g/g. In particular, by using lightweight porous granules with a specific gravity of 1.5 or less, such as artificial lightweight aggregate B, wastewater is supplied in an upward flow, and air is supplied from below the microbial support at a speed of 5 cm/min or more. By supplying the water, the microorganism support is washed by repeatedly floating and settling as the flow rate of the waste water changes, and clogging can be easily prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の工程図、第2図は本発明にリ
ン除去の工程を付加した場合を示す工程図、第3
図Aおよび第3図Bは本第2の発明に用いる排水
処理装置の説明図である。 1…生活雑排水、2…調整槽、4…微生物処理
槽、5…リン除去槽。
Figure 1 is a process diagram of the present invention, Figure 2 is a process diagram showing the case where a phosphorus removal process is added to the present invention, and Figure 3 is a process diagram of the present invention.
Figures A and 3B are explanatory diagrams of a wastewater treatment device used in the second invention. 1... Gray water, 2... Adjustment tank, 4... Microbial treatment tank, 5... Phosphorus removal tank.

Claims (1)

【特許請求の範囲】[Claims] 1 生し尿を含まない、流量変動の大きい生活雑
排水を滞留させ、固形物を分離して水質を調整
し、この排水を、表面積が充填容積1m3あたり
300m2以上であり、比重が1.5以下、かつ水に沈む
多孔質粒状体を微生物支持体として充填した槽に
上向流として供給すると共に、この微生物支持体
の下方から空気を5cm/分以上で供給して該槽あ
たりの微生物濃度を5〜15g/に維持しながら
前記生活雑排水の流量変動に応じて該微生物支持
体の浮遊、沈降を繰り返させ、該微生物支持体の
洗浄操作を行わずに前記排水中の有機質汚濁物質
を微生物により分解させることを特徴とする生活
雑排水の簡易処理方法。
1. Domestic wastewater that does not contain raw human waste and has large fluctuations in flow rate is retained, solids are separated to adjust the water quality, and this wastewater is divided into areas with a surface area of 1 m3 of filling volume.
300 m 2 or more, specific gravity 1.5 or less, and sinking porous granules are supplied as a microbial support as an upward flow, and air is blown from below the microbial support at a rate of 5 cm/min or more. While maintaining the microorganism concentration per tank at 5 to 15 g per tank, the microorganism support is repeatedly suspended and sedimented according to the fluctuation in the flow rate of the gray water, and the microorganism support is not washed. A simple method for treating gray water, characterized in that organic pollutants in the wastewater are decomposed by microorganisms.
JP58039184A 1983-03-11 1983-03-11 Simple treatment of miscellaneous living waste water Granted JPS59166291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039184A JPS59166291A (en) 1983-03-11 1983-03-11 Simple treatment of miscellaneous living waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039184A JPS59166291A (en) 1983-03-11 1983-03-11 Simple treatment of miscellaneous living waste water

Publications (2)

Publication Number Publication Date
JPS59166291A JPS59166291A (en) 1984-09-19
JPH0227037B2 true JPH0227037B2 (en) 1990-06-14

Family

ID=12546022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039184A Granted JPS59166291A (en) 1983-03-11 1983-03-11 Simple treatment of miscellaneous living waste water

Country Status (1)

Country Link
JP (1) JPS59166291A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586450B2 (en) * 1986-03-25 1997-02-26 ヤマハ株式会社 Waveform storage and playback device
JPH0852498A (en) * 1994-08-11 1996-02-27 Ube Chem Ind Co Ltd Method for removing water-bloom and for suppressing its abnormal generation
CN111875023B (en) * 2020-08-04 2021-12-14 中国科学技术大学 Method for removing phosphate and organic macromolecules in water body

Also Published As

Publication number Publication date
JPS59166291A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
US5227051A (en) System for processing organic waste liquid
Bhargava Physico-chemical waste water treatment technologies: an overview
DK175924B1 (en) Process and reactor for purifying water
US7785469B2 (en) Waste water treatment process system
JP6505684B2 (en) Reduction of substances in contaminated fluids using natural product growth media
Ibrahim et al. Improvements in biofilm processes for wastewater treatment
US6960304B1 (en) Wastewater treatment
JPH0227037B2 (en)
EP3558877B1 (en) Waste water purification system
Dacewicz et al. Application of a double layer sand filter with a PUR foams layer in the treatment of domestic sewage with an increased content of ammonia nitrogen
JPH06142668A (en) Purifying treatment device for organic sewage
CN106315852A (en) Self-cleaning continuous flow active sludge filter bed for sewage deep purification and surface water source treatment
Thanappan Waste water (Sewage) Treatments
Hamidi et al. Performance of pozzolan in trickling filter for secondary treatment of urban wastewater in Tlemcen, Algeria
KR100304404B1 (en) Dense wastewater treatment method by fixed biofilm and continuous backwash filtration
JP4013125B2 (en) Remodeling method of existing single septic tank to garbage disposal equipment
AU2005306597B2 (en) Waste water treatment process system
Govind Sustainable Treatment and Reuse of Water Using Decentralized Systems
JPH05138185A (en) Treatment of organic sewage and equipment
JP2002119984A (en) Tank and method for sewage cleaning
Saleh et al. A Study to Distinguish Between Wastewater Treatment Plants in Rural Egypt
Dacewicz et al. ZASTOSOWANIE DWUWARSTWOWEGO FILTRA PIASKOWEGO Z WARSTWĄ PIANKI PUR W PROCESIE OCZYSZCZANIA ŚCIEKÓW BYTOWYCH O PODWYŻSZONEJ ZAWARTOŚCI AZOTU AMONOWEGO
JPH03296494A (en) Treatment apparatus for organic polluted water
KR20000002327A (en) Treatment method of sewage and waste water by using bottom-up filtration biological film process and its apparatus
JP2572327B2 (en) Organic wastewater treatment method and treatment apparatus