JPH02285238A - Laser diffraction type particle size distribution measuring apparatus - Google Patents
Laser diffraction type particle size distribution measuring apparatusInfo
- Publication number
- JPH02285238A JPH02285238A JP1108059A JP10805989A JPH02285238A JP H02285238 A JPH02285238 A JP H02285238A JP 1108059 A JP1108059 A JP 1108059A JP 10805989 A JP10805989 A JP 10805989A JP H02285238 A JPH02285238 A JP H02285238A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- particle size
- size distribution
- laser diffraction
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
本発明は、特に凝集や付着力の強い試料粒子の粒度分布
を測定するのにM用なレーザ回折式粒度分布測定装置に
関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a laser diffraction type particle size distribution measuring device for use in measuring the particle size distribution of sample particles that have particularly strong agglomeration and adhesion.
(ロ)従来技術
従来のレーザ回折式粒度分布測定装置の全体構成図t−
第3図に示す。(B) Prior art Overall configuration diagram of a conventional laser diffraction particle size distribution measuring device t-
It is shown in Figure 3.
1は、懸濁液全収容する試料容器、2は超音波バス、3
は懸濁液を循環させる循環ポンプ、3は循環流路、4は
フロー七μ、5はフローセ/I/4円の懸濁液にレーザ
ー光を照射する友めの半導体レーザ、6はコリメータ、
7は回折光を集光するための集光レンズ、8は回折像を
結像させる検出器、9は超音波バスに超音波を伝達する
超音波振動子、10は発振器、11はスターテ、12は
スリット、13は側万散乱元を検出する散乱元受元素子
、14はコンビーータである。1 is a sample container that contains the entire suspension, 2 is an ultrasonic bath, and 3
is a circulation pump that circulates the suspension, 3 is a circulation flow path, 4 is a flow 7 μ, 5 is a companion semiconductor laser that irradiates the suspension with Frose/I/4 circle, 6 is a collimator,
7 is a condensing lens for condensing diffracted light, 8 is a detector for forming a diffraction image, 9 is an ultrasonic transducer for transmitting ultrasonic waves to an ultrasonic bus, 10 is an oscillator, 11 is a starter, 12 1 is a slit, 13 is a scattering element for detecting a scattering source, and 14 is a combeater.
以上の構成において、粒度分布を測定するには、まず懸
濁液s2超音波の撮動により容器l内で浮遊させた状態
とする。そして、ポンプ3により懸濁液Sを容器1→7
a−セル4→容器1内で循環させる。循環中に半導体レ
ーザ5よQ7C1−−に/L/4にレーザ光を照射する
と、レーザ光は懸濁液S中の粒子により口折される。そ
の1折yti−集光レンズ7で集光すれば粒子群の背後
にリング状の回折像が得られ、この回折元リングの直径
および強度分布が粒度分布と相関上もっており、粒度分
布が測定できる。なお、粒度分布と相関tもつ回折像パ
ターンの解析はコンビ^−夕14により行われる。In the above configuration, in order to measure the particle size distribution, the suspension s2 is first suspended in the container 1 by ultrasonic imaging. Then, pump 3 pumps the suspension S from container 1 to container 7.
a-Cell 4→Circulate within container 1. When the semiconductor laser 5 Q7C1-- is irradiated with laser light at /L/4 during circulation, the laser light is refracted by particles in the suspension S. When the first fold yti-condensing lens 7 focuses the light, a ring-shaped diffraction image is obtained behind the particle group, and the diameter and intensity distribution of this diffraction source ring are correlated with the particle size distribution, and the particle size distribution is measured. can. Incidentally, the analysis of the diffraction image pattern having the correlation t with the particle size distribution is performed by the combination 14.
Eウ 発明が解決しようとする課題
上述し次従来装置は、循環ボンデ3にはシゴキボンデが
用いられ、そして循環流路3にはシリコンチー−ブやバ
イトンチ轟−プが用いらnてい友。Problems to be Solved by the Invention In the above-mentioned conventional apparatus, a squeeze bonder is used for the circulation bonder 3, and a silicone tube or a bitonch blower is not used for the circulation flow path 3.
従って、凝集力や付着力の強い粉体を測定する場合には
、試料がポンプ、チーープを経てフそn故、従来にあっ
ては上記した粉体の測定にはレーザ回折式粒度分布測定
器は全く使えずフルイ法によす行わnていた。この方法
は、網の目の異なる7/I/イを何段にも積み上げ、ど
の7〃イにとn位の粒子が捕集されるかt見ることによ
り粒度分布を測定するものである。Therefore, when measuring powders with strong cohesive force or adhesive force, the sample passes through a pump and a cheap tube. I couldn't use it at all and had to resort to the sieve method. In this method, the particle size distribution is measured by stacking 7/I/I with different mesh sizes in several stages and checking which 7/I/I collects particles in the nth position.
しかしながら、この方法では測定に時間kl!イの管理
が容易でなかった。However, this method requires time kl! management was not easy.
そこで、本発明は上記課題を解決し、凝集力付着力の強
い粉体でもレーザ回折式粒度分布測定装置で測定できる
ようにすること全目的とする。SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the above problems and to enable even powders with strong cohesive force to be measured by a laser diffraction particle size distribution analyzer.
に)課題を解決する几めの手段
本発明は、上記課題を解決するため試料を流通させたフ
ローセルにレーザ光を照射し、それから生じる回折光を
測定することにエフ、試料中の粒度分布t−測測定るレ
ーザ回折式粒度分布測定装置において、
前記フローセyに試料を循環流通させる流路を非付着性
の材質で形成すると共に、試料の流通手段を圧送液手段
にて構成することを特徴とする。In order to solve the above-mentioned problems, the present invention irradiates a flow cell through which a sample is passed with a laser beam and measures the diffracted light generated thereby. - A laser diffraction particle size distribution measuring device for measurement, characterized in that the flow path for circulating the sample through the flowsay is formed of a non-adhesive material, and the sample circulation means is constituted by a pumping liquid means. shall be.
0こで、非付着性の材質とは、例えばテフロンチ為−プ
が該当し、圧送手段としてはピストンボンデが挙げられ
る。Here, the non-adhesive material is, for example, a Teflon tip, and the pressure feeding means is a piston bond.
(ホ)作用
本発明は、試料を流通させる流路を非付着性の材質で形
成しているので流路内に試料が凝集付着することはなく
、tx試料流通手段がシゴキポンデではなく、圧送液手
段にて構成しているので、−ボンデ内に試料が凝集、付
着することはない。(e) Function In the present invention, since the flow channel through which the sample flows is formed of a non-adhesive material, the sample does not coagulate and adhere to the flow channel, and the tx sample flow means is not a squeeze pump, but a pumping liquid. Since the sample is configured by means, - the sample does not aggregate or adhere to the inside of the bonder.
(へ)実施例 本発明の実施例を図面に基づいて説明する。(f) Example Embodiments of the present invention will be described based on the drawings.
第1図は、本発明に係る装置の全体概略図で従来装置(
第3図)と同じものには同じ番号が付しである。FIG. 1 is an overall schematic diagram of the device according to the present invention, and is a conventional device (
Items that are the same as those in Figure 3) are given the same numbers.
すなわち、lは懸濁液を収容する試料容器、2fl超f
波バス、4は70−セ&、51jフローセ/l/4内の
懸濁液にレーザー元を照射するための半導体レーザ、6
はコリメータ、7は回折光を集光する土めの集光レンズ
、8は回折像を結像させる検出面、9は超音波バスに超
音波を伝達する超音波振動子、10は発振器、11はス
ターテ、12はスリット、13は、側方散乱元を検出す
る散乱元受元素子、14はコンビーータである。That is, l is the sample container containing the suspension, and f over 2 fl
wave bath, 4 is a semiconductor laser for irradiating the suspension in the 70-ce&, 51j flose/l/4 with a laser source, 6
is a collimator, 7 is a clay condenser lens that collects diffracted light, 8 is a detection surface that forms a diffraction image, 9 is an ultrasonic transducer that transmits ultrasonic waves to an ultrasonic bus, 10 is an oscillator, and 11 12 is a slit, 13 is a scattering source receiving element for detecting a side scattering source, and 14 is a combeater.
そして、33.34Fi本発明の特徴部分で、33が試
料流通手段、34がテフロンチ為−ブで形成され次循環
流路である。33.34Fi is a characteristic part of the present invention, and 33 is a sample distribution means, and 34 is a secondary circulation channel formed of a Teflon tube.
I富
試料流通手段33、漏斗状のポンプ槽332とピストン
ポンプ331で構成され、ピストンボンデ331はパツ
キン333t−介してキャップ334にLリボンプ槽3
32と連結される。It is composed of an I-rich sample distribution means 33, a funnel-shaped pump tank 332, and a piston pump 331, and the piston bonder 331 is connected to the cap 334 via a packing 333t.
32.
キャップ334は、ピストンボンデ331 ’kW続す
る大の他に循環流路34ヲ差し込む九めの穴が設けらn
ている。The cap 334 is provided with a ninth hole into which the circulation flow path 34 is inserted, in addition to the diameter that connects the piston bond 331'kW.
ing.
また、ポンプ槽332の下部は逆止弁335 を介して
循環流路34が連結さnている。Further, a circulation flow path 34 is connected to the lower part of the pump tank 332 via a check valve 335.
なお、ピストンポンプ331の動作はコンビ島−夕14
で制御さnる。In addition, the operation of the piston pump 331 is as follows:
Controlled by
次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.
まず、試料を超音波の振動により容器1内で分散する。First, a sample is dispersed within the container 1 by ultrasonic vibration.
そしてピストンボンデ331を作動しボンデ槽332内
tMJ圧すると試料は矢印の方向に流れる。この時試料
は70一セ/94i通るので従来装置と同じ手法で粒度
分布を測定する。Then, when the piston bonder 331 is activated and the pressure in the bonder tank 332 is tMJ, the sample flows in the direction of the arrow. At this time, the sample passes through 701c/94i, so the particle size distribution is measured using the same method as in the conventional device.
測定が終了すnばピストンポンプ331により減圧と加
圧をくり返せば同様な測定が何回も行える。Once the measurement is completed, the same measurement can be performed many times by repeating depressurization and pressurization by the piston pump 331.
なお、ピストンポンプ331によりポンプ槽332内が
減圧になっても檜の下部に逆止弁335が設けであるの
で試料が逆流することはない。Note that even if the pressure inside the pump tank 332 is reduced by the piston pump 331, the sample will not flow back because a check valve 335 is provided at the bottom of the cypress.
以上の動作において本発明の有効性t−夾験し1例を第
2図に示す。FIG. 2 shows an example of the effectiveness of the present invention in the above operation.
こfLは、試料としてテフロン粉末上用いて行り次もの
で、第2図(a)は、従来装置で実験し几場合の粒!分
布曲線、第2図中)は、本発明の装置で実験した場合の
粒度分布曲線である。図中縦軸は、積算粒子量(体積%
)、横軸は粒子径(μ駕)を示す。This fL was obtained by using Teflon powder as a sample, and Figure 2 (a) shows the grain size obtained when experimenting with a conventional device. The distribution curve (in FIG. 2) is the particle size distribution curve when experimented with the apparatus of the present invention. The vertical axis in the figure is the cumulative particle amount (volume%
), the horizontal axis shows the particle diameter (μ).
第2図より明らかなように本発明によ几ば、同一試料を
数回測定した場合、全て同一結果を得れることがわかる
。こルは、測定回数を増加させても、試料がボンデや流
路に凝集、付着しないことt意味する。As is clear from FIG. 2, according to the present invention, when the same sample is measured several times, the same results can be obtained. This means that even if the number of measurements is increased, the sample will not aggregate or adhere to the bonder or flow path.
(ト)効果
本発明によれば、凝集や付着力の強い粒度分布の測定が
可能となる。(g) Effects According to the present invention, it is possible to measure particle size distributions with strong agglomeration and adhesive force.
巣に、濃硫酸、濃塩酸、濃硝酸などの強酸溶液や強アル
カリ液中に分散している粒子及びエチルメチルケトン、
ト〃エン、テトラヒトミフランなどのようにシリコン、
バイトンチ為−フ。Particles and ethyl methyl ketone dispersed in strong acid solutions such as concentrated sulfuric acid, concentrated hydrochloric acid, and concentrated nitric acid, and strong alkaline solutions.
silicone, such as toene, tetrahtomifuran, etc.
Baitonchi Tamefu.
を溶解する有機溶剤に分散した粒子の粒度分布測定にも
適用できる。It can also be applied to particle size distribution measurements of particles dispersed in organic solvents that dissolve
第1図は本発明の実施例を示す図、第2図(a)。
(b)は従来装置と本発明装置によりテフロン粉末の粒
度分布を測定したときの粒度分布曲線、第31!lt従
来図である。
33・・・試料流通手段
34・・・テフロンチ^−プ
従来濠担)
本去(し)
第1菌
第2図FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2(a). (b) is the particle size distribution curve when the particle size distribution of Teflon powder was measured using the conventional device and the device of the present invention, No. 31! It is a conventional diagram. 33...Sample distribution means 34...Teflon chip (conventional moat carrier) First bacteria Figure 2
Claims (1)
それから生じる回折光を測定することにより試料中の粒
度分布を測定するレーザ回折式粒度分布測定装置におい
て、 前記フローセルに試料を循環流通させる流路を非付着性
の材質で形成すると共に、試料の流通手段を圧送液手段
にて構成することを特徴とするレーザ回折式粒度分布測
定装置。[Claims] 1. Irradiating a flow cell through which a sample flows with a laser beam,
In a laser diffraction particle size distribution measuring device that measures the particle size distribution in a sample by measuring the diffracted light generated from the laser diffraction, a flow path for circulating the sample through the flow cell is formed of a non-adhesive material, and a flow path for the sample is 1. A laser diffraction particle size distribution measuring device, characterized in that the means comprises a pumping liquid means.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1108059A JPH02285238A (en) | 1989-04-27 | 1989-04-27 | Laser diffraction type particle size distribution measuring apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1108059A JPH02285238A (en) | 1989-04-27 | 1989-04-27 | Laser diffraction type particle size distribution measuring apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02285238A true JPH02285238A (en) | 1990-11-22 |
Family
ID=14474865
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1108059A Pending JPH02285238A (en) | 1989-04-27 | 1989-04-27 | Laser diffraction type particle size distribution measuring apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02285238A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6864979B2 (en) * | 2000-12-08 | 2005-03-08 | Horiba, Ltd | Particle size distribution measuring apparatus |
-
1989
- 1989-04-27 JP JP1108059A patent/JPH02285238A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6864979B2 (en) * | 2000-12-08 | 2005-03-08 | Horiba, Ltd | Particle size distribution measuring apparatus |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2638085B2 (en) | Biospecific multiplex analyte assays | |
| US4476231A (en) | Method of analyzing the distribution of a reagent between particles and liquid in a suspension | |
| RU2638913C2 (en) | Systems and methods for detecting particles in useful agent | |
| CN104704343B (en) | heterogeneous fluid sample characterization | |
| GR3029446T3 (en) | Method of preparing a radioactive rhenium complex solution. | |
| US8772739B2 (en) | Fluorescence detection device and fluorescence detection method | |
| US5561520A (en) | Measuring properties of a slurry | |
| CN102822665A (en) | Fluorescence detection device and fluorescence detection method | |
| US4890925A (en) | Method and apparatus for detecting particular particulate substance | |
| EP0180140B1 (en) | Method for analyzing impurities in liquid and apparatus therefor | |
| Einav et al. | Measurement of velocity profiles of red blood cells in the microcirculation by laser doppler anemometry (LDA) | |
| JPH02285238A (en) | Laser diffraction type particle size distribution measuring apparatus | |
| JPS62142274A (en) | Method and device for measuring antibody content in blood | |
| CN108226015A (en) | A kind of new liquid grain count method and system | |
| JP3850403B2 (en) | Particle detector | |
| JP4605327B2 (en) | Aggregation monitoring device | |
| JP2675895B2 (en) | Sample processing method, sample measuring method, and sample measuring device | |
| JP2003035655A (en) | Method and apparatus for measuring suspended particulate matter | |
| JP2002372489A (en) | Particle measuring method and device | |
| US7004824B1 (en) | Method and apparatus for detecting and dispersing agglomerates in CMP slurry | |
| JPH10260181A (en) | Red blood cell measuring method | |
| JP2001004523A (en) | Apparatus and method for measuring particle in liquid | |
| JPH10267827A (en) | Particle-aggregation measuring apparatus | |
| JPH0619349B2 (en) | Body fluid component analysis method and apparatus | |
| JP3783574B2 (en) | Particle size distribution measuring device |