[go: up one dir, main page]

JPH02288328A - Method of growing crystal - Google Patents

Method of growing crystal

Info

Publication number
JPH02288328A
JPH02288328A JP11038689A JP11038689A JPH02288328A JP H02288328 A JPH02288328 A JP H02288328A JP 11038689 A JP11038689 A JP 11038689A JP 11038689 A JP11038689 A JP 11038689A JP H02288328 A JPH02288328 A JP H02288328A
Authority
JP
Japan
Prior art keywords
thin film
amorphous
crystal
ion implantation
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11038689A
Other languages
Japanese (ja)
Other versions
JP2695466B2 (en
Inventor
Takao Yonehara
隆夫 米原
Hideya Kumomi
日出也 雲見
Nobuhiko Sato
信彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1110386A priority Critical patent/JP2695466B2/en
Priority to DE69031880T priority patent/DE69031880T2/en
Priority to EP90303479A priority patent/EP0390607B1/en
Publication of JPH02288328A publication Critical patent/JPH02288328A/en
Priority to US07/790,083 priority patent/US5290712A/en
Application granted granted Critical
Publication of JP2695466B2 publication Critical patent/JP2695466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体薄膜の形成方法に係り、より詳細には
、たとえばTPT (薄膜トランジスタ)等の半導体装
置を高性能に作り得る、大粒径かつ粒界位置の制御され
た半導体薄膜の形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a semiconductor thin film, and more particularly, it relates to a method for forming a semiconductor thin film, and more particularly, it relates to a method for forming a semiconductor thin film, and more specifically, a method for forming a semiconductor thin film, and more specifically, a method for forming a semiconductor thin film, and more particularly, a method for forming a semiconductor thin film, and more particularly, a method for forming a semiconductor thin film with a large particle size, which enables the production of high performance semiconductor devices such as TPT (thin film transistor). The present invention also relates to a method for forming a semiconductor thin film with controlled grain boundary positions.

[従来の技術及び発明が解決しようとする課題]非晶質
基板等の基体上に結晶薄膜を成長させる結晶形成技術の
分野におけるひとつの方法として、基体上に予め形成さ
れた非晶質薄膜を融点以下の低温におけるアニールによ
って固相成長させる方法が提案されている。例えば、非
晶質のSin、表面上に形成された膜厚約1100n程
の非晶質Si薄膜を、N274囲気中において、800
℃でアニールすることにより、前記非晶質St薄膜を結
晶化すると、大粒径が5μm程度の多結晶薄膜になると
いう結晶形成方法が報告された(T、 Noguchi
、 H,Hayashi and )1.Ohshim
a。
[Prior art and problems to be solved by the invention] One of the methods in the field of crystal formation technology for growing a crystal thin film on a substrate such as an amorphous substrate is to grow an amorphous thin film on a substrate in advance. A method of solid phase growth by annealing at a low temperature below the melting point has been proposed. For example, an amorphous Si thin film with a thickness of about 1100 nm formed on the surface of amorphous Si is heated at 800 nm in an N274 atmosphere.
A crystal formation method has been reported in which the amorphous St thin film is crystallized by annealing at ℃ to form a polycrystalline thin film with a large grain size of about 5 μm (T, Noguchi
, H. Hayashi and )1. Ohshim
a.

1987、Mat、Res、  Soc、  Symp
、  Proc、、  10B。
1987, Mat, Res, Soc, Symp
, Proc, , 10B.

Po1ysilicon and Interface
s、 2!13.(ElsevierScience 
Publishing、 New York 1988
)) a この方法により得られる多結晶薄膜の表面は
平坦なままであるので、そのままMOS)−ランジスタ
やダイオードのような電子素子を形成することが可能で
ある。また、それらの素子は、多結晶の平均粒径がLP
CVD法によって堆積した通常の多結晶St等に比べて
ずっと大きいために、比較的高性能のものが得られる。
Polysilicon and Interface
s, 2!13. (Elsevier Science
Publishing, New York 1988
)) a Since the surface of the polycrystalline thin film obtained by this method remains flat, it is possible to form electronic devices such as MOS transistors and diodes as is. In addition, in those elements, the average grain size of polycrystals is LP
Since it is much larger than ordinary polycrystalline St etc. deposited by CVD, a relatively high performance product can be obtained.

しかしながら、この結晶形成方法においては、結晶粒径
こそ大きいものの、その分布と結晶粒界の位置が制御さ
れていない。なぜなら、この場合、非晶質Si薄膜の結
晶化は、アニールによって非晶質中にランダムに発生し
た結晶核の固相成長に基づいているため、粒界の位置も
またランダムに形成され、その結果、粒径が広い範囲に
わたって分布してしまうからである。したがって、単に
結晶粒の平均粒径が大きいだけでは以下のような問題点
が生じる。
However, in this crystal formation method, although the crystal grain size is large, the distribution and the position of the crystal grain boundaries are not controlled. This is because, in this case, the crystallization of the amorphous Si thin film is based on the solid phase growth of crystal nuclei randomly generated in the amorphous material by annealing, so the positions of the grain boundaries are also formed randomly; This is because, as a result, the particle sizes are distributed over a wide range. Therefore, if the average grain size of the crystal grains is simply large, the following problems arise.

例えば、MOSトランジスタにおいては、ゲートの大き
さが平均結晶粒径と同程度、あるいはそれ以下になるた
めに、ゲート部分には、粒界が含まれない部分のと数個
含まれる部分とが生ずる。
For example, in a MOS transistor, since the gate size is the same as or smaller than the average crystal grain size, the gate part contains some grain boundaries and some parts contain several grain boundaries. .

粒界が含まれない部分と数個含まれる部分とでは電気特
性が大きく変化する。そのために複数の素子間の特性に
大きなバラツキが生じ、集積回路等を形成する場合、結
晶粒径のバラツキは集積回路上著しい障害となっていた
The electrical properties change greatly between a part that does not contain grain boundaries and a part that contains several grain boundaries. This causes large variations in characteristics among a plurality of elements, and when an integrated circuit or the like is formed, the variation in crystal grain size poses a significant problem in the integrated circuit.

上記の固相結晶化による大粒径多結晶薄膜における問題
点のうち、粒径のバラツキを抑制する方法については特
開昭58−56406号公報で提案されている。その方
法を第4図を用いて説明する。まず、第4図(a)に示
すように非晶質基板41上に形成した非晶質Si薄膜4
2の表面に、他の材料からなる薄膜小片43を周期的に
設けて、この基板全体を通常の加熱炉でアニールする。
Among the problems with large-grain polycrystalline thin films produced by solid-phase crystallization, a method for suppressing the variation in grain size is proposed in Japanese Patent Application Laid-Open No. 58-56406. The method will be explained using FIG. 4. First, as shown in FIG. 4(a), an amorphous Si thin film 4 is formed on an amorphous substrate 41.
Thin film pieces 43 made of another material are periodically provided on the surface of the substrate 2, and the entire substrate is annealed in a conventional heating furnace.

すると非晶質St薄膜42中で薄膜小片43の周辺と接
する箇所から優先的に結晶核44の核形成が生ずる。そ
こでこの結晶核をさらに成長させると、非晶質St薄膜
42は全域にわたって結晶化し、第4図(b)に示すよ
うな大粒径の結晶粒群45からなる多結晶薄膜が得られ
る。特開昭58−56406号公報によれば、この方法
では先に示した従来法と比較して粒径のバラツキを1/
3程度まで低減できるという。
Then, the formation of crystal nuclei 44 occurs preferentially from the portions of the amorphous St thin film 42 that are in contact with the periphery of the thin film pieces 43. Therefore, when this crystal nucleus is further grown, the amorphous St thin film 42 is crystallized over the entire area, and a polycrystalline thin film consisting of crystal grain groups 45 of large grain size as shown in FIG. 4(b) is obtained. According to Japanese Patent Application Laid-Open No. 58-56406, this method reduces the variation in particle size by 1/2 compared to the conventional method shown above.
It is said that it can be reduced to about 3.

しかしながら、それでもまだ不充分である。例えば、薄
膜小片43を10μm間隔の格子点状に配した場合、粒
径のバラツキは3〜8μmの範囲に収められるに過ぎな
い。更に結晶粒界位置の制御にいたっては、はとんど制
御されていないのが実情である。その理由は、非晶質S
i薄膜42と薄膜小片43の周辺部が接する部分におけ
る弾性エネルギーの局在効果によって、薄膜小片43の
周辺に優先的な核形成が生じる為に、周辺に沿って複数
個の核が発生し、かつその数を゛制御することが困難で
あるからである。
However, it is still insufficient. For example, when the thin film pieces 43 are arranged in the form of lattice points with intervals of 10 μm, the variation in particle size is only within the range of 3 to 8 μm. Furthermore, the actual situation is that the control of grain boundary positions is hardly controlled. The reason is that amorphous S
i Due to the localized effect of elastic energy in the area where the periphery of the thin film 42 and the thin film piece 43 contact, preferential nucleation occurs around the thin film piece 43, so a plurality of nuclei are generated along the periphery. This is because it is difficult to control their number.

非晶質Si薄膜の固相成長における核形成位置の制御方
法に関しては、他にも特開昭63−253616号公報
等で提案されている。これらは、第5図に示すように、
非晶質Si薄膜52に局所的にSi以外の物質53をイ
オン注入した領域54を設けて、そこに優先的に結晶核
を発生させようとする方法である。Si以外の物質53
としてはNやBなどが提案されているが、その場合、現
実にはイオン注入された領域54とそれ以外の領域の間
で核形成に関する選択性が不足しており、実際にこれを
実現した報告はない。
Regarding the method of controlling the nucleation position in solid phase growth of an amorphous Si thin film, other methods have been proposed, such as in Japanese Patent Laid-Open No. 63-253616. These are as shown in Figure 5.
This is a method in which a region 54 in which a substance 53 other than Si is locally implanted into an amorphous Si thin film 52 is provided, and crystal nuclei are generated preferentially there. Substances other than Si 53
N, B, etc. have been proposed, but in reality, there is a lack of selectivity regarding nucleation between the ion-implanted region 54 and other regions, and it has not been possible to actually achieve this. There are no reports.

本発明は、上記従来例の有する課題を解決するものであ
り、本発明の目的は、同相中における核形成位置を制御
し、粒界位置が決定された結晶を形成することができる
結晶の成長方法を提供することにある。
The present invention solves the problems of the above-mentioned conventional examples, and an object of the present invention is to control the nucleation position in the same phase and to grow a crystal in which the grain boundary position is determined. The purpose is to provide a method.

[課題を解決するための手段] 本発明の結晶成長方法は、非晶質薄膜を固相成長によっ
て結晶化させて薄膜結晶とする結晶成長方法において、
非晶質薄膜内に、他の領域よりも注入損傷の程度が小さ
な微小領域が、非晶質薄膜と下地基体との界面近傍に形
成されるように、該非晶質薄膜の構成物質のイオンを注
入し、次いで、該非晶質薄膜の融点以下の温度において
熱処理を行うことにより、該微小領域から優先的に核形
成させることを第1の特徴とする。
[Means for Solving the Problems] The crystal growth method of the present invention is a crystal growth method in which an amorphous thin film is crystallized by solid phase growth to form a thin film crystal.
Ions of the constituent material of the amorphous thin film are formed in the amorphous thin film so that a micro region where the degree of implantation damage is smaller than other regions is formed near the interface between the amorphous thin film and the underlying substrate. The first feature is that by implanting the amorphous thin film and then performing heat treatment at a temperature below the melting point of the amorphous thin film, nuclei are formed preferentially from the micro region.

また、本発明の結晶成長方法は、下地材料上に設けた薄
膜に該薄膜の構成物質のイオンを注入し前記下地材料と
前記薄膜との界面にイオンによる損傷の度合の異なる領
域を形成すること、次いで前記薄膜の融点以下の温度に
よりて熱処理を行なうことによって、前記損傷の程度が
小さな微小領域から優先的に単一の核より成長した結晶
を形成し、前記薄膜を固相成長によって結晶化させるこ
とを第2の特徴とする。
Further, the crystal growth method of the present invention includes implanting ions of a constituent material of the thin film into a thin film provided on a base material, and forming regions with different degrees of damage due to ions at the interface between the base material and the thin film. Then, by performing heat treatment at a temperature below the melting point of the thin film, a crystal grown from a single nucleus preferentially is formed from the micro region where the degree of damage is small, and the thin film is crystallized by solid phase growth. The second feature is that

[作用] °以下に本発明の作用・構成の詳細を本発明をなすに際
し得た知見とともに説明する。
[Function] The details of the function and structure of the present invention will be explained below together with the knowledge obtained in making the present invention.

本発明のポイントは如何に固相中で結晶体の成長する位
置を制御するかにある。すなわち、非晶質薄膜において
、核を特定位置に優先的に発生させ、他の領域の核発生
を抑制するかにある。
The key point of the present invention is how to control the growing position of crystals in the solid phase. That is, in an amorphous thin film, nuclei are generated preferentially in a specific position, and generation of nuclei in other areas is suppressed.

−本発明者は、例えば5i02からなる下地材料上に多
結晶Si膜を堆積させ、その後Siイオンを注入し多結
晶Si層を非晶質化した後、熱処理する際に、その結晶
核発生温度(結晶化温度)がそのイオン注入エネルギー
に強く依存するという現象を発見した。
- The present inventor deposited a polycrystalline Si film on a base material made of, for example, 5i02, and then implanted Si ions to make the polycrystalline Si layer amorphous. We discovered a phenomenon in which the crystallization temperature (crystallization temperature) strongly depends on the ion implantation energy.

そこで、結晶核発生温度が何故にイオン注入エネルギー
に依存するかの解明を行ったところ次の事項が判明した
。以下にその詳細を述べる。
Therefore, we investigated why the crystal nucleation temperature depends on the ion implantation energy and found the following. The details are described below.

注入エネルギーを変化させると、非晶質化した後のSi
層(非晶質Si層)中において、注入されたSiイオン
の分布は変化し、その結果、生成される空孔子の分布、
即ち注入損傷の存在する領域の分布が注入エネルギーに
よって膜厚方向に変化する。
By changing the implantation energy, the Si after becoming amorphous
In the layer (amorphous Si layer), the distribution of the implanted Si ions changes, and as a result, the distribution of the generated vacancies,
That is, the distribution of regions where implantation damage exists changes in the film thickness direction depending on the implantation energy.

また、非晶質物質内では、表面エネルギー不利を克服し
た核が生成し、その後、St原子の非晶質相から結晶層
への相転移が生ずる。
Further, within the amorphous material, a nucleus is generated that overcomes the surface energy disadvantage, and thereafter, a phase transition of the St atoms from the amorphous phase to the crystalline layer occurs.

ところで、核形成には均一核形成と不均一核形成とがあ
り、前者は、均一物質中(例えば非晶質Si膜内部)の
核形成であり、かかる核形成が生じるか否かは主に表面
エネルギー不利を克服して大きくなれるか否かにかかっ
ている。一方、後者の不均一核形成では、異物との接触
によって核発生がうながされるものであり、その活性化
エネルギーは、後者の方が前者より低い。即ち、不均一
核形成が均一核形成より起こりやすい。実際、非晶質S
i薄膜における核形成は主に下地界面近傍の不均一核形
成に律速されている。
By the way, there are two types of nucleation: uniform nucleation and heterogeneous nucleation. The former is nucleation in a homogeneous material (for example, inside an amorphous Si film), and whether or not such nucleation occurs is mainly determined by It all depends on whether they can overcome the surface energy disadvantage and grow larger. On the other hand, in the latter case of heterogeneous nucleation, nucleation is promoted by contact with foreign matter, and the activation energy of the latter is lower than that of the former. That is, heterogeneous nucleation is more likely to occur than homogeneous nucleation. In fact, amorphous S
The rate of nucleation in i-thin films is mainly determined by heterogeneous nucleation near the underlying interface.

イオン注入の注入量が最大となる深さ(投影飛程)は、
注入量一定の条件下でも、前述した界面に於ける不均一
核形成に重大な影否を与えることを本発明者は発見した
The depth at which the ion implantation dose reaches its maximum (projected range) is
The inventors have discovered that even under conditions where the injection amount is constant, the above-mentioned heterogeneous nucleation at the interface is significantly affected.

第1図に、注入エネルギーと結晶化温度の相関を示す。FIG. 1 shows the correlation between implantation energy and crystallization temperature.

この時の条件は以下の通りである。注入層は、5i02
基板上に620℃でS i H4の分解による減圧CV
Dにて堆積した厚さ1100nの多晶質St層であり、
注入イオンはSt+である。注入量は臨界注入量(約1
0 ”c m−”)を越えて一定(この場合5 X 1
0 ”c m−’)であった。注入エネルギーを、40
keVから80keVまで変化させ、注入層は、イオン
衝突によりSi原子は格子位置よりノックオン(kno
ck on)され臨F[入量以上の注入で損傷領域は連
続となり、非晶質化される。この非晶質St層をN2雰
囲気中で、各温度に於いて20時間熱処理し、固相に於
ける再結晶化過程を主に透過電子顕微鏡を用いて観察し
、上記条件下に於ける結晶化温度を調べた。
The conditions at this time are as follows. The injection layer is 5i02
Reduced pressure CV by decomposition of S i H4 at 620 °C on the substrate
A polycrystalline St layer with a thickness of 1100 nm deposited in D,
The implanted ions are St+. The injection amount is the critical injection amount (approximately 1
constant over 0 "cm-") (in this case 5 x 1
The implantation energy was 40 cm.
keV to 80 keV, and the implantation layer is made so that Si atoms are knocked on from the lattice position by ion bombardment.
When the injection amount exceeds the input amount, the damaged area becomes continuous and becomes amorphous. This amorphous St layer was heat-treated for 20 hours at various temperatures in a N2 atmosphere, and the recrystallization process in the solid phase was observed mainly using a transmission electron microscope. The temperature of oxidation was investigated.

例えば40keVの注入エネルギーと、70keVのも
のに注目する。40keVと70keVの注入深さ(投
影飛程)は各々弓5.2nmと99.7nmであり、こ
れらは、1100nの層内で、膜厚中央近傍と、下地材
料との界面近傍に相応する。そして、それらの結晶化温
度には50℃以上の差異があり、下地界面近傍に注入し
たものの方が結晶化温度が高く結晶化しにくいことを示
しており、これは、損傷領域が界面にまでより大きくお
よびその結果不均一核形成が阻害されたものと考えられ
る。更に、加つるに、膜厚中央近傍に投影飛程が来る様
に40keVで注入して非晶質化した層や、CVDで堆
積した非晶層が1時間以内で結晶化する温度(即ち60
0℃)において、70keVで界面近傍に注入深さが来
る様にして非晶質化した層を熱処理したところ、この層
は100時間以上経過しても結晶化しないことが透過電
子顕微鏡に確認された。その様子、即ち、熱処理開始か
ら結晶化開始までの時間(潜伏時間)と注入深さの関係
を第2図に示す。第2図に示す様に、注入深さが界面に
向って深くなればなるほど潜伏時間は伸長し、結晶化し
にくい。(投影飛程)/(膜厚)=:1即ち鼻面近傍が
最も損傷を受ける所で潜伏時間は最大となり極大点をも
つ。
For example, focus on implant energies of 40 keV and 70 keV. The implantation depths (projected ranges) for 40 keV and 70 keV are 5.2 nm and 99.7 nm, respectively, which correspond to near the center of the film thickness and near the interface with the underlying material within the 1100 nm layer. There is a difference of more than 50°C in their crystallization temperatures, indicating that the crystallization temperature is higher and it is more difficult to crystallize when implanted near the base interface.This indicates that the damaged area extends to the interface. It is thought that this is because the heterogeneous nucleation was inhibited as a result. In addition, the temperature at which an amorphous layer is implanted at 40 keV so that the projected range is near the center of the film thickness, or an amorphous layer deposited by CVD is crystallized within 1 hour (i.e., 60 keV)
When the amorphous layer was heat-treated at 70 keV at 70 keV with the implantation depth near the interface, transmission electron microscopy confirmed that this layer did not crystallize even after 100 hours or more. Ta. FIG. 2 shows the relationship between the time from the start of heat treatment to the start of crystallization (latent time) and the implantation depth. As shown in FIG. 2, the deeper the implantation depth toward the interface, the longer the latent time and the harder it is to crystallize. (Projected range)/(Film thickness)=:1, that is, the incubation time is maximum and has a maximum point near the nasal surface where the most damage occurs.

以上のことより注入エネルギーを変化させることによっ
て結晶化温度と、潜伏時間に差異が出ることが明らかに
され、その原因は、界面近傍の不均一核形成の阻害によ
るものと判断される。
From the above, it has been revealed that the crystallization temperature and the latent time differ by changing the implantation energy, and the cause is judged to be the inhibition of heterogeneous nucleation near the interface.

以上の現象を利用して核形成位置の制御を行う。The nucleation position is controlled using the above phenomenon.

第3図に示す様に非晶質St堆積層の表面にレジスト等
のマスクを用いて、核発生させる領域を覆い、核発生さ
せない領域にのみSiイオンを非晶質Si層と下地界面
近傍が損傷を受ける様に注入エネルギーを選び注入する
As shown in Figure 3, a mask such as a resist is used on the surface of the amorphous St deposited layer to cover the area where nuclei are to be generated, and Si ions are applied only to areas where the nuclei are not generated near the interface between the amorphous Si layer and the underlying layer. Select the injection energy and inject it so as to cause damage.

レジストでマスクしていない部分の主に界面近傍に損傷
が与えられ、その後の熱処理の際核発生が阻害される。
Damage is caused mainly near the interface in areas not masked by the resist, and nucleation is inhibited during subsequent heat treatment.

注入損傷の程度が高い領域(以下界面損傷領域という)
が結晶化せず、注入損傷の程度が低いか注入損傷を受け
ていない領域(以下非界面損傷領域という)が結晶化す
る温度および時間を第1図、第2図から求めて、界面に
Siイオンを注入した非晶質Si層を、N2或いはN2
中で熱処理する。かかる熱処理により局所的に核が発生
する。非晶質St層に対しては典型的には、630℃近
辺で100時間程の熱処理が適当である。非界面損傷領
域は微小面積(5μm径以下、望ましくは2μm(径)
以下、最適には1μm(径)以下の面積)にしておくと
、熱処理を開始すると微小領域から早期に核が発生し、
単一の結晶が成長する(第3図(B))。この単一ドメ
インをもつ結晶相は、第3図(C)に示す様に熱処理を
続けると、周囲に結晶相と非晶質相界面が外側に向って
移動する。即ち非晶質中のSi原子は、界面をジャンプ
して、結晶相へとり込まれてゆく。この様にして結晶の
大きさは増大しつづけるが、この非晶質相から結晶相へ
の相転移は、表面エネルギー不利の核形成のためのエネ
ルギーより低エネルギーで起こるため、界面損傷領域に
は核形成が行なわれぬうちに非界面損傷領域から生じた
単一の結晶相へとり込まれてゆき、最終的には隣接する
結晶同士が衝突して、そこに結晶粒界が形成される。
Area with high degree of implantation damage (hereinafter referred to as interface damage area)
The temperature and time at which the silicon does not crystallize and the region with a low degree of implantation damage or no implantation damage (hereinafter referred to as non-interface damage region) crystallizes is determined from Figures 1 and 2, and Si The ion-implanted amorphous Si layer is treated with N2 or N2
heat-treated inside. Nuclei are generated locally by such heat treatment. Typically, heat treatment at around 630° C. for about 100 hours is appropriate for an amorphous St layer. The non-interface damage area has a small area (5 μm diameter or less, preferably 2 μm (diameter)
Below, if the area is optimally set to 1 μm (diameter) or less, nuclei will be generated early from the micro region when heat treatment is started.
A single crystal grows (Figure 3(B)). As shown in FIG. 3(C), when this crystalline phase having a single domain is continued to undergo heat treatment, the interface between the crystalline phase and the amorphous phase moves outward. That is, Si atoms in the amorphous state jump across the interface and are incorporated into the crystalline phase. In this way, the size of the crystal continues to increase, but this phase transition from the amorphous phase to the crystalline phase occurs at a lower energy than the energy for nucleation, which has a disadvantage in surface energy. Before nucleation occurs, they are incorporated into a single crystal phase generated from the non-interface damaged region, and eventually adjacent crystals collide with each other, forming grain boundaries there.

この時、結晶粒径は非界面損傷領域の間隔にほぼ等しく
なり、所望の結晶粒径に決めることができると共にその
粒界位置も決定される。
At this time, the crystal grain size becomes approximately equal to the interval between the non-interface damaged regions, and the desired crystal grain size can be determined, as well as the grain boundary position.

なお、本発明における非晶質薄膜は、多結晶薄膜にイオ
ン注入を行うことにより多結晶薄膜を非晶質化して形成
したものだけに限らず、堆積時に非晶質構造を有するも
のでも良い。
Note that the amorphous thin film in the present invention is not limited to one formed by amorphizing a polycrystalline thin film by performing ion implantation into the polycrystalline thin film, but may also be one that has an amorphous structure when deposited.

出発材料が多結晶層である場合には、まず、マスクを設
けずに、投影飛程が、多結晶薄膜の中央近傍にくるよう
に1回目のイオン注入を行う。かかるイオン注入により
、多結晶薄膜と下地材料との界面近傍には注入損傷を与
えることなく多結晶薄膜を非晶質化できる。次いで、微
小領域に対応する部分に例えばレジスト等によるマスク
を設けた状態で、投影飛程が非晶質薄膜と下地基体との
界面近傍にくるように2回目のイオン注入を行う。かか
るイオン注入によりマスクが設けられた部分以外におけ
る非晶質薄膜と下地基体との界面近傍には注入損傷が生
じ、一方マスクが設けられた部分には注入損傷が生じな
いのでこの部分が核形成領域となる。
When the starting material is a polycrystalline layer, first ion implantation is performed without providing a mask so that the projected range is near the center of the polycrystalline thin film. By such ion implantation, the polycrystalline thin film can be made amorphous without causing implantation damage near the interface between the polycrystalline thin film and the underlying material. Next, a second ion implantation is performed with a mask made of, for example, resist provided in a portion corresponding to the minute region so that the projected range is near the interface between the amorphous thin film and the underlying substrate. Due to such ion implantation, implantation damage occurs near the interface between the amorphous thin film and the underlying substrate in areas other than the area where the mask was provided, whereas no implantation damage occurs in the area where the mask was provided, so nucleation occurs in this area. It becomes an area.

堆積時に非晶質構造の薄膜を形成する場合には、前述し
た1回目のイオン注入は省略してよい。
When forming a thin film with an amorphous structure during deposition, the first ion implantation described above may be omitted.

以上の方法では2回のイオン注入を行ったが、マスクの
材質、厚みを適宜選択すれば、微小領域に対応する部分
における投影飛程を薄膜中央近傍にくるようにでき、一
方、他の部分における投影飛程は非晶質薄膜あるいは多
結晶薄膜と下地基体との界面近傍にくるようにできるた
め注入損傷の粉度が小さな微小領域の形成と多結晶薄膜
の非晶質化とを1回のイオン注入で行うことができる。
In the above method, ion implantation was performed twice, but if the material and thickness of the mask are appropriately selected, the projection range in the part corresponding to the micro region can be made to be near the center of the thin film, while the projection range in other parts can be Since the projected range in the step can be set near the interface between the amorphous thin film or polycrystalline thin film and the underlying substrate, the formation of a microscopic region with small particle size of implantation damage and the amorphization of the polycrystalline thin film can be performed in one step. This can be done by ion implantation.

このようなマスクとしてはイオン注入するイオンを′J
y!LAする材質のマスクであることが望ましく、例え
ば酸化珪素等の無機材料が挙げられる。
As such a mask, the ions to be implanted can be
Y! It is desirable that the mask be made of a material that can be used for LA, such as an inorganic material such as silicon oxide.

[実施例] (実施例1) Sin2を主成分とするガラス基板上に、減圧CVD法
で非晶質Siを1100nの厚みに堆積した。
[Example] (Example 1) Amorphous Si was deposited to a thickness of 1100 nm on a glass substrate containing Sin2 as a main component by low pressure CVD.

ソースガスはS i H4を使用し、550℃圧力0.
3Torrで形成した。
S i H4 was used as the source gas at 550°C and pressure 0.
It was formed at 3 Torr.

その後、レジストを塗布し、通常のリソグラフィー技術
で1μm径のレジストを5μmと10μm間隔に2種類
の格子点状に残した。
Thereafter, a resist was applied, and two types of resist having a diameter of 1 μm were left in the form of lattice points at intervals of 5 μm and 10 μm using a normal lithography technique.

このレジストをマスクにしてSi0イオンを70keV
で全面に注入した。注入量は3×10 ”c m−’と
した。70keVの注入エネルギーによってその投影飛
程は1100nのStと下地材料のS i O,ガラス
界面近傍に来る。これで1μm径のレジスト以外の領域
は全てその界面(S i/S i O2)に損傷が与え
られた。レジストを剥離した後、N、雰囲気中で630
℃、80時間の熱処理を行った。その後、透過電子顕微
鏡で観察した結果、結晶粒界がほぼ初めのパターン間隔
に相当する5μm、10μm間隔に整列し、粒径の分布
は各々平均5μm、10μmに対して±1μm以内であ
った。
Using this resist as a mask, apply Si0 ions at 70 keV.
It was injected all over. The implantation amount was 3×10 ``cm-''. With the implantation energy of 70 keV, the projected range comes close to the interface between 1100n of St, the underlying material SiO, and the glass. This allows the area other than the resist with a diameter of 1 μm to be Damage was caused to the interface (S i /S i O2) in all cases. After stripping the resist, 630° C. was applied in a N atmosphere.
Heat treatment was performed at ℃ for 80 hours. Thereafter, observation using a transmission electron microscope revealed that the crystal grain boundaries were aligned at intervals of 5 μm and 10 μm, which corresponded to the initial pattern spacing, and the grain size distribution was within ±1 μm with respect to the average of 5 μm and 10 μm, respectively.

H2雰囲気中の熱処理をH3τ囲気中の熱処理にしても
同様の効果が得られた。
Similar effects were obtained when the heat treatment in the H2 atmosphere was replaced with the heat treatment in the H3τ atmosphere.

(実施例2) 板状のガラスからなる下地材料上に、減圧化学気相法に
よってS i H4を熱分解し、多結晶Si薄膜を11
00n堆積した。形成温度は620℃、圧力0.3To
rrであり、その粒径は微細であり50nm程度であっ
た。Si注入は2回行った。まず、最初にレジストマス
クなしに全面に40keVの注入エネルギーで3X10
I5cm−”の注入量でStイオンを該多結晶Si層へ
注入し、前述したように、損傷は連続となり、非晶質化
された。ただし、40keVの投影飛程は1100nの
膜厚中央近傍に位置し、その結果、St/5i02下地
界面近傍の損傷はほとんどない。
(Example 2) A polycrystalline Si thin film was formed by thermally decomposing SiH4 using a reduced pressure chemical vapor phase method on a base material made of plate-shaped glass.
00n was deposited. Formation temperature is 620℃, pressure 0.3To
rr, and the particle size was fine, about 50 nm. Si injection was performed twice. First, we first implanted 3×10 implants with an energy of 40 keV on the entire surface without a resist mask.
St ions were implanted into the polycrystalline Si layer at an implantation dose of I5 cm-'', and as mentioned above, the damage became continuous and the layer became amorphous. However, the projected range of 40 keV was near the center of the film thickness of 1100 nm. As a result, there is almost no damage near the St/5i02 base interface.

その後、実施例1と同様にレジストマスクを1μm径で
5μm、10μm間隔で格子点状に2種類設け、2回目
のSt”イオン注入を今度は70keVで行い、界面近
傍に損傷を導入した。注入量は1回目の注入と同一とし
た。レジスト剥離後N、中で620℃、100時間熱処
理した。その結果、実施例1と同様に粒径が5μm±1
μm、10μm±1μmとなり、しかも、粒界が格子状
に整列していた。
Thereafter, in the same manner as in Example 1, two types of resist masks were provided in the form of lattice points with a diameter of 1 μm and intervals of 5 μm and 10 μm, and a second St” ion implantation was performed, this time at 70 keV, to introduce damage near the interface. The amount was the same as the first injection. After the resist was removed, it was heat-treated in N at 620°C for 100 hours. As a result, the particle size was 5 μm ± 1 as in Example 1.
μm, 10 μm±1 μm, and the grain boundaries were arranged in a lattice shape.

実施例1および実施例2で得た膜厚1100nのSi層
に通常のICプロセスを用いて多数個のチャネル長3μ
mの電界効果トランジスタを試作したところ、電子穆動
度は200±5cm/V−sec、Lzきい値のバラツ
キは±0,2vであった。トランジスタのチャネル部分
には粒界が存在しないように配置することが可能なため
素子特性の高性能化、素子特性の分布の狭小化が可能と
なった。
A large number of channels with a length of 3 μm were formed on the 1100 nm thick Si layer obtained in Example 1 and Example 2 using a normal IC process.
When a field effect transistor of m was prototyped, the electron mobility was 200±5 cm/V-sec, and the variation in Lz threshold was ±0.2 V. Since it is possible to arrange the channel portion of a transistor so that no grain boundaries exist, it has become possible to improve the performance of the device characteristics and narrow the distribution of device characteristics.

(実施例3) 非晶質Ge薄膜を50nmの厚さで、5in2からなる
下地材料上に電子ビームによって真空蒸着する。真空度
は1xlO−’Torr、室温で堆積した。レジストに
よって1.5μm径、間隔10μmの領域をマスクし、
全域をGe+イオンを130keVで注入する。注入量
は2X1015cm−2であった。Ge”イオンの注入
深さは表面より約50nmであり、主に下地基板界面近
傍に集中的に注入され、界面部分に損傷が与えられる。
(Example 3) An amorphous Ge thin film with a thickness of 50 nm is vacuum deposited on a base material consisting of 5 in 2 by electron beam. The vacuum level was 1xlO-'Torr, and the deposition was performed at room temperature. Mask an area with a diameter of 1.5 μm and an interval of 10 μm using a resist,
Ge+ ions are implanted over the entire area at 130 keV. The injection volume was 2×10 15 cm −2 . The implantation depth of the Ge'' ions is about 50 nm from the surface, and the implantation is concentrated mainly near the interface of the underlying substrate, causing damage to the interface.

マスクを除去した後、N2中、或いはH4囲気中で38
0℃50時間熱処理したところ、マスクで覆われてGe
”イオンが注入されず界面に損傷が無い微小領域のみか
ら単一の結晶が成長し、Ge”イオンにより界面に損傷
が導入された非晶’JjGe領域へ結晶が伸長し、隣接
する結晶核発生地点の中間で両結晶か衝突し、そこに結
晶粒界が形成された。透過電子顕微鏡で結晶構造を調べ
た結果、各単一ドメインの結晶の径は10μm±1μm
となっていた。
After removing the mask, immerse in N2 or H4 atmosphere for 38 hours.
After heat treatment at 0°C for 50 hours, Ge was covered with a mask.
A single crystal grows only from a small region where no ions are implanted and the interface is undamaged, and the crystal extends into the amorphous 'JjGe region where damage is introduced to the interface by Ge ions, and adjacent crystal nuclei are generated. Both crystals collided in the middle of the point, and a grain boundary was formed there. As a result of examining the crystal structure with a transmission electron microscope, the diameter of each single domain crystal was 10 μm ± 1 μm.
It became.

(実施例4) 1多結晶Ge薄膜を減゛圧CVD法でGeH4熱分解に
より堆積温度400℃で50nmの厚さに5i02から
なる下地材料上に形成した。この堆積したままの多結晶
Geは約1100nの粒径をもつことが透過電子顕微鏡
によって確認した0次にGe”イオンを60keVの注
入エネルギーで2X10”am−’の注入量で注入し、
膜全体を非晶質化する。60keVの注入エネルギーに
よる注入深さは表面より約25nmであり、この時には
、Ge膜/ S iO2下地材料界面にはほとんど損傷
は導入されない。
(Example 4) 1 A polycrystalline Ge thin film was formed on a base material made of 5i02 to a thickness of 50 nm at a deposition temperature of 400° C. by GeH4 thermal decomposition using a low pressure CVD method. This as-deposited polycrystalline Ge has a grain size of about 1100 nm, which was confirmed by transmission electron microscopy. Zero-order Ge" ions were implanted at an implantation energy of 60 keV and at an implantation dose of 2 x 10 "am-'.
The entire film is made amorphous. The implantation depth with an implantation energy of 60 keV is about 25 nm from the surface, and at this time, almost no damage is introduced into the Ge film/SiO2 substrate interface.

更に、レジストによって、1.2μm径の部分を15μ
m間隔にマスクし、Ge+イオンを130keVで注入
量2X10”am−’注入した。この時、注入領域の主
に界面(Ge/5io2)に損傷が導入される。レジス
トマスクを除去した後、N2雰囲気中で390℃で60
時間熱処理を施した。
Furthermore, with resist, the 1.2 μm diameter portion was
Ge+ ions were implanted at 130 keV with a dose of 2×10"am-' using a mask at intervals of m. At this time, damage was introduced mainly to the interface (Ge/5io2) in the implanted region. After removing the resist mask, N2 60 at 390℃ in atmosphere
Heat treatment was performed for a period of time.

Ge1iiの界面に損傷を受けていない微小領域のみ結
晶化し、単一のドメインをもつ結晶が生長す乞。更に、
結晶はその結晶構造を維持して、界面に損傷が導入され
た領域にまで結晶が伸長してゆき、最終的には隣接する
結晶と衝突し、隣接する微小界面非損傷領域の中間に粒
界が形成される。
Only the micro region that is not damaged at the Ge1ii interface crystallizes, and a crystal with a single domain grows. Furthermore,
The crystal maintains its crystal structure and extends into the region where damage has been introduced at the interface, and eventually collides with the adjacent crystal, forming a grain boundary between the adjacent microinterface undamaged region. is formed.

透過電子顕微鏡で調べた結果、粒径は15μm±2μm
であり、粒径のそろった多結晶膜を形成できた。
As a result of examining with a transmission electron microscope, the particle size was 15 μm ± 2 μm.
Therefore, a polycrystalline film with uniform grain size could be formed.

(実施例5) 下地材料としての溶融石英基盤上に低圧CVD法によっ
て下記の条件の下に、今度は多結晶Si薄膜を1100
nの膜厚で堆積した。
(Example 5) A polycrystalline Si thin film of 1,100 mL was deposited on a fused silica substrate as a base material by low-pressure CVD under the following conditions.
The film was deposited to a thickness of n.

使用ガス  SiH4 ガス流量比 50secm 圧力     0.3Torr 基板温度  620℃ 次に、この非晶ysi薄膜上に常圧CVD法によって非
晶質のSiO2膜を30nmはど堆積し、これを通常の
フォトリソフラフィー工程によって、1μm角のSin
、領域10μm間隔の格子点状に残るようにパターニン
グした。
Gas used: SiH4 Gas flow rate ratio: 50 sec Pressure: 0.3 Torr Substrate temperature: 620°C Next, a 30 nm thick amorphous SiO2 film is deposited on this amorphous ysi thin film by atmospheric pressure CVD, and this is subjected to a normal photolithography process. By, 1 μm square Sin
, patterning was performed so that regions remained in the form of lattice points spaced at intervals of 10 μm.

そしてこの基板全面に、70keVのエネルギーに加速
されたSt”イオンを5X10”cm−2のドーズで注
入した。このイオン注入によってSin、薄膜で表面が
覆われている領域も含めて、多結晶Si薄膜は全域に渡
って非晶質化された。そしてこの場合、Si中でのSi
イオンの投影飛程は99.7nmであるから、Si薄膜
の表面に5i02薄膜示残されていない領域では、溶融
石英基板との界面近傍に最も多くの注入したSiイオン
が分布していることになり、非核形成領域が形成される
。その一方で、表面に5i02薄膜が残されている1μ
m角の領域では、注入されたSiイオンの分布の極大(
投影飛程)がSi薄膜の膜中に留っているばかりでなく
、その絶対量も少ないので、核形成領域となる。
Then, St" ions accelerated to an energy of 70 keV were implanted into the entire surface of the substrate at a dose of 5.times.10" cm.sup.-2. By this ion implantation, the polycrystalline Si thin film was made amorphous over the entire area, including the area where the surface was covered with the Sin thin film. And in this case, Si in Si
Since the projected range of ions is 99.7 nm, in the region where no 5i02 thin film remains on the surface of the Si thin film, the largest number of implanted Si ions are distributed near the interface with the fused silica substrate. Thus, a non-nucleation region is formed. On the other hand, 1μ with 5i02 thin film left on the surface.
In the m-square region, the maximum distribution of implanted Si ions (
Not only does the projected range remain in the Si thin film, but its absolute amount is small, so it becomes a nucleation region.

そこで、表面に点在する5in2薄膜を、水で希釈され
たHFによるエツチングで除去した後に、N2$囲気中
で基板温度を600℃に保ってこれをアニールした。す
ると、アニールを開始してから10時間はどで、Sin
、薄膜で覆われたままSiイオンを注入された1μm角
の領域で、結晶核が発生し始めた。この時点で、Sin
、薄膜で覆われずにSiイオンを注入された領域では何
ら核形成は生じていないので、更にアニールを続けると
、1μm角の領域で既に形成されていた結晶核はその領
域を超えて横方向に成長し、大粒径薄膜結晶となった。
Therefore, the 5in2 thin film scattered on the surface was removed by etching with HF diluted with water, and then the substrate temperature was maintained at 600° C. in an N2 atmosphere to anneal it. Then, for 10 hours after starting the annealing, the
, crystal nuclei began to occur in a 1 μm square area into which Si ions were implanted while still being covered with a thin film. At this point, Sin
Since no nucleation occurs in the region where Si ions are implanted without being covered with a thin film, if annealing is continued further, the crystal nuclei that had already formed in the 1 μm square region will extend beyond that region in the lateral direction. The crystals grew into large-grain thin film crystals.

そして100時間はどアニールすると、10μm程離れ
た隣接する領域から成長してきた結晶粒と成長端面を接
して粒界をなすに至り、非晶質Si薄膜はほぼ全域に亘
って結晶化した。結果として、結晶粒界をほぼ10μm
間隔の格子状に配しながら、平均粒径10μmの結晶粒
群からなる薄膜結晶が得られた。
After annealing for 100 hours, the growth end surface came into contact with a crystal grain grown from an adjacent region about 10 μm apart to form a grain boundary, and the amorphous Si thin film was crystallized over almost the entire area. As a result, the grain boundaries were reduced to approximately 10 μm.
A thin film crystal consisting of a group of crystal grains having an average grain size of 10 μm was obtained while being arranged in a lattice shape with intervals.

(実施例6) 下地材料としての石英基板上に、超高真空中における電
子ビーム蒸着法によって下記の条件の下に、非晶質St
を1100nの膜厚で堆積した。
(Example 6) Amorphous St was deposited on a quartz substrate as a base material by electron beam evaporation in ultra-high vacuum under the following conditions.
was deposited to a thickness of 1100 nm.

到達真空度  lX10−”Torr 蒸着中真空度 5xlO−”TOrr 基板温度   150℃ 堆積速度  〜100 n m / h rこの非晶質
Si薄膜上に、レジストを通常のフォトリソフラフィー
工程によって、1μm角の領域を10μm間隔の格子点
状に残るようにバターニングした。
Ultimate vacuum level: lX10-''Torr Vacuum during deposition: 5xlO-''Torr Substrate temperature: 150°C Deposition rate: ~100 nm/hr On this amorphous Si thin film, a resist is applied to a 1 μm square area by a normal photolithography process. was buttered so that it remained in the form of lattice points at intervals of 10 μm.

更に、この基板全体に、70keVのエネルギーに加速
されたSt”イオンをlXl0”cm−’の注入量でイ
オン注入した。この場合、Si中でのSiイオンの投影
飛程は99.7nmであるから、レジストで覆われてい
ない領域の非晶質Si薄膜と石英基板との界面近傍に最
も多くのSiイオンが分布し、界面に多くの損傷が導入
される。
Further, St'' ions accelerated to an energy of 70 keV were implanted into the entire substrate at an implantation dose of 1X10''cm-'. In this case, since the projected range of Si ions in Si is 99.7 nm, the largest number of Si ions are distributed near the interface between the amorphous Si thin film and the quartz substrate in the area not covered by the resist. , a lot of damage is introduced at the interface.

レジストを除去した後に、N2霊囲気中で基板温度を5
90℃に保って熱処理した。熱処理開始後15時間はど
で、1μm角のSiイオンの注入されていない領域で、
結晶核が発生し始めた。この時点で、レジストで覆われ
ずにSiイオンを注入された領域では何ら核形成は生じ
ていないので、更にアニールを続けると、1μm角の領
域で既に形成されていた結晶核はその領域を超えて横方
向に成長し、樹枝状の大粒径薄膜結晶となった。そして
120時間はどアニールすると、10μm程離れた隣接
する領域から成長してきた結晶粒と成長端面を接して粒
界をなすに至り、非晶質Si薄膜はほぼ全域にわたって
結晶化した。結果として、結晶粒界をほぼ10μm間隔
の格子状に配しながら、平均粒径10μmの結晶粒群か
らなる薄膜結晶が得られた。
After removing the resist, the substrate temperature was lowered to 55% in an N2 atmosphere.
Heat treatment was performed while maintaining the temperature at 90°C. 15 hours after the start of heat treatment, in a 1 μm square area where Si ions were not implanted,
Crystal nuclei began to form. At this point, no nucleation has occurred in the region not covered with resist and implanted with Si ions, so if annealing is continued further, the crystal nuclei that have already formed in the 1 μm square region will exceed that region. The crystals grew laterally and became dendritic, large-grain thin film crystals. After annealing for 120 hours, the growth end face came into contact with a crystal grain grown from an adjacent region approximately 10 μm apart to form a grain boundary, and the amorphous Si thin film was crystallized over almost the entire area. As a result, a thin film crystal consisting of a group of crystal grains with an average grain size of 10 μm was obtained, with grain boundaries arranged in a lattice shape with an interval of approximately 10 μm.

(実施例7) 下地材料としてガラス基板を用い、その表面にDCマグ
ネトロンスパッタ法によって下記の条件の下に、非晶質
Stを1100nの膜厚で堆積した。
(Example 7) A glass substrate was used as the base material, and amorphous St was deposited to a thickness of 1100 nm on the surface of the substrate by DC magnetron sputtering under the following conditions.

到達真空度  5xlO−’Torr 蒸着中真空度 2xlO−3TOrr 基板温度   20℃ 堆積速度  〜200 n m / h r次に、この
非晶質St薄膜上にレジストを塗布し、これを通常のフ
ォトリソフラフィー工程によって、2μm角に10μm
間隔に格子点状に残るようにパターニングした。
Ultimate vacuum level: 5xlO-'Torr Vacuum during deposition: 2xlO-3Torr Substrate temperature: 20°C Deposition rate: ~200 nm/hr Next, a resist is applied onto this amorphous St thin film, and this is subjected to a normal photolithography process. 10μm in 2μm square
It was patterned so that lattice points remained at intervals.

そして、この基板全面に、60keVのエネルギーに加
速されたSi0イオンを5X10”cm−2のドーズで
注入した。この場合、Si中でのSiイオンの投影飛程
は84.5nmであるから、非晶質Si薄膜の表面にレ
ジストが残されていない領域では、溶融石英基板との界
面近傍に最も多くのSiイオンが分布していることにな
り、非核形成領域が形成される。その一方で、表面にレ
ジストが残されている1μm角の領域では、注入された
Siイオンは非晶質Si薄膜にとどかず、核形成領域と
なる。
Then, Si0 ions accelerated to an energy of 60 keV were implanted into the entire surface of the substrate at a dose of 5 x 10"cm-2. In this case, the projected range of Si ions in Si is 84.5 nm, so In the region where no resist is left on the surface of the crystalline Si thin film, the largest number of Si ions are distributed near the interface with the fused silica substrate, forming a non-nucleation region.On the other hand, In the 1 μm square region where the resist remains on the surface, the implanted Si ions do not reach the amorphous Si thin film and become a nucleation region.

そこで、表面に点在するレジストを除去した後に、N2
雰囲気中で基板温度を620℃に保ってこれをアニール
した。すると、アニールを開始してから15時間はどで
、レジストで覆われてSiイオンを注入されなかった2
μm角の領域で、結晶核が発生し始めた。この時点で、
レジストで覆われずにSiイオンを注入された領域では
何ら核形成は生じていないので、更にアニールを続ける
と、2μm角の領域で既に形成されていた結晶核はその
領域を超えて横方向に成長し、樹枝状の大粒径薄膜結晶
となった。そして120時間はどアニールすると、10
μm程煎れた隣接する領域から成長してきた結晶粒と成
長端面を接して粒界をなすに至り、非晶質St薄膜はほ
ぼ全域にわたって結晶化した。結果として、結晶粒界を
ほぼ10μm間隔の格子状に配しながら、平均粒径10
μmの結晶粒群からなる薄膜結晶が得られた。
Therefore, after removing the resist scattered on the surface, N2
This was annealed in an atmosphere while keeping the substrate temperature at 620°C. Then, 15 hours after starting the annealing, the silicon ions were covered with resist and no Si ions were implanted.
Crystal nuclei began to occur in a μm square area. at this point
Since no nucleation occurs in the region where Si ions are implanted without being covered with resist, if annealing is continued, the crystal nuclei that had already formed in the 2 μm square region will extend laterally beyond that region. The crystals grew into dendritic, large-grain thin film crystals. Then, after annealing for 120 hours, 10
The amorphous St thin film was crystallized over almost the entire area, with the growth end surface coming into contact with a crystal grain grown from an adjacent region that was about .mu.m thick to form a grain boundary. As a result, the average grain size was 10 μm while the grain boundaries were arranged in a lattice shape with an interval of approximately 10 μm.
A thin film crystal consisting of micron crystal grains was obtained.

[発明の効果] 本発明によれば、研磨等の工程を要せずに平坦でかつ大
粒径の薄膜を形成することができる。
[Effects of the Invention] According to the present invention, a flat thin film with large grain size can be formed without requiring a process such as polishing.

また、本発明によれば、隣接する結晶粒同士が形成する
結晶粒界の位置を、また、粒径を任意に制御することが
できる。
Further, according to the present invention, the position of grain boundaries formed between adjacent crystal grains and the grain size can be arbitrarily controlled.

ノ従って、バラツキの少ない各種素子を大面積にわたっ
て形成することができる。
Therefore, various elements with little variation can be formed over a large area.

【図面の簡単な説明】 第1図は注入エネルギーと結晶化温度との関係を示すグ
ラフである。第2図は投影飛程と潜伏時間との関係を示
すグラフである。第3図は本発明の1実施例を説明する
ための側断面図、第4図および第5図は従来技術を示す
側断面図である。 第1図 第2図 部Wμ町 第 図 第4図 第5図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between implantation energy and crystallization temperature. FIG. 2 is a graph showing the relationship between projected range and latency time. FIG. 3 is a side sectional view for explaining one embodiment of the present invention, and FIGS. 4 and 5 are side sectional views showing the prior art. Figure 1 Figure 2 Section Wμ Town Figure 4 Figure 5

Claims (9)

【特許請求の範囲】[Claims] (1)非晶質薄膜を固相成長によって結晶化させて薄膜
結晶とする結晶成長方法において、下地材料上に設けた
前記非晶質薄膜内に、他の領域よりもイオン注入による
損傷の程度が小さな微小領域が、前記非晶質薄膜と前記
下地材料との界面近傍に形成されるように、該非晶質薄
膜の構成物質のイオンを注入し、次いで、該非晶質薄膜
の融点以下の温度において熱処理を行うことにより、該
微小領域から優先的に単一の核より成長した結晶を形成
させることを特徴とする結晶成長方法。
(1) In a crystal growth method in which an amorphous thin film is crystallized by solid phase growth to form a thin film crystal, the degree of damage due to ion implantation is greater in the amorphous thin film provided on the base material than in other areas. Ions of a constituent material of the amorphous thin film are implanted so that a micro region with a small area is formed near the interface between the amorphous thin film and the base material, and then the temperature is lower than the melting point of the amorphous thin film. 1. A crystal growth method characterized in that a crystal grown from a single nucleus is formed preferentially from the micro region by performing heat treatment in the micro region.
(2)前記非晶質薄膜は、堆積されたままで非晶質構造
となるものあるいは、多結晶薄膜にイオン注入を行うこ
とにより多結晶薄膜を非晶質化して形成した薄膜である
請求項1記載の結晶成長方法。
(2) The amorphous thin film has an amorphous structure as it is deposited, or a thin film formed by amorphizing a polycrystalline thin film by performing ion implantation into the polycrystalline thin film. Crystal growth method described.
(3)前記非晶質薄膜は、イオン注入による投影飛程が
、多結晶薄膜の中央部近傍にくるようにイオン注入を行
い多結晶薄膜を非晶質化した薄膜である請求項1記載の
結晶成長方法。
(3) The amorphous thin film is a thin film obtained by making the polycrystalline thin film amorphous by performing ion implantation so that the projected range of the ion implantation is near the center of the polycrystalline thin film. Crystal growth method.
(4)前記微小領域は、前記非晶質薄膜に設ける前記微
小領域に対応する部分にレジストによるマスクを設けた
状態で、イオン注入による投影飛程が非晶質薄膜と下地
基体との界面近傍にくるようにイオン注入を行い他の領
域よりも注入損傷の程度が小さな微小領域を形成する請
求項2記載の結晶成長方法。
(4) The micro region is formed so that the projected range of the ion implantation is near the interface between the amorphous thin film and the underlying substrate, with a resist mask provided on the portion of the amorphous thin film corresponding to the micro region. 3. The crystal growth method according to claim 2, wherein the ion implantation is performed so that the ion implantation is performed so as to form a minute region in which the degree of implantation damage is smaller than in other regions.
(5)前記微小領域の形成は、投影飛程を短縮させ得る
マスクを、微小領域に対応する部分に設けた状態で、該
マスクを設けた部分以外における投影飛程が多結晶薄膜
と下地基体との界面近傍にくるようにイオン注入を行い
多結晶薄膜の非晶質化と、他の領域よりも注入損傷の程
度が小さな微小領域の形成とを1回のイオン注入で行う
請求項1記載の結晶成長方法。
(5) The formation of the minute area is performed by providing a mask capable of shortening the projected range in a portion corresponding to the minute area, and the projected range other than the area where the mask is provided is between the polycrystalline thin film and the underlying substrate. Claim 1, wherein the ion implantation is performed so as to be near the interface with the polycrystalline thin film, and the polycrystalline thin film is made amorphous, and the formation of a minute region where the degree of implantation damage is smaller than other regions is performed in a single ion implantation. crystal growth method.
(6)前記微小領域は所望の間隔で複数形成されている
請求項1乃至請求項5のいずれか1項に記載の結晶成長
方法。
(6) The crystal growth method according to any one of claims 1 to 5, wherein a plurality of the micro regions are formed at desired intervals.
(7)下地材料上に設けた薄膜に該薄膜の構成物質のイ
オンを注入し前記下地材料と前記薄膜との界面にイオン
による損傷の度合の異なる領域を形成すること、次いで
前記薄膜の融点以下の温度によって熱処理を行なうこと
によって、前記損傷の程度が小さな微小領域から優先的
に単一の核より成長した結晶を形成し、前記薄膜を固相
成長によって結晶化させることを特徴とする結晶成長方
法。
(7) Injecting ions of a constituent material of the thin film into a thin film provided on a base material to form regions with different degrees of damage by ions at the interface between the base material and the thin film, and then below the melting point of the thin film. Crystal growth characterized in that a crystal grown from a single nucleus is formed preferentially from the micro region where the degree of damage is small by performing heat treatment at a temperature of , and the thin film is crystallized by solid phase growth. Method.
(8)前記薄膜は非晶質薄膜である請求項7記載の結晶
成長方法。
(8) The crystal growth method according to claim 7, wherein the thin film is an amorphous thin film.
(9)前記薄膜は多結晶薄膜である請求項7記載の結晶
成長方法。
(9) The crystal growth method according to claim 7, wherein the thin film is a polycrystalline thin film.
JP1110386A 1989-03-31 1989-04-28 Crystal growth method Expired - Fee Related JP2695466B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1110386A JP2695466B2 (en) 1989-04-28 1989-04-28 Crystal growth method
DE69031880T DE69031880T2 (en) 1989-03-31 1990-03-30 Process for the production of a semiconducting crystalline film
EP90303479A EP0390607B1 (en) 1989-03-31 1990-03-30 Process for forming crystalline semiconductor film
US07/790,083 US5290712A (en) 1989-03-31 1991-11-13 Process for forming crystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110386A JP2695466B2 (en) 1989-04-28 1989-04-28 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH02288328A true JPH02288328A (en) 1990-11-28
JP2695466B2 JP2695466B2 (en) 1997-12-24

Family

ID=14534493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110386A Expired - Fee Related JP2695466B2 (en) 1989-03-31 1989-04-28 Crystal growth method

Country Status (1)

Country Link
JP (1) JP2695466B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155124A (en) * 1989-11-14 1991-07-03 Nippon Sheet Glass Co Ltd Manufacture of semiconductor film
JPH06326020A (en) * 1993-05-14 1994-11-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH08102543A (en) * 1994-07-07 1996-04-16 Lg Semicon Co Ltd Crystallization method and thin film transistor manufacturing method using the same
US6723621B1 (en) 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108516A (en) * 1985-11-06 1987-05-19 Sony Corp Solid growth method for polycrystalline semiconductor film
JPS63196032A (en) * 1987-02-10 1988-08-15 Sony Corp Crystallization of semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108516A (en) * 1985-11-06 1987-05-19 Sony Corp Solid growth method for polycrystalline semiconductor film
JPS63196032A (en) * 1987-02-10 1988-08-15 Sony Corp Crystallization of semiconductor thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155124A (en) * 1989-11-14 1991-07-03 Nippon Sheet Glass Co Ltd Manufacture of semiconductor film
JPH06326020A (en) * 1993-05-14 1994-11-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH08102543A (en) * 1994-07-07 1996-04-16 Lg Semicon Co Ltd Crystallization method and thin film transistor manufacturing method using the same
US6723621B1 (en) 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD
US7067855B2 (en) 1997-06-30 2006-06-27 International Business Machines Corporation Semiconductor structure having an abrupt doping profile

Also Published As

Publication number Publication date
JP2695466B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
JP2695488B2 (en) Crystal growth method
US5290712A (en) Process for forming crystalline semiconductor film
US5531182A (en) Method of making a semiconductor thin-film
EP0472970B1 (en) Process for growing crystalline thin film
JPH02260524A (en) Crystalline semiconductor film and formation thereof
JPH08102543A (en) Crystallization method and thin film transistor manufacturing method using the same
JPH02288328A (en) Method of growing crystal
US5495824A (en) Method for forming semiconductor thin film
EP0390607B1 (en) Process for forming crystalline semiconductor film
JPH03104210A (en) Manufacture of semiconductor device
JPH0329316A (en) Formation of semiconductor thin film
JP2749945B2 (en) Solid phase crystal growth method
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPH0442918A (en) Method of forming semiconductor thin film
JP2603351B2 (en) Crystal growth method and crystal article obtained by the method
JPH02258690A (en) Method of forming semiconductor thin film
JP2833878B2 (en) Method of forming semiconductor thin film
JPH03120715A (en) Crystal growth method and crystal article
JPS62287615A (en) Formation of polycrystalline silicon film
JPH0547660A (en) Solid-state growth method for semiconductor thin film
JPH04188612A (en) Crystal growth method and crystal article obtained by the method
JPH04180218A (en) Crystal article and crystal growth method
JPH0732123B2 (en) Method for manufacturing substrate for semiconductor device
JPH04188613A (en) Crystal growth method and crystallized substance obtained by said method
JPH03109717A (en) Method of forming semiconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees