JPH02294476A - Cathode for magnetron sputtering - Google Patents
Cathode for magnetron sputteringInfo
- Publication number
- JPH02294476A JPH02294476A JP11219989A JP11219989A JPH02294476A JP H02294476 A JPH02294476 A JP H02294476A JP 11219989 A JP11219989 A JP 11219989A JP 11219989 A JP11219989 A JP 11219989A JP H02294476 A JPH02294476 A JP H02294476A
- Authority
- JP
- Japan
- Prior art keywords
- target
- cathode
- magnetic field
- permanent magnet
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001755 magnetron sputter deposition Methods 0.000 title claims abstract description 11
- 239000000696 magnetic material Substances 0.000 claims abstract description 6
- 238000012856 packing Methods 0.000 claims description 14
- 230000005291 magnetic effect Effects 0.000 abstract description 73
- 239000010408 film Substances 0.000 abstract description 16
- 239000000758 substrate Substances 0.000 abstract description 7
- 230000004907 flux Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 239000010409 thin film Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005513 bias potential Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は薄膜形成などに用いられるマグネトロンスパッ
タリング用のカソードに関するものである.
[従来の技術]
マグネトロンスパッタリング装置はコンベンショナルな
スパッタリング装置に比べ、堆積速度を飛躍的に向上さ
せることができるスパッタリング装置である.
第4図に従来のカソードを用いたマグネトロンスパッタ
リング装置の一部を示す。真空槽l内の基板ホルダ2上
に基板3が支持されている.真空糟lは排気口l^から
排気可能であり、かつガス導入口lBから所望のガスを
導入できる.絶縁体4によって真空槽1と絶縁された非
磁性のカソード5が基板3と対向するように真空槽内に
挿入される.カソード5は膜形成のためのターゲット6
のパッキングプレートの役割りを果す.カソード5は給
水口7および排水口8を具えて水玲可能である。カソー
ド5の内部にはヨーク9によフて磁気的に結合された永
久磁石lOが設けられている。11はノブ、l2は取付
け用ジグである。永久磁石lOによる磁力線l3はター
ゲット6を通過する。このように、マグネトロンスパッ
タリング装置はターゲットの裏面に磁石を設置し、ター
ゲット表面部に磁界を漏洩させることが特徴である。こ
の漏洩磁界により、ターゲット付近の電子はサイクロト
ロン運動をして、イオンの電離確率の増加が促進される
。このため、ターゲット近傍のプラズマ密度が増加し、
ターゲットに衝突するイオン数が増加するので、堆積速
度が増加することになる.また、漏洩磁界により、プラ
ズマがカソード近傍に局在化するため、基板の温度上昇
が少なくなることもマグネトロンカソードの特徴である
.これらの高速性、低温性のため、現在、膜形成プロセ
スにはマグネトロンスパッタリング装置が非常に多く用
いられるようになっている.しかし、ターゲット表面で
得られる磁界は、ターゲット裏面郎の永久磁石の磁界が
一旦ターゲット中を通過するものであるため、ターゲッ
トの材質が磁性体であるか非磁性体であるかに応じて、
あるいはターゲットの厚みに応じて永久磁石の選定を行
わなければならない.この永久磁石の選定は、ターゲッ
トの材質、厚みから、経験的に設定されていた。そこで
、本発明者らは、ターゲットの材質や厚みが変化した場
合でも、所望のターゲット磁束密度が容易に得られるよ
うに、ターゲット裏面部のfil石の位置を、真空を破
らず、ターゲット鉛直方向に移動させてカソ一ド漏洩磁
界強度が可変なカソードを特願昭62−275631号
において提案した。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cathode for magnetron sputtering used for forming thin films. [Prior Art] Magnetron sputtering equipment is a sputtering equipment that can dramatically improve the deposition rate compared to conventional sputtering equipment. FIG. 4 shows a part of a conventional magnetron sputtering apparatus using a cathode. A substrate 3 is supported on a substrate holder 2 in a vacuum chamber l. The vacuum chamber 1 can be exhausted from the exhaust port 1^, and a desired gas can be introduced from the gas introduction port 1B. A non-magnetic cathode 5 insulated from the vacuum chamber 1 by an insulator 4 is inserted into the vacuum chamber so as to face the substrate 3. Cathode 5 is target 6 for film formation
It plays the role of a packing plate. The cathode 5 is provided with a water supply port 7 and a water discharge port 8 to allow water to be poured into the cathode 5 . A permanent magnet lO is provided inside the cathode 5 and is magnetically coupled by a yoke 9. 11 is a knob, and l2 is a mounting jig. The magnetic field lines l3 caused by the permanent magnet lO pass through the target 6. As described above, the magnetron sputtering apparatus is characterized in that a magnet is installed on the back surface of the target, and a magnetic field is leaked to the target surface. This leakage magnetic field causes electrons near the target to undergo cyclotron motion, promoting an increase in the probability of ionization of ions. Therefore, the plasma density near the target increases,
As the number of ions hitting the target increases, the deposition rate increases. Another feature of the magnetron cathode is that the plasma is localized near the cathode due to the leakage magnetic field, which reduces the temperature rise of the substrate. Because of their high speed and low temperature properties, magnetron sputtering equipment is now widely used in film formation processes. However, the magnetic field obtained on the target surface depends on whether the material of the target is magnetic or non-magnetic, since the magnetic field of the permanent magnet on the back side of the target passes through the target.
Alternatively, the permanent magnet must be selected depending on the thickness of the target. The selection of this permanent magnet was determined empirically based on the material and thickness of the target. Therefore, in order to easily obtain the desired target magnetic flux density even when the material or thickness of the target changes, the present inventors changed the position of the filtration stone on the back of the target in the vertical direction of the target without breaking the vacuum. In Japanese Patent Application No. 62-275631, a cathode was proposed in which the strength of the cathode leakage magnetic field could be varied by moving the cathode.
さらに本発明者らは、上記の漏洩磁界強度可変カソード
を用い、スパッタリング中のセルフバイアス電位が一定
となるようにフィードバックをかける薄膜形成装置を特
願昭63−257324号において提案し、この装置は
長期間にわたり、磁性膜形成を行っても堆積速度は常に
一定となり、工業的に優れた膜形成法であることを明ら
かにした。しかし、このカソードを用いたマグネトロン
スバッタリング装置では以下に述べる欠点を有していた
。Furthermore, the present inventors proposed a thin film forming apparatus in Japanese Patent Application No. 63-257324 using the above variable leakage magnetic field strength cathode and applying feedback so that the self-bias potential during sputtering is constant. The deposition rate remained constant even when forming a magnetic film over a long period of time, demonstrating that it is an industrially superior film formation method. However, the magnetron battering device using this cathode had the following drawbacks.
[発明が解決しようとする課題]
上述した従来のマグネトロンカソードは、夕一ゲット漏
洩磁界強度を所望の値に変化出来るカソードであるが、
磁界強度を変化させた場合のターゲット磁界分布に関し
ては余り考慮されていない。ターゲット表面で得られる
磁界は、夕一ゲット裏面部の永久磁石の磁界が一旦ター
ゲット中を通過するものであるため、ターゲットの材質
が磁性体であるか非磁性体であるかに応じ、あるいはタ
ーゲットの厚みに応じて永久磁石の位置を前後に移動さ
せなければならない.しかし、このカソードで、非磁性
ターゲットを用いた場合、永久磁石位置を前後させると
、ターゲット中心において所望の磁界強度は得られても
、磁界分布は磁界強度変化と共に大きく変化し二ロージ
ョン領域も変化する.
第5図および第6図は、それぞれ従来のカソードにおい
て、非磁性のチタンターゲットと永久磁石間の距離をパ
ラメータとした場合の漏洩磁界分布および形成膜厚分布
を示したものである。従来のカソードでは、永久磁石間
の距離が大きくなるに連れて、磁界分布は広がり、膜厚
分布は中心が厚くなる。[Problems to be Solved by the Invention] The conventional magnetron cathode described above is a cathode that can change the Yuichiget leakage magnetic field strength to a desired value.
Not much consideration is given to the target magnetic field distribution when the magnetic field strength is changed. The magnetic field obtained on the target surface depends on whether the material of the target is magnetic or non-magnetic, or because the magnetic field of the permanent magnet on the back of the target passes through the target. The position of the permanent magnet must be moved back and forth depending on the thickness of the magnet. However, when a non-magnetic target is used with this cathode, if the permanent magnet position is moved back and forth, even though the desired magnetic field strength can be obtained at the center of the target, the magnetic field distribution changes greatly as the magnetic field strength changes, and the two-losion region also changes. do. FIGS. 5 and 6 respectively show the leakage magnetic field distribution and the formed film thickness distribution in a conventional cathode when the distance between a non-magnetic titanium target and a permanent magnet is used as a parameter. In conventional cathodes, as the distance between the permanent magnets increases, the magnetic field distribution widens and the film thickness distribution becomes thicker at the center.
本発明は上述した従来の欠点を解決し、磁石の設計が容
易であり、かつ、ターゲットの材質、形状によらず、常
に、適切なカソード漏洩磁界かつ、常に同じ磁界分布が
得られるマグネトロンスパッタリング用のカソードを提
供することを目的とする.
[課題を解決するための手段]
本発明者らは、磁束密度可変マグネトロンカソードの有
する問題点を鋭意検討した結果、夕一ゲットが強磁性体
であって、ターゲット表面にスパッタエッチングによる
エロージョンが形成され、ターゲットの磁気遮蔽効果が
変化した場合でも、永久磁石位置を前後させることによ
り、夕一ゲット表面の磁界強度、磁界分布は初期設定と
同等な状態が得られることを見いだした.本発明はター
ゲット裏面部に永久磁石を設け、永久磁石を、真空を破
らずにターゲットに対して垂直方向に移動させるための
機構を具えたマグネトロンスパッタリング装置のカソー
ドにおいて、カソードが磁性材料で構成されかつターゲ
ットのパッキングプレートを兼ねていることを特徴とす
る。The present invention solves the above-mentioned conventional drawbacks, allows easy magnet design, and is suitable for magnetron sputtering in which an appropriate cathode leakage magnetic field and always the same magnetic field distribution can be obtained regardless of the material or shape of the target. The purpose is to provide a cathode for [Means for Solving the Problems] As a result of intensive investigation into the problems of variable magnetic flux density magnetron cathodes, the present inventors found that the Yuichi target is a ferromagnetic material and erosion is formed on the target surface due to sputter etching. We found that even if the magnetic shielding effect of the target changes, by moving the permanent magnet position back and forth, the magnetic field strength and field distribution on the Yuichi target surface can be maintained at the same level as the initial settings. The present invention provides a cathode for a magnetron sputtering apparatus that is equipped with a permanent magnet on the back surface of a target and has a mechanism for moving the permanent magnet in a direction perpendicular to the target without breaking the vacuum. It is also characterized by serving as a target packing plate.
[作 用]
本発明によれば、カソードに磁性体パッキングプレート
を使用することにより、ターゲット裏面部の永久磁石か
らの磁束を整形させ、ターゲットの材質、形状によらず
、常に適切なカソード漏洩磁界かつ、常に同じ磁界分布
を得ることができる。[Function] According to the present invention, by using a magnetic packing plate for the cathode, the magnetic flux from the permanent magnet on the back surface of the target is shaped, and the cathode leakage magnetic field is always appropriate regardless of the material or shape of the target. Moreover, the same magnetic field distribution can always be obtained.
[実施例] 以下に図面を参照して本発明の実施例を説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例の概要を示す断面図である。FIG. 1 is a sectional view showing an outline of an embodiment of the present invention.
図中、第4図と同一部分は同一参照番号を付して説明を
省略する。第1図において、l4は鉄.ニッケル.パー
マロイなどの磁性体からなるパッキングプレート、l5
は0リング、l6は真空ボンブ、l7はRF電源、1B
はマッチングボックスである.本発明においては、カソ
ードであり、かつターゲット6を保持するパッキングプ
レートl4に磁性材料を用いている点が、第4図に示し
た従来例と最も異なる点である。本実施例においては、
永久磁石移動用ノブ11を用いることにより、永久磁石
をターゲットと垂直方向に、真空を破らす穆動可能であ
る.これにより、永久磁石とターゲット間の距離を変化
させることが可能となる.夕一ゲット表面の漏洩磁界は
ターゲットの裏面の磁界強度を変化させることにより、
即ち、永久磁石とターゲット間の距離を変化させること
により調節することができる.具体的に説明すると、漏
洩磁界が大きい場合には、この距離を大きくすることに
より、また、漏洩磁界が小さい場合には、この距離を小
さくすることにより所望の磁界強度を得ることができる
。さらに、パッキングプレートが磁性体であるため、磁
界強度が変化しても磁束がパッキングプレートにより整
形されるため磁界分布は常に一定となる。従来、磁界分
布の変動は、形成膜の膜厚分布の変動をもたらしていた
が、磁界分布を一定とすることで、再現性に優れた形成
膜厚分布が得られることが明らかとなった。従って、本
カソ一ド構成を用いると、ターゲットの材質を変え、磁
気遮蔽効果が変化した場合でも、所望の漏洩磁界強度、
一定の磁界分布を得ることが容易に可能であり、ターゲ
ットを長期使用しターゲット厚が減少した場合にも、タ
ーゲットと永久磁石の距離を調節することにより所望の
漏洩磁界強度を得ることができる.
第2図は本発明による磁性体パッキングプレートを用い
たカソードにおける非磁性のチタンターゲットと永久磁
石間の距離をパラメータとした場合の漏洩磁界分布を示
したものである.第5図に示したように、従来のカソー
ドでは、永久磁石との距離が大きくなるに連れて、磁界
分布は広がる.これに対して、磁性体パッキングプレー
トを用いたカソードでは、永久磁石とチタンターゲット
の距頗を変化させても一定の磁界分布を示すことがわか
る.
第3図は磁性体パッキングプレートを用いたカソードに
おける非磁性のチタンターゲットと永久磁石間の距離を
パラメータとした場合の形成膜厚分布を示したものであ
る.従来のカソ一ドでは、第6図に示したように永久磁
石との距離が大きくなるに連れて、膜厚分布は中心が厚
くなる.これに対して、磁性体パッキングプレートを用
いたカソードでは、永久磁石とチタンターゲットの距離
を変化させても一定の膜厚分布を示すことがわかる.
[発明の効果]
以上説明したように、本発明によるマグネトロンカソー
ドでは、ターゲットの材質を変え、磁気遮蔽効果が変化
した場合でも、所望の漏洩磁界強度と一定の磁界分布を
得ることが容易に可能である.また、ターゲットを長期
使用しターゲット厚が減少した場合にも、ターゲットと
永久磁石の距離を調節することにより所望の漏洩磁界強
度を得ることができ、磁界強度の如何に依らず一定の磁
界分布および形成膜厚分布が得られる。In the figure, the same parts as in FIG. 4 are given the same reference numerals, and the explanation will be omitted. In Figure 1, l4 is iron. nickel. Packing plate made of magnetic material such as permalloy, l5
is 0 ring, l6 is vacuum bomb, l7 is RF power supply, 1B
is a matching box. The present invention is most different from the conventional example shown in FIG. 4 in that a magnetic material is used for the packing plate l4, which serves as a cathode and holds the target 6. In this example,
By using the permanent magnet moving knob 11, the permanent magnet can be moved in a direction perpendicular to the target to break the vacuum. This makes it possible to change the distance between the permanent magnet and the target. The leakage magnetic field on the Yuichi target surface can be reduced by changing the magnetic field strength on the back side of the target.
That is, it can be adjusted by changing the distance between the permanent magnet and the target. Specifically, when the leakage magnetic field is large, the desired magnetic field strength can be obtained by increasing this distance, and when the leakage magnetic field is small, the desired magnetic field strength can be obtained by decreasing this distance. Furthermore, since the packing plate is a magnetic material, even if the magnetic field strength changes, the magnetic flux is shaped by the packing plate, so the magnetic field distribution always remains constant. Conventionally, variations in the magnetic field distribution have caused variations in the thickness distribution of the formed film, but it has become clear that by keeping the magnetic field distribution constant, a formed film thickness distribution with excellent reproducibility can be obtained. Therefore, when using this cathode configuration, even if the material of the target is changed and the magnetic shielding effect is changed, the desired leakage magnetic field strength and
It is easily possible to obtain a constant magnetic field distribution, and even if the target thickness decreases due to long-term use, the desired leakage magnetic field strength can be obtained by adjusting the distance between the target and the permanent magnet. Figure 2 shows the leakage magnetic field distribution when the distance between the non-magnetic titanium target and the permanent magnet is taken as a parameter in a cathode using the magnetic packing plate of the present invention. As shown in Figure 5, in the conventional cathode, the magnetic field distribution widens as the distance from the permanent magnet increases. On the other hand, it can be seen that the cathode using a magnetic packing plate shows a constant magnetic field distribution even if the distance between the permanent magnet and the titanium target is changed. Figure 3 shows the film thickness distribution when the distance between the non-magnetic titanium target and the permanent magnet is taken as a parameter in a cathode using a magnetic packing plate. In a conventional cathode, as the distance from the permanent magnet increases, the film thickness distribution becomes thicker at the center, as shown in Figure 6. In contrast, it can be seen that the cathode using a magnetic packing plate shows a constant film thickness distribution even if the distance between the permanent magnet and the titanium target is changed. [Effects of the Invention] As explained above, in the magnetron cathode according to the present invention, even when the material of the target is changed and the magnetic shielding effect is changed, it is possible to easily obtain the desired leakage magnetic field strength and constant magnetic field distribution. It is. In addition, even if the target thickness decreases due to long-term use, the desired leakage magnetic field strength can be obtained by adjusting the distance between the target and the permanent magnet, resulting in a constant magnetic field distribution and The formed film thickness distribution can be obtained.
第1図は本発明実施例の概要を示す断面図、第2図およ
び第3図は、それぞれ、本発明による磁性体パッキング
プレートを用いたカソ一ドにおいて非磁性ターゲットと
永久磁石間の距離をパラメータとした場合の漏洩磁界分
布図および形成膜厚分布図、
第4図は従来のカソードを用いたマグネトロンスバッタ
装置の概要図、
第5図および第6図は、それぞれ、従来のカソ一ドにお
いて非磁性ターゲットと永久磁石間の距離をパラメータ
とした場合の漏洩磁界分布図および形成膜厚分布図であ
る。
1・・・真空槽、
3・・・基板、
5・・・非磁性パッキングプレート、
6・・・ターゲット、
lO・・・永久磁石、FIG. 1 is a sectional view showing an outline of an embodiment of the present invention, and FIGS. 2 and 3 respectively show the distance between a non-magnetic target and a permanent magnet in a cathode using a magnetic packing plate according to the present invention. A leakage magnetic field distribution diagram and a formed film thickness distribution diagram when used as parameters; Figure 4 is a schematic diagram of a magnetron scattering device using a conventional cathode; Figures 5 and 6 are respectively diagrams of a conventional cathode FIG. 7 is a leakage magnetic field distribution diagram and a formed film thickness distribution diagram when the distance between the nonmagnetic target and the permanent magnet is used as a parameter. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 3... Substrate, 5... Non-magnetic packing plate, 6... Target, lO... Permanent magnet,
Claims (1)
、真空を破らずに前記ターゲットに対して垂直方向に移
動させるための機構を具えたマグネトロンスパッタリン
グ装置のカソードにおいて、該カソードが磁性材料で構
成されかつ前記ターゲットのパッキングプレートを兼ね
ていることを特徴とするマグネトロンスパッタリング用
カソード。1) In the cathode of a magnetron sputtering apparatus, which is equipped with a permanent magnet on the back surface of the target and is equipped with a mechanism for moving the permanent magnet in a direction perpendicular to the target without breaking the vacuum, the cathode is made of a magnetic material. What is claimed is: 1. A cathode for magnetron sputtering, characterized in that the cathode is composed of: and also serves as a packing plate for the target.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11219989A JP2769572B2 (en) | 1989-05-02 | 1989-05-02 | Cathode for magnetron sputtering |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11219989A JP2769572B2 (en) | 1989-05-02 | 1989-05-02 | Cathode for magnetron sputtering |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02294476A true JPH02294476A (en) | 1990-12-05 |
| JP2769572B2 JP2769572B2 (en) | 1998-06-25 |
Family
ID=14580742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11219989A Expired - Lifetime JP2769572B2 (en) | 1989-05-02 | 1989-05-02 | Cathode for magnetron sputtering |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2769572B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04329868A (en) * | 1991-05-02 | 1992-11-18 | Chugai Ro Co Ltd | Pvd device |
| JP2008514810A (en) * | 2004-09-28 | 2008-05-08 | オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト | Method for manufacturing substrate formed by magnetron, and magnetron sputtering source |
| WO2010038593A1 (en) * | 2008-09-30 | 2010-04-08 | キヤノンアネルバ株式会社 | Device and method for depositing hard bias stack, and device and method for manufacturing magnetic sensor stack |
| WO2025051046A1 (en) * | 2023-09-05 | 2025-03-13 | 苏州迈为科技股份有限公司 | Magnetron sputtering-based adjustment method, sputtering cathode device, and sputtering device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5951975B2 (en) | 2010-12-28 | 2016-07-13 | キヤノンアネルバ株式会社 | Sputtering equipment |
-
1989
- 1989-05-02 JP JP11219989A patent/JP2769572B2/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04329868A (en) * | 1991-05-02 | 1992-11-18 | Chugai Ro Co Ltd | Pvd device |
| JP2008514810A (en) * | 2004-09-28 | 2008-05-08 | オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト | Method for manufacturing substrate formed by magnetron, and magnetron sputtering source |
| WO2010038593A1 (en) * | 2008-09-30 | 2010-04-08 | キヤノンアネルバ株式会社 | Device and method for depositing hard bias stack, and device and method for manufacturing magnetic sensor stack |
| WO2025051046A1 (en) * | 2023-09-05 | 2025-03-13 | 苏州迈为科技股份有限公司 | Magnetron sputtering-based adjustment method, sputtering cathode device, and sputtering device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2769572B2 (en) | 1998-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100396456B1 (en) | High target utilization magnetic arrangement for a truncated conical sputtering target | |
| EP0600070B1 (en) | Improved planar magnetron sputtering magnet assembly | |
| KR960002632B1 (en) | The method and the equipment for plasma-energized magnetron sputtering vapor deposition | |
| CA2326202C (en) | Method and apparatus for deposition of biaxially textured coatings | |
| US5876576A (en) | Apparatus for sputtering magnetic target materials | |
| JPH05507963A (en) | Equipment for depositing material into high aspect ratio holes | |
| US6432285B1 (en) | Planar magnetron sputtering apparatus | |
| US5277779A (en) | Rectangular cavity magnetron sputtering vapor source | |
| JPH11500490A (en) | Method and apparatus for sputtering magnetic target material | |
| JP3045752B2 (en) | Thin film sputtering method and apparatus | |
| JPH02294476A (en) | Cathode for magnetron sputtering | |
| JPH11158625A (en) | Magnetron sputtering film forming device | |
| JPH08209343A (en) | Method and apparatus for plane magnetron sputtering | |
| JPS59173265A (en) | sputtering device | |
| JPH0660393B2 (en) | Plasma concentrated high-speed sputter device | |
| JPS6217175A (en) | Sputtering device | |
| JPS58199862A (en) | Magnetron type sputtering device | |
| JPH04276069A (en) | Sputtering method and device | |
| JP2835462B2 (en) | Sputtering equipment | |
| JP2789251B2 (en) | Sputtering equipment using dipole ring type magnetic circuit | |
| JP2789252B2 (en) | Sputtering equipment using dipole ring type magnetic circuit | |
| JPS63307272A (en) | Ion beam sputtering device | |
| JPH0734244A (en) | Magnetron type sputter cathode | |
| CN211897094U (en) | Hardware configuration and system for physical sputtering | |
| JPS5813622B2 (en) | Magnetron type sputtering equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |