JPH0231528A - Satellite repeater monitoring device - Google Patents
Satellite repeater monitoring deviceInfo
- Publication number
- JPH0231528A JPH0231528A JP63182055A JP18205588A JPH0231528A JP H0231528 A JPH0231528 A JP H0231528A JP 63182055 A JP63182055 A JP 63182055A JP 18205588 A JP18205588 A JP 18205588A JP H0231528 A JPH0231528 A JP H0231528A
- Authority
- JP
- Japan
- Prior art keywords
- repeater
- satellite
- modulation
- signal
- saturation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radio Relay Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、衛星中継器の特性を地上から測定する衛星
中継器モニタ装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a satellite repeater monitoring device that measures the characteristics of a satellite repeater from the ground.
第3図は例えばIEEEPROCEEDING VOL
、134. Pt。Figure 3 shows, for example, IEEE PROCEEDING VOL.
, 134. Pt.
F、 No、5. AUGUST 1987に発表され
た従来の衛星中継器モニタ装置の一部を示したものであ
り、図において、1はAM変調器、2はキャリア信号と
なるIF信号を発生するxv4!4発生器、3はIF信
号発生器2のキャリア信号にAM変調を行うためのAM
変調信号発生器、4は被変調IF倍信号RF倍信号変換
するアンプコンバータ、5はRF倍信号増幅するハイパ
ワー増幅器、6は送受信アンテナ、7は特性を測定しよ
うとしている衛星、8は衛星7から送られてくる微弱電
波を増幅する低雑音増幅器、9は受信したRF倍信号I
F信号に変換するダウンコンバータ、10は送信した被
AM変調波を復調するAM復調器、11は復調されたA
M信号成分をモニタするモニタ装置である。F, No, 5. This is a part of a conventional satellite repeater monitoring device announced in AUGUST 1987. In the figure, 1 is an AM modulator, 2 is an xv4!4 generator that generates an IF signal that becomes a carrier signal, and 3 is AM for performing AM modulation on the carrier signal of IF signal generator 2.
4 is a modulated signal generator, 4 is an amplifier converter that converts the modulated IF multiplied signal, RF multiplied signal, 5 is a high power amplifier that amplifies the RF multiplied signal, 6 is a transmitting/receiving antenna, 7 is the satellite whose characteristics are to be measured, 8 is the satellite 7 9 is the received RF multiplied signal I.
10 is an AM demodulator that demodulates the transmitted AM modulated wave; 11 is a demodulated A down converter that converts it into an F signal;
This is a monitor device that monitors the M signal component.
次に動作について説明する。衛星中継器の入出力特性測
定においてAM変調器lにはIF信号発生器2からのI
F信号と変調信号となるAM変調信号発生器3からのベ
ースバンド信号が入力する。Next, the operation will be explained. When measuring the input/output characteristics of a satellite repeater, the AM modulator l receives the I from the IF signal generator 2.
The baseband signal from the AM modulation signal generator 3, which becomes the F signal and the modulation signal, is input.
このAM変調器1から出力される被変調波はアップコン
バータ4によりIF信号からRF倍信号変換され、さら
にTWTA等のハイパワー増幅器5により増幅され、送
受信アンテナ6を経由して衛!7へ送出される。The modulated wave output from the AM modulator 1 is converted from an IF signal to an RF signal by an upconverter 4, is further amplified by a high power amplifier 5 such as a TWTA, and is transmitted via a transmitting/receiving antenna 6 to a satellite! 7.
衛星7には地球局からの送信電波を受信し増幅し、さら
にその電波を地球局へ送信するための送受信アンテナ及
び中継器が搭載されている。この衛星に搭載されている
中継器の特性の1つに入出力特性があり、これを測定す
ることにより中継器がその寿命期間にわたり、基底の送
信電力で電波を送信していることを確認するものである
0通常この測定は衛星を管理している管制局が行い現在
使用していない中継器に対してその中継器の帯域内の任
意の周波数のRFキャリアを送信し、その送信レベルを
中継器が飽和するまで徐々に増加してゆき、中継器の入
力電力の増加に対し出力電力の増加が零となった点をそ
の中継器の飽和点とする0通常はこの飽和点における衛
星入力側の飽和電力束密度、出力側の飽和E I RP
(EffectiveIsotropically
Radiated PowerH衛星方向に向かう電波
の強さ)を測定する。前者は飽和を示した時の地球局送
信レベルから求め、後者は同じ飽和を示したときの地球
局受信レベルから逆算により求める。The satellite 7 is equipped with a transmitting/receiving antenna and a repeater for receiving and amplifying transmitted radio waves from the earth station, and further transmitting the radio waves to the earth station. One of the characteristics of the repeater installed on this satellite is the input/output characteristic, and by measuring this, it is confirmed that the repeater is transmitting radio waves at the base transmission power over its lifetime. 0 Normally, this measurement is performed by the control station that manages the satellite, which transmits an RF carrier of any frequency within the band of the repeater to a repeater that is not currently in use, and relays the transmission level. The saturation point of the repeater is the point where the output power increases to zero with respect to the increase in the input power of the repeater.Normally, the satellite input side at this saturation point. Saturation power flux density of output side, saturation E I RP of
(EffectiveIsotropically
Measure the strength of radio waves heading towards the Radiated PowerH satellite. The former is determined from the earth station transmission level when saturation is indicated, and the latter is determined by back calculation from the earth station reception level when the same saturation is indicated.
衛星で折り返された信号は地球局の送受信アンテナ6へ
入り低雑音増幅器8で増幅され、ダウンコンバータ9で
RF傷信号らIF信号への変換が行われ、さらにAM復
調器10で復調信号が取り出され、この復調信号がモニ
タ装置11で測定されたり、波形の形で画面に映し出さ
れる。The signal returned by the satellite enters the transmitting/receiving antenna 6 of the earth station, is amplified by a low noise amplifier 8, is converted from an RF signal to an IF signal by a down converter 9, and is then extracted as a demodulated signal by an AM demodulator 10. This demodulated signal is then measured by a monitor device 11 or displayed on a screen in the form of a waveform.
衛星へのAM被変調波の送出レベルを増加してゆくと、
第4図に示す様に、地球局からの送信電力レベルが中継
器の入出力特性の直線領域にある場合の地球局受信波の
スペクトラムは同図下に示す様に、AM変調による側帯
波を有している。送出レベルをさらに増加してゆ(と中
継器は飽和領域へ入り、AM変調による側帯波は中継器
の飽和特性のため消失する。さらに送信レベルを上げて
ゆくと中継器は過飽和となり再度側帯波が現れる。As the transmission level of AM modulated waves to the satellite is increased,
As shown in Figure 4, when the transmission power level from the earth station is in the linear region of the input/output characteristics of the repeater, the spectrum of the earth station received wave includes sideband waves due to AM modulation, as shown at the bottom of the figure. have. As the transmission level is further increased, the repeater enters the saturation region, and the sideband waves caused by AM modulation disappear due to the saturation characteristics of the repeater.As the transmission level is further increased, the repeater becomes oversaturated and the sideband waves are generated again. appears.
よって受信局側でこの側帯波あるいは復調波形を観測し
ていると中継器の飽和点でその側帯波あるいは復調波の
振幅は最小を示す、これにより中継器の飽和点が検出で
き、このときの地球局送信電力レベルから飽和電力束密
度が、また、受信レベルから飽和EIRPが求まる。Therefore, when observing this sideband wave or demodulated waveform on the receiving station side, the amplitude of the sideband wave or demodulated wave will be at its minimum at the saturation point of the repeater.This allows the saturation point of the repeater to be detected, and the The saturated power flux density is determined from the earth station transmission power level, and the saturated EIRP is determined from the reception level.
従来の衛星中継器モニタ装置による中継器の入出力特性
測定においては、衛星中継器を飽和領域で動作させるよ
うにしているが、周波数帯によっては地上電力束密度の
制約から中継器を飽和領域で動作させることができない
場合が発生する。特に地上のマイクロ回線等でその周波
数帯がすでに使われているものについてはそれへの干渉
のため地上電力束密度は低く抑えられ、このため、従来
、中継器の入出力特性の測定方法として用いられてきた
AM変調方式はキャリア成分の電力束密度が高いため使
えないという問題点があった。In measuring the input/output characteristics of a repeater using a conventional satellite repeater monitoring device, the satellite repeater is operated in the saturation region, but depending on the frequency band, the repeater is operated in the saturation region due to ground power flux density constraints. There are cases where it cannot be made to work. In particular, for those frequency bands that are already in use, such as on terrestrial micro-circuits, the terrestrial power flux density is kept low due to interference with them. The AM modulation method that has been used has a problem that it cannot be used because the power flux density of the carrier component is high.
この発明は上記のような問題点を解消するためになされ
たもので、地上電力束密度の制約の厳しい周波数帯にお
いても中継器を飽和領域まで動作させ、しかも従来から
行ってきたAM被変調波により衛星中継器の飽和点の検
出を行うことができる衛星中継器モニタ装置を得ること
を目的とする。This invention was made to solve the above-mentioned problems, and allows repeaters to operate up to the saturation region even in frequency bands where terrestrial power flux density is severely restricted. It is an object of the present invention to provide a satellite repeater monitoring device capable of detecting the saturation point of a satellite repeater.
この発明に係る衛星中継器モニタ装置は、IFキャリア
信号に対し対称三角波によりFM変調してエネルギー拡
散を行い、さらにこのFM被変調波をAM変調し、これ
をRF傷信号変換して衛星へ送信し、衛星中継器を経由
した信号を受信してIF信号に変換した後、AM復調器
及び中心周波数がAM変調信号周波数に等しい帯域フィ
ルタを通し、これをモニタ装置へ出力するようにしたも
のである。The satellite repeater monitoring device according to the present invention performs FM modulation on an IF carrier signal using a symmetrical triangular wave to spread energy, further performs AM modulation on this FM modulated wave, converts it into an RF flaw signal, and transmits it to the satellite. After receiving the signal via the satellite repeater and converting it to an IF signal, it passes through an AM demodulator and a bandpass filter whose center frequency is equal to the AM modulation signal frequency, and outputs it to a monitor device. be.
この発明における衛星中継器モニタ装置では、まず地上
電力束密度の制約を解決するためにキャリアを対称三角
波でFM変調することによりエネルギー拡散を行い、A
M被変調波を得るためにAM変調を行い、さらに復調後
に帯域フィルタを挿入することによりAM変調信号成分
をエネルギー拡散のための対称三角波成分から分離し、
AM変調信号成分のみを取り出しモニタへ出力する。In the satellite repeater monitoring device according to the present invention, first, in order to solve the constraint on ground power flux density, energy is spread by FM modulating the carrier with a symmetrical triangular wave.
AM modulation is performed to obtain M modulated waves, and a bandpass filter is inserted after demodulation to separate the AM modulated signal component from the symmetric triangular wave component for energy diffusion.
Only the AM modulation signal component is extracted and output to the monitor.
以下、この発明の一実施例を図について説明する。第1
図において、12はエネルギー拡散を行うためのFM変
調器、13はFM変調器12に入力するFM変調信号発
生器、14はAM復調後、AM変調信号成分をFM変調
信号成分から分離するための帯域フィルタである。An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 12 is an FM modulator for performing energy diffusion, 13 is an FM modulation signal generator input to the FM modulator 12, and 14 is an FM modulation signal generator for separating the AM modulation signal component from the FM modulation signal component after AM demodulation. It is a bandpass filter.
次に動作について説明する。FM変調信号発生器13か
ら対称三角波を出力し、FM変調器12のベースバンド
入力端子に接続する。これによりFM変調器12内部の
IFキャリアはFM変調信号によりFM変調される。こ
こで対称三角波でFM変調を行うのはキャリアを周波数
軸上で振幅が一定となる様拡散するためである。このF
M被変調波は次のAM変調器1でAM変調される。一般
にこのAM変調の変調指数は小さく5〜15%程度であ
る。これによりエネルギーが拡散されるとともにAM変
調を行うことにより飽和特性の測定が行いやすくなる。Next, the operation will be explained. A symmetric triangular wave is output from the FM modulation signal generator 13 and connected to the baseband input terminal of the FM modulator 12. As a result, the IF carrier inside the FM modulator 12 is FM-modulated by the FM modulation signal. The reason why FM modulation is performed using a symmetric triangular wave is to spread the carrier so that the amplitude is constant on the frequency axis. This F
The M modulated waves are subjected to AM modulation by the next AM modulator 1. Generally, the modulation index of this AM modulation is small, about 5 to 15%. This spreads energy and performs AM modulation, making it easier to measure saturation characteristics.
この飽和特性測定でAM被変調波が用いられるのは無変
調に比べ電波の伝搬における損失の変動等の影響を受け
にくいことによる。つまり伝搬路でフェージング等によ
るレベルの変動が発生してもAM変調による波形は保存
されるため飽和点を見出しやすいことによる。The reason why AM modulated waves are used in this saturation characteristic measurement is that they are less susceptible to fluctuations in loss during radio wave propagation than non-modulated waves. In other words, even if level fluctuations occur due to fading or the like in the propagation path, the waveform due to AM modulation is preserved, making it easy to find the saturation point.
衛星中継器を経由した被変調キャリアは地球局で受信し
た後ダウンコンバータ9でIF帯に変換されAM復調器
10で復調される。この復調器10によりAM変調信号
成分のみ取り出すためにこのAM変調信号周波数に相当
する帯域フィルタ14を通すことによりエネルギー拡散
のためのFM変調信号成分及びキャリア成分が除かれる
。この後AM変調信号成分がモニタされ、従来同様衛星
中継器の飽和点でこのAMfil[信号振幅は最小を示
す。The modulated carrier that has passed through the satellite repeater is received by the earth station, converted to an IF band by the down converter 9, and demodulated by the AM demodulator 10. In order to extract only the AM modulation signal component by the demodulator 10, the signal is passed through a bandpass filter 14 corresponding to the AM modulation signal frequency, thereby removing the FM modulation signal component and carrier component for energy diffusion. Thereafter, the AM modulated signal component is monitored, and the AMfil [signal amplitude exhibits a minimum at the saturation point of the satellite repeater, as in the conventional case.
衛星へのFM−AM被変調波の送出レベルを増加してゆ
くと、第2図に示す様に地球局からの送信レベルが中継
器の入出力特性の直線領域にある場合の地球局受信波の
スペクトラムは第2図の下に示す様にFM変調によるス
ペクトラム拡散AとAM変調による側帯波Bが拡散され
た形で見える。As the transmission level of the FM-AM modulated wave to the satellite is increased, as shown in Figure 2, the earth station received wave when the transmission level from the earth station is in the linear region of the input/output characteristics of the repeater. As shown in the lower part of FIG. 2, the spectrum appears to be a spread of spectrum A due to FM modulation and sideband B due to AM modulation.
送出レベルをさらに増加してゆくと中継器は飽和領域に
入り、AM変調による側帯波は中継器の飽和特性のため
消失する。さらに送信レベルを上げてゆくと中継器は過
飽和となり再度側帯波Bが拡散した形で現れる。よって
受信局側でこの側帯波あるいは復調波形を観測している
と中継器の飽和点でその側帯波あるいは復調波は最小を
示す。これにより中継器の飽和点が検出でき、このとき
の地球局送信電力レベルから飽和電力束密度が、また受
信レベルから飽和EIRPが求まる。As the transmission level is further increased, the repeater enters the saturation region, and sideband waves due to AM modulation disappear due to the saturation characteristics of the repeater. As the transmission level is further increased, the repeater becomes oversaturated and the sideband B appears again in a diffused form. Therefore, when observing this sideband wave or demodulated waveform on the receiving station side, the sideband wave or demodulated wave reaches its minimum at the saturation point of the repeater. As a result, the saturation point of the repeater can be detected, and the saturation power flux density can be determined from the earth station transmission power level at this time, and the saturation EIRP can be determined from the reception level.
以上のように、この発明によれば、FM変調器の後にA
M変調器を接続しさらに受信側で帯域フィルタにより必
要とするAM変調信号成分のみを取り出すように構成し
たので、地上電力束密度の厳しい周波数帯においても衛
星中継器の飽和特性が測定でき、かつAM変調も同時に
行うことにより衛星中継器の飽和点の検出が容易に行え
る効果がある。As described above, according to the present invention, the A
By connecting an M modulator and using a bandpass filter on the receiving side to extract only the necessary AM modulated signal components, the saturation characteristics of the satellite repeater can be measured even in frequency bands with severe ground power flux density. By performing AM modulation at the same time, the saturation point of the satellite repeater can be easily detected.
第1図はこの発明の一実施例による衛星中継器モニタ装
置を示すブロック図、第2図はこの発明の一実施例によ
る衛星中継器の入出力特性の各領域に対する地球局受信
被変調波スペクトラムを示す図、第3図は従来の衛星中
継器モニタ装置を示すブロック図、第4図は従来の衛星
中継器の入出力特性の各領域に対する地球局受信被変調
波スペクトラムを示す図である。
1はAM変調器、2はIF信号発生器、3はAM信号発
生器、4はアップコンバータ、5はハイパワー増幅器、
6は送受信アンテナ、7は衛星、8は低雑音増幅器、9
はダウンコンバータ、10はAMaiil器、111*
%ニタ装f、12はFMi調器、13はFM変調信号発
生器、14は帯域フィルタである。
なお図中同一符号は同−又は相当部分を示す。FIG. 1 is a block diagram showing a satellite repeater monitoring device according to an embodiment of the present invention, and FIG. 2 is an earth station received modulated wave spectrum for each region of the input/output characteristics of the satellite repeater according to an embodiment of the present invention. FIG. 3 is a block diagram showing a conventional satellite repeater monitoring device, and FIG. 4 is a diagram showing the earth station received modulated wave spectrum for each region of the input/output characteristics of the conventional satellite repeater. 1 is an AM modulator, 2 is an IF signal generator, 3 is an AM signal generator, 4 is an up converter, 5 is a high power amplifier,
6 is a transmitting and receiving antenna, 7 is a satellite, 8 is a low noise amplifier, 9
is a down converter, 10 is an AMail device, 111*
12 is an FMi adjuster, 13 is an FM modulation signal generator, and 14 is a bandpass filter. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
器モニタ装置において、 キャリアをFM変調しさらにAM変調するFM変調器お
よびAM変調器と、 このキャリアを衛星へ送信し中継器を経由したキャリア
を受信し、これをAM復調するAM復調器と、 該AM復調後のAM変調信号成分を取り出す帯域フィル
タとを備えたことを特徴とする衛星中継器モニタ装置。(1) A satellite repeater monitoring device for measuring the saturation characteristics of a satellite repeater includes an FM modulator and an AM modulator that perform FM modulation and further AM modulation on a carrier, and transmit this carrier to the satellite via the repeater. What is claimed is: 1. A satellite repeater monitoring device comprising: an AM demodulator that receives a carrier and performs AM demodulation thereof; and a bandpass filter that extracts an AM modulated signal component after the AM demodulation.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63182055A JPH0722268B2 (en) | 1988-07-21 | 1988-07-21 | Satellite repeater monitor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63182055A JPH0722268B2 (en) | 1988-07-21 | 1988-07-21 | Satellite repeater monitor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0231528A true JPH0231528A (en) | 1990-02-01 |
| JPH0722268B2 JPH0722268B2 (en) | 1995-03-08 |
Family
ID=16111553
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63182055A Expired - Lifetime JPH0722268B2 (en) | 1988-07-21 | 1988-07-21 | Satellite repeater monitor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0722268B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5535229A (en) * | 1993-05-10 | 1996-07-09 | Global Interconnect, Corp. | Digital data transfer system for use especially with advertisement insertion systems |
-
1988
- 1988-07-21 JP JP63182055A patent/JPH0722268B2/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5535229A (en) * | 1993-05-10 | 1996-07-09 | Global Interconnect, Corp. | Digital data transfer system for use especially with advertisement insertion systems |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0722268B2 (en) | 1995-03-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0929164B1 (en) | Method and apparatus for determining an operating point of a non-linear amplifier of a communication channel | |
| US5491454A (en) | Method and apparatus for reducing distortion in an output signal of an amplifier | |
| JPS61240725A (en) | Method and apparatus for measuring quality of wireless transmission channel | |
| NO175510B (en) | Signal level amplifier for high frequency signals | |
| JP2003502935A (en) | Method and apparatus for determining device characteristics of a communication channel | |
| JP6199127B2 (en) | Method and associated system for characterizing a satellite transmit antenna in orbit | |
| JPH03139027A (en) | Transmission power control system in satellite communication | |
| US6535546B1 (en) | Method and apparatus for determining characteristics of components of a communication channel under load | |
| US7236778B2 (en) | System and method for testing transceivers | |
| JPH04372234A (en) | Transmission power control method | |
| Renau et al. | 300 GHz super heterodyne link over 645 m with frequency duplexing for point to point backhauls | |
| JPH0231528A (en) | Satellite repeater monitoring device | |
| JPS63208329A (en) | Transmitting/receiving device | |
| JPS6243622B2 (en) | ||
| JP2531377B2 (en) | Modulation method identification circuit | |
| JP2001186071A (en) | Satellite power measurement device | |
| JPS61154329A (en) | Reception level detection system of beacon signal | |
| JPS59174036A (en) | Receiving device | |
| JPS609381B2 (en) | SCPC antenna tracking receiver | |
| JPH11239063A (en) | Hot standby wireless device | |
| JPS6232660B2 (en) | ||
| Moss | AM-AM and AM-PM Measurements Using the PM Null Technique (Short Paper) | |
| Pant et al. | Utilization of Single Spacecraft Transponder for Two Video Channels | |
| JPS58197943A (en) | Supervisory signal transmission method at direct relay station of digital wireless line | |
| JPH0478232A (en) | Transmission power control device |