[go: up one dir, main page]

JPH0235246B2 - KOGAKUSUKEERUSOCHI - Google Patents

KOGAKUSUKEERUSOCHI

Info

Publication number
JPH0235246B2
JPH0235246B2 JP15188283A JP15188283A JPH0235246B2 JP H0235246 B2 JPH0235246 B2 JP H0235246B2 JP 15188283 A JP15188283 A JP 15188283A JP 15188283 A JP15188283 A JP 15188283A JP H0235246 B2 JPH0235246 B2 JP H0235246B2
Authority
JP
Japan
Prior art keywords
scale
output
optical
pattern
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15188283A
Other languages
Japanese (ja)
Other versions
JPS6042616A (en
Inventor
Akyoshi Narimatsu
Akira Himuro
Katsutoshi Mibu
Takamoto Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP15188283A priority Critical patent/JPH0235246B2/en
Priority to DE3486351T priority patent/DE3486351T2/en
Priority to US06/634,791 priority patent/US4663588A/en
Priority to EP84305094A priority patent/EP0157034B1/en
Publication of JPS6042616A publication Critical patent/JPS6042616A/en
Publication of JPH0235246B2 publication Critical patent/JPH0235246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/247Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using time shifts of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光学スケール装置、特に検出スケール
信号から第3次高調波成分を除去することにより
歪をなくして精度を向上させるための改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical scale device, and particularly to an improvement for eliminating distortion and improving accuracy by removing third harmonic components from a detection scale signal.

[背景技術とその問題点] 周知の如くデイジタル位置表示システムには、
磁気方式、光学方式、電磁誘導方式、容量方式等
種々の方式のものがあるが、その何れも周期的パ
ターンを有する基準スケールと、これに対して相
対的に変位するピツクアツプ・ヘツドとを用いる
ことによつて夫々変位に対応する磁束、光量、誘
起電圧、容量等の変化を検出して電気信号に変換
する。
[Background technology and its problems] As is well known, digital position display systems include
There are various methods such as magnetic, optical, electromagnetic induction, and capacitive methods, but all of them use a reference scale with a periodic pattern and a pick-up head that is displaced relative to this. Detects changes in magnetic flux, amount of light, induced voltage, capacitance, etc. corresponding to each displacement and converts them into electrical signals.

而して上記システムの検出出力は分解能をあげ
るため、電気的に分割(内挿)して基準スケール
のパターンの周期よりはるかに小さくすることが
多く、そのため検出出力の波形は歪みが少なく、
できるだけ正弦波に近似していることが望まれ
る。検出出力の波形が歪んでいれば、上記の電気
的な分割は名目上はできても精度が得られない。
In order to increase the resolution of the detection output of the above system, it is often electrically divided (interpolated) to make it much smaller than the period of the reference scale pattern, so the waveform of the detection output has little distortion.
It is desirable that it approximate a sine wave as much as possible. If the waveform of the detection output is distorted, the electrical division described above may be possible nominally, but it will not be accurate.

また、第1図に示すような光学方式の場合、主
スケール1とインデツクス・スケール2を重ね合
わせた際の光透過部の面積は両スケールの相対変
位量に比例して増減する。従つて、受光素子3の
検出出力は上記光透過部の面積に比例することに
なり、両スケールの各光学格子で規定される夫々
の長さ方向の各光透過面積が同一の場合、上記検
出出力は三角波で、夫々のスケールの長さ方向の
光透過面積が異なつていると梯形波となるので、
検出出力には第3次高調波成分を主とする高調波
成分を含んでいる。
Further, in the case of the optical system as shown in FIG. 1, the area of the light transmitting portion when the main scale 1 and the index scale 2 are superimposed increases or decreases in proportion to the amount of relative displacement between the two scales. Therefore, the detection output of the light-receiving element 3 is proportional to the area of the light transmitting part, and if the light transmitting area in the length direction defined by each optical grating of both scales is the same, the detection output of the light receiving element 3 is proportional to the area of the light transmitting part. The output is a triangular wave, and if the light transmission area in the length direction of each scale is different, it becomes a trapezoidal wave.
The detection output contains harmonic components mainly including third harmonic components.

即ち梯形波は第11図から明らかなようにフー
リエ級数で表わされ、 f1(x)=4/π a/b(1/12sinbsinx+1/32sin3
bsinx…) (1) 3角波は(1)式でb=π/2とおき f2(x)=8a/π2(sinx/12−sin3x/32+sin5x/52
…)(2) の数式で表示され、また歪み率は であるから、第3次高調波成分が歪みの大きな原
因となることがわかる。
In other words, the trapezoidal wave is expressed by a Fourier series as shown in Fig. 11, f 1 (x) = 4/π a/b (1/1 2 sinbsinx + 1/3 2 sin3
bsinx…) (1) For the triangular wave, set b = π/2 in equation (1) and f 2 (x) = 8a/π 2 (sinx/1 2 −sin3x/3 2 + sin5x/5 2
…) is expressed by the formula (2), and the distortion rate is Therefore, it can be seen that the third harmonic component is a major cause of distortion.

[発明の目的] 本発明の目的は光学スケール装置の変位xに関
する出力波形の歪みの原因である第3次高調波成
分を除去するにある。
[Object of the Invention] An object of the present invention is to remove the third harmonic component that causes distortion of the output waveform with respect to the displacement x of the optical scale device.

[発明の概要] 本発明は上記目的を達成するため、インデツク
ス・スケールの光学格子パターンの夫々を空間的
に1/6波長の位相波を有するように設けることに
より、夫々の光学格子パターンのスケール出力を
合成することにより、その合成出力から少なくと
も第3次高調波成分を除去するように構成したこ
とを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention provides index scale optical grating patterns such that each index scale optical grating pattern has a phase wave of 1/6 wavelength spatially. The present invention is characterized in that by combining the outputs, at least the third harmonic component is removed from the combined output.

[実施例] 以下図面に示す実施例を参照して本発明を説明
すると、今、第1図に示す光学スケール装置にお
いて、主スケール1とインデツクス・スケール2
の光学格子のデユーテイが1:1とすると、受光
素子3によつて検出されるスケール出力f(x)
は第2図に示す如く3角波であり、(2)式でa=
A/2とおき、1/2πだけ左方向に移相しかつ
A/2だけ正方向にシフトしたものに相当するの
で下記(3)式で表わされる。
[Example] The present invention will be described below with reference to an example shown in the drawings. In the optical scale apparatus shown in FIG.
When the duty of the optical grating is 1:1, the scale output f(x) detected by the light receiving element 3 is
is a triangular wave as shown in Figure 2, and in equation (2), a=
A/2 corresponds to a phase shift in the left direction by 1/2π and a shift in the positive direction by A/2, so it is expressed by the following equation (3).

f(x)=A/2+4A/π2{cosx/12+cos3x/32+co
s5x/52…} (3) なお、第1図で4は光源、5はレンズ系であ
り、またデユーテイ1:1ということは光学格子
において光の透過部及び遮光部の寸法が等しいこ
とを意味し、両者を加えた値が格子常数である。
f(x)=A/2+4A/π 2 {cosx/1 2 +cos3x/3 2 +co
s5x/5 2 ...} (3) In Fig. 1, 4 is the light source, 5 is the lens system, and the duty ratio of 1:1 means that the dimensions of the light transmitting part and the light blocking part are equal in the optical grating. The sum of the two is the lattice constant.

このf(x)の3角波のスケール出力に対しε
の位相差を有する下記(4)式で表わされる3角波f
(x+ε)スケール出力を加え合わせて成る合成
波F(x)のスケール出力を考えてみる。
For the triangular wave scale output of this f(x), ε
A triangular wave f expressed by the following equation (4) with a phase difference of
Consider the scale output of a composite wave F(x) formed by adding (x+ε) scale outputs.

f(x+ε)=A/2+4A/π2{cos(x+ε)/12
cos3(x+ε)/32+cos5(x+ε)/52}(4) F(x)=f(x)+f(x+ε)=A+8A/π2{1
/12cos(x+ε/2)cosε/2+1/32cos(3x+3ε
/2)cos3ε/2 +1/52cos(5x+5ε/2)cos5/2ε…}(5) (5)式より合成出力F(x)の第3次高調波成分
の項を零にする条件は 3ε/2=π/2、ε=π/3 即ち、3角波f(x)と、これからxに関して
π/3の位相差を有する3角波f(x+π/3)
とを合成すれば、合成出力F(x)から第3次高
調波成分を相殺して歪みの少ないスケール出力が
得られ光学スケール装置の精度を向上させ得るこ
とがわかる。
f(x+ε)=A/2+4A/π 2 {cos(x+ε)/1 2 +
cos3(x+ε)/3 2 +cos5(x+ε)/5 2 }(4) F(x)=f(x)+f(x+ε)=A+8A/π 2 {1
/1 2 cos(x+ε/2) cosε/2+1/3 2 cos(3x+3ε
/2) cos3ε/2 +1/5 2 cos (5x+5ε/2) cos5/2ε...}(5) From equation (5), the conditions for making the term of the third harmonic component of the composite output F(x) zero are 3ε/2=π/2, ε=π/3 In other words, the triangular wave f(x) and the triangular wave f(x+π/3) which has a phase difference of π/3 with respect to x
It can be seen that by combining these, the third harmonic component is canceled out from the combined output F(x), a scale output with less distortion is obtained, and the accuracy of the optical scale device can be improved.

第3図及び第4図は夫々上述した原理に基づく
本発明の各実施例を示す(これら各実施例におい
てn〜n4は任意の整数)。
3 and 4 respectively show embodiments of the present invention based on the above-described principles (in each of these embodiments, n to n 4 is an arbitrary integer).

第3図において、インデツクス・スケール2′
は第5図に示す如き光学スケール装置に使用され
るもので、その4つのパターン部a,b,c及び
dは各々縦に2分割され、夫々の分割パターンの
空間的位相差εがλ/6(但し、ここでは1波長
λ=2πとしたので、ε=π/3となる)となる
ように配設されることにより、光学素子3で、各
分割パターン部に対応する検出出力f(x)とf
(x+π/3)とを得て合成すれば前述した理由
で合成されたスケール出力F(x)から第3次高
調波成分が打ち消される。
In Figure 3, index scale 2'
is used in an optical scale device as shown in FIG. 5, and its four pattern parts a, b, c, and d are each vertically divided into two, and the spatial phase difference ε of each divided pattern is λ/ 6 (here, one wavelength λ=2π, so ε=π/3), the optical element 3 generates a detection output f( x) and f
(x+π/3) is obtained and synthesized, the third harmonic component is canceled out from the synthesized scale output F(x) for the reason described above.

第4図の実施例はインデツクス・スケール2′
の各パターン部を横に2分割したもので、この分
割方法でも同様の効果が得られる。
The embodiment of FIG. 4 has an index scale of 2'.
Each pattern section is horizontally divided into two parts, and the same effect can be obtained with this division method.

上述したようにインデツクス・スケールの各パ
ターン部を縦及び又は横に少なくとも2分割し
て、夫々の空間的位相差がλ/6(λは波長)と
なるようにして夫々の分割パターン部に対応する
検出出力を合成すれば、合成されたスケール出力
から第3次高調波成分を打ち消すことができる。
また主スケール1を横に分割しても同様の効果が
得られる。
As mentioned above, each pattern part of the index scale is divided into at least two parts vertically and/or horizontally, and the spatial phase difference of each part is λ/6 (λ is the wavelength) to correspond to each divided pattern part. By combining the detection outputs, the third harmonic component can be canceled out from the combined scale output.
A similar effect can also be obtained by dividing the main scale 1 horizontally.

なお、インデツクス・スケール2′のパターン
部が第6図及び第7図に示す如き構造の場合で
も、上記各実施例と同様にして歪みの打ち消しを
行うことができる。
Note that even if the pattern portion of the index scale 2' has a structure as shown in FIGS. 6 and 7, distortion can be canceled in the same manner as in each of the above embodiments.

第8図a及びbは第1図に示す如き光学スケー
ル装置に本発明を適用した更に他の実施例であ
る。同図において、6はインデツクス・スケール
2′のホルダーで、微調ネジ7を介して固定フレ
ーム8に保管されている。
FIGS. 8a and 8b show still another embodiment in which the present invention is applied to the optical scale apparatus shown in FIG. In the figure, reference numeral 6 denotes a holder for the index scale 2', which is stored in a fixed frame 8 via fine adjustment screws 7.

主スケール1はインデツクス・スケール2′と
平行でかつ一定の間隔を保ちながら水平かつ左右
に移動する。また主スケール1と平行でインデツ
クス・スケールの各パターンと略同区間に分けて
受光素子3が配置されている。
The main scale 1 moves horizontally and horizontally in parallel with the index scale 2' while maintaining a constant interval. Further, light receiving elements 3 are arranged parallel to the main scale 1 and divided into approximately the same sections as each pattern of the index scale.

インデツクス・スケール2′は第9図に示す如
くその各パターン部a〜dが第1の遮光板9によ
つて各々上下に2分されている。第1の遮光板9
は斜線で示すように中央部分の幅が広がつてお
り、これによりこの遮光板を左右に微動調整する
ことによりパターン部b及びcを通過する光量の
バランスをとることができる。また第1の遮光板
9に対し第2の遮光板10が重ねて配置され、パ
ターン部a及びdを夫々上下に分割すると共に
夫々の通過光量のバランスをとるようになつてい
る。
As shown in FIG. 9, the index scale 2' has its respective pattern portions a to d divided into upper and lower halves by a first light-shielding plate 9. As shown in FIG. First light shielding plate 9
As shown by diagonal lines, the width of the central portion is widened, so that the amount of light passing through pattern portions b and c can be balanced by slightly adjusting the light shielding plate left and right. Further, a second light shielding plate 10 is arranged to overlap the first light shielding plate 9, dividing the pattern portions a and d into upper and lower portions, and balancing the amount of light passing through each.

インデツクス・スケール2′は主スケール1に
対して僅かに傾けられて配置され、その関係は第
10図に示すように遮光板(中央斜線部)9,1
0の上下でλ/6の位相差がでるように微動調整
する。このため、例えばインデツクス・スケール
2′のホルダー6の一部を大円Rで固定フレーム
8に接続し、この大円に沿つて水平に僅か移動し
かつ固定できる構造とすれば、微調ネジ7の比較
的大きな回転で、上述したインデツクス・スケー
ルの方向(角度)の微動調整を容易に行うことが
できる。
The index scale 2' is arranged slightly inclined with respect to the main scale 1, and the relationship between the index scale 2' and the main scale 1 is as shown in FIG.
Fine adjustment is made so that there is a phase difference of λ/6 above and below 0. For this reason, for example, if a part of the holder 6 of the index scale 2' is connected to the fixed frame 8 by a large circle R, and the structure is such that it can be moved slightly horizontally along this large circle and then fixed, the fine adjustment screw 7 can be fixed. With a relatively large rotation, the above-mentioned fine adjustment of the direction (angle) of the index scale can be easily performed.

以上のように構成すればインデツクス・スケー
ル2′の各パターン部は遮光板によつて上下に2
分されているので、そこからの透過光束も2分さ
れ、夫々の光束は前記f(x)、f(x+π/3)
に相当するから、両光束が1つの受光素子に入射
することによりf(x)とf(x+π/3)が合成
されたF(x)の出力が得られることになる。
With the above configuration, each pattern part of the index scale 2' can be divided vertically into two parts by the light shielding plate.
Therefore, the transmitted light flux is also divided into two, and the respective light fluxes are divided into the f(x) and f(x+π/3)
Since both light beams are incident on one light receiving element, an output of F(x), which is a combination of f(x) and f(x+π/3), is obtained.

なお、上述した各実施例の如く2つの出力を合
成する方式の外に、スケールパターンを特定の構
造とすることにより本発明と同様の効果を得るこ
ともできる。
In addition to the method of combining two outputs as in each of the embodiments described above, it is also possible to obtain the same effect as the present invention by making the scale pattern have a specific structure.

即ち、スケール出力の波形が第11図に示す如
き梯形波であるとして、その基本式は f0(x)=ax/b(a≦x≦b)=a(b≦x≦2/π
)(6) fo(x)=4a/πb(sinbsinx/12+sin3bsi
n3x/32+sin5bsin5x/52…)(7) である。
That is, assuming that the waveform of the scale output is a trapezoidal wave as shown in FIG.
)(6) fo(x)=4a/πb(sinbsinx/1 2 +sin3bsi
n3x/3 2 + sin5bsin5x/5 2 ...) (7).

(5)式において、b=π/3とすると、 (6)式から明らかな如くスケール出力の波形がb
=π/3であるような梯形波となる光学格子のパ
ターンとなるようにスケールを構成すれば第3次
高調波成分を除去できることがわかる。そのため
には、例えば主スケールとインデツクス・スケー
ルとの一方の光学格子パターンのデユーテイが
1:1の時、他のデユーテイを1:2(光の透過
する部分が1)とすればよい。
In equation (5), if b=π/3, As is clear from equation (6), the waveform of the scale output is b
It can be seen that the third harmonic component can be removed by configuring the scale to form an optical grating pattern that forms a trapezoidal wave with =π/3. To do this, for example, when the duty of one of the optical grating patterns of the main scale and the index scale is 1:1, the duty of the other may be set to 1:2 (the portion through which light passes is 1).

[発明の効果] 以上説明した所から明らかなように本発明によ
れば、比較的簡単な方法で、合成スケール出力よ
り第3次高調波成分を除去することができ、スケ
ールの精度は大幅に向上する。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, the third harmonic component can be removed from the composite scale output using a relatively simple method, and the accuracy of the scale is greatly improved. improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第5図は光学スケール装置の基本的
構成を示す概略図、第2図は本発明の動作原理を
説明するための波形図、第3図及び第4図は夫々
本発明の各実施例の主要部の構造を示す概略図、
第6図及び第7図は本発明の他の実施例を説明す
るための概略図、第8図a,b、第9図及び第1
0図は本発明の更に他の実施例を示す概略図、第
11図は本発明の更に他の実施例の動作を説明す
るための波形図である。 1……主スケール、2,2′……インデツク
ス・スケール、3……受光素子、4……光源、5
……レンズ系。
1 and 5 are schematic diagrams showing the basic configuration of the optical scale device, FIG. 2 is a waveform diagram for explaining the operating principle of the present invention, and FIGS. 3 and 4 are respective diagrams showing the basic configuration of the optical scale device. A schematic diagram showing the structure of the main part of the embodiment,
6 and 7 are schematic diagrams for explaining other embodiments of the present invention, FIGS. 8a and b, 9 and 1.
0 is a schematic diagram showing still another embodiment of the present invention, and FIG. 11 is a waveform diagram for explaining the operation of still another embodiment of the present invention. 1... Main scale, 2, 2'... Index scale, 3... Light receiving element, 4... Light source, 5
...Lens system.

Claims (1)

【特許請求の範囲】[Claims] 1 主スケールと、これと平行に保持されるイン
デツクス・スケールと、両スケールの透過光を検
出する受光手段とを備え、両スケール間の相対変
位に応じて両スケールの光学格子パターンに対応
したスケール出力を上記受光手段により得るよう
にした光学スケール装置において、上記インデツ
クス・スケールは複数の光学格子パターン部を有
し、各パターン部は空間的に1/6波長の位相差を
有するように設けられ、夫々のパターン部に対応
するスケール出力を合成することにより合成され
たスケール出力から第3次高調波成分を除去する
如く構成したことを特徴とする光学スケール装
置。
1 A scale comprising a main scale, an index scale held parallel to this, and a light receiving means for detecting transmitted light from both scales, and which corresponds to the optical grating pattern of both scales according to the relative displacement between the scales. In the optical scale device in which the output is obtained by the light receiving means, the index scale has a plurality of optical grating pattern parts, and each pattern part is provided so as to have a spatial phase difference of 1/6 wavelength. An optical scale device characterized in that it is configured to remove a third harmonic component from the synthesized scale output by synthesizing the scale outputs corresponding to the respective pattern portions.
JP15188283A 1983-07-27 1983-08-19 KOGAKUSUKEERUSOCHI Expired - Lifetime JPH0235246B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15188283A JPH0235246B2 (en) 1983-08-19 1983-08-19 KOGAKUSUKEERUSOCHI
DE3486351T DE3486351T2 (en) 1983-07-27 1984-07-26 Detector head.
US06/634,791 US4663588A (en) 1983-07-27 1984-07-26 Detector for use for measuring dimensions of an object
EP84305094A EP0157034B1 (en) 1983-07-27 1984-07-26 Detector head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15188283A JPH0235246B2 (en) 1983-08-19 1983-08-19 KOGAKUSUKEERUSOCHI

Publications (2)

Publication Number Publication Date
JPS6042616A JPS6042616A (en) 1985-03-06
JPH0235246B2 true JPH0235246B2 (en) 1990-08-09

Family

ID=15528262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15188283A Expired - Lifetime JPH0235246B2 (en) 1983-07-27 1983-08-19 KOGAKUSUKEERUSOCHI

Country Status (1)

Country Link
JP (1) JPH0235246B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237317A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp displacement transducer
JPS60237318A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPS60237316A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
DE3616144A1 (en) * 1986-05-14 1987-11-19 Heidenhain Gmbh Dr Johannes PHOTOELECTRICAL MEASURING DEVICE
JP2722605B2 (en) * 1989-02-10 1998-03-04 株式会社安川電機 Magnetic encoder
JP2539269B2 (en) * 1989-07-17 1996-10-02 オークマ株式会社 Optical encoder
DE10020575A1 (en) 2000-04-28 2001-10-31 Heidenhain Gmbh Dr Johannes Scanning unit for an optical position measuring device
KR101481472B1 (en) * 2008-03-07 2015-01-12 산요 덴키 가부시키가이샤 Optical encoder device
JP5378316B2 (en) 2009-07-29 2013-12-25 山洋電気株式会社 Optical encoder device

Also Published As

Publication number Publication date
JPS6042616A (en) 1985-03-06

Similar Documents

Publication Publication Date Title
US4595991A (en) Position measuring method and apparatus
US5889280A (en) Apparatus for measuring displacement
US3482107A (en) Photoelectric position sensing device comprising light diffracting phase gratings using polarizer beam splitters for sensing the time phase position of the gratings
EP0163362A1 (en) Displacement measuring apparatus and method
US4091281A (en) Light modulation system
JPS60243514A (en) Photoelectric measuring device
JP3227206B2 (en) Optical encoder
JPH0131127B2 (en)
US4025197A (en) Novel technique for spot position measurement
JPH0658779A (en) Measuring device
JPH0820275B2 (en) Position measuring device
US7404259B2 (en) Optical position measuring instrument
JPH0235246B2 (en) KOGAKUSUKEERUSOCHI
JPS5845687B2 (en) Movement distance and speed measuring device
EP0157034B1 (en) Detector head
JP2888482B2 (en) Device for filtering harmonic signal components
US5541729A (en) Measuring apparatus utilizing diffraction of reflected and transmitted light
US4998798A (en) Encoder having long length measuring stroke
JPS6213603B2 (en)
JPH0151926B2 (en)
US4808807A (en) Optical focus sensor system
JPH02298804A (en) Interferometer
JPS6166927A (en) rotary encoder
JPH0444211B2 (en)
SU926530A1 (en) Optical pickup of displacements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees