[go: up one dir, main page]

JPH0282459A - Fuel cell operation control device - Google Patents

Fuel cell operation control device

Info

Publication number
JPH0282459A
JPH0282459A JP63232004A JP23200488A JPH0282459A JP H0282459 A JPH0282459 A JP H0282459A JP 63232004 A JP63232004 A JP 63232004A JP 23200488 A JP23200488 A JP 23200488A JP H0282459 A JPH0282459 A JP H0282459A
Authority
JP
Japan
Prior art keywords
flow rate
fuel
calculated
fuel cell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232004A
Other languages
Japanese (ja)
Inventor
Koji Ito
幸二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63232004A priority Critical patent/JPH0282459A/en
Publication of JPH0282459A publication Critical patent/JPH0282459A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池、特にりん酸型燃料電池の電池特性
を保持するように運転を制御する燃f4を池の運転制御
系統に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an operation control system for a fuel cell, particularly an F4 fuel cell, which controls the operation of a phosphoric acid fuel cell so as to maintain its cell characteristics.

〔従来の技術〕[Conventional technology]

燃料電池は正極すなわち酸化剤電極に酸化剤として空気
を、また負極すなわち燃料1i掻に燃料として水素を含
んだ燃料ガスを供給することにより電池反応を起こして
発電し、燃料電池に接続する負荷回路に電力を供給して
いる。このような電力供給状態において、燃料電池の発
電中に空気もしくは燃料ガスの少なくともどちらか一方
が何らかの理由で電池の安定な出力電圧を得るために必
要な量が電極に供給されない状態すなわちガス欠状態で
通電されると出力電圧が低下しついには発電不能におち
いる。このようなガス欠のため出力電圧が低下する過程
で電池面内の温度分布に変化が生じる。第3図は燃料電
池、例えばりん酸型燃料電池に接続する負荷回路の負荷
電流に対し充分な量の燃料ガス、空気が供給されること
により、出力電圧が安定している場合の単セル面内温度
分布の例であり、第4図は同じセルにおいて水素が不足
した状態で送電している場合の面内温度分布の例である
。これらの図の比較でわかるように水素が不足している
状態での送電は水素のセル入口付近で温度が異常に高く
なっている。これは水素流量が負荷に対し少な(なると
水素の入口付近でしか発電しなくなり局部的なエネルギ
集中が生じるためと考えられている。なお、酸素が不足
した場合でも同じ現象が生じる。
A fuel cell generates electricity by causing a cell reaction by supplying air as an oxidant to the positive electrode, or oxidizer electrode, and hydrogen-containing fuel gas to the negative electrode, or fuel 1i, and a load circuit connected to the fuel cell. is supplying electricity to. In such a power supply state, a state in which at least either air or fuel gas is not supplied to the electrodes for some reason during power generation by the fuel cell in the amount necessary to obtain a stable output voltage of the cell, that is, a gas starvation state. When it is energized, the output voltage drops and eventually it becomes unable to generate electricity. In the process of decreasing the output voltage due to such a lack of gas, a change occurs in the temperature distribution within the battery surface. Figure 3 shows the single cell surface when a sufficient amount of fuel gas and air is supplied to the load current of the load circuit connected to a fuel cell, such as a phosphoric acid fuel cell, and the output voltage is stable. This is an example of the internal temperature distribution, and FIG. 4 is an example of the internal temperature distribution when the same cell is transmitting power in a state where hydrogen is insufficient. As can be seen from a comparison of these figures, when power is being transmitted in a state where there is a shortage of hydrogen, the temperature near the hydrogen cell entrance becomes abnormally high. This is thought to be because the hydrogen flow rate is low relative to the load (then power is generated only near the hydrogen inlet, resulting in local energy concentration).The same phenomenon occurs even when oxygen is insufficient.

このような電池面内に過大な高温状態が生じると燃料電
池、例えばりん酸を電解液とするりん酸型燃料電池に次
に述べるような影響が生じる。すなわち電池反応特電種
牛のりん酸中の水蒸気圧が高くなって飛散し、その結果
りん酸の濃度が高くなったり、体積が減少したりして電
池の内部抵抗が増加する。あるいは電極中のりん酸によ
って保たれている空気と燃料ガスのガスシール性が弱く
なり、酸素と水素の電極を介しての直接反応の原因とな
る。また、電極触媒層中の白金のシンタリングが助長さ
れ、白金表面積が減少する。これらの燃料電池への影響
はいずれも電池出力特性を劣化させるので、ガス欠状態
で発電して負荷回路に送電することは避ける必要がある
。このため従来電池の出力電圧を監視することによりガ
ス欠状態では負荷回路への送電を停止している。この送
電の停止する方法として空気あるいは燃料ガスの流量の
いずれか一方が負荷電流に対して少なくなると漸時出力
電圧が下がってくるので、出力電圧が所定値まで低下す
ると自動的に開閉器を開にして負荷回路を燃料電池から
切離すことが行なわれている。
If such an excessively high temperature condition occurs within the cell surface, the following effects will occur on a fuel cell, for example, a phosphoric acid fuel cell using phosphoric acid as an electrolyte. That is, the water vapor pressure in the phosphoric acid of the battery-reactive special electric bull increases and scatters, resulting in an increase in the concentration of phosphoric acid, a decrease in volume, and an increase in the internal resistance of the battery. Alternatively, the gas seal between air and fuel gas maintained by the phosphoric acid in the electrode becomes weaker, causing a direct reaction between oxygen and hydrogen through the electrode. Furthermore, sintering of platinum in the electrode catalyst layer is promoted, and the platinum surface area is reduced. Since all of these effects on the fuel cell deteriorate the cell output characteristics, it is necessary to avoid generating power and transmitting power to the load circuit when the fuel cell is out of gas. For this reason, conventionally, by monitoring the output voltage of the battery, power transmission to the load circuit is stopped when the battery is out of gas. The method for stopping power transmission is to gradually lower the output voltage when the flow rate of either air or fuel gas decreases relative to the load current, so when the output voltage drops to a predetermined value, the switch is automatically opened. The load circuit is separated from the fuel cell by using the following method.

上記の方法は負荷回路が切離されるまでいくばくかの時
間が生じ、この間電池は過大な高温にさらされるので電
池特性の劣化が加速される。
The above method requires some time until the load circuit is disconnected, and during this time the battery is exposed to excessively high temperatures, accelerating the deterioration of battery characteristics.

この欠点を解決するものとして第5図に示すような燃料
電池の運転制御系統が知られている0図においてlはり
ん酸電解液を含浸したマトリックス2とこれを挟持する
酸化剤f極3と燃料電極4とからなる単セルを積層した
燃料電池本体である。
As a solution to this drawback, a fuel cell operation control system as shown in FIG. 5 is known. In FIG. This is a fuel cell main body in which unit cells each consisting of a fuel electrode 4 are stacked.

燃料電池本体1には空気を酸化剤電極3に供給する供給
管5と、酸化剤電極3から電池反応に寄与しない未反応
空気を排出する排出管6並びに燃料ガスを燃料型8i4
に供給する供給管7と燃料電極4から電池反応に寄与し
ない未反応燃料ガスを排出する排出管8とが設けられて
いる。なお供給管5には空気の供給流量を検出する空気
流量センサ9、また供給管7には燃料ガスの供給流量を
検出する燃料流量センサ10が設けられている。
The fuel cell main body 1 includes a supply pipe 5 for supplying air to the oxidizer electrode 3, a discharge pipe 6 for discharging unreacted air that does not contribute to the cell reaction from the oxidizer electrode 3, and a fuel type 8i4 for discharging fuel gas.
A supply pipe 7 for supplying fuel gas to the fuel electrode 4 and a discharge pipe 8 for discharging unreacted fuel gas that does not contribute to the cell reaction from the fuel electrode 4 are provided. Note that the supply pipe 5 is provided with an air flow rate sensor 9 for detecting the supply flow rate of air, and the supply pipe 7 is provided with a fuel flow rate sensor 10 for detecting the supply flow rate of fuel gas.

燃料電池本体1には負荷11と開閉器12とを直列に接
続した負荷回路15が接続されている。なお13は負荷
量としての負荷電流を検出する′rj1流計である。
A load circuit 15 in which a load 11 and a switch 12 are connected in series is connected to the fuel cell main body 1 . Note that 13 is a current meter 'rj1 that detects a load current as a load amount.

このような構成により燃料電池本体1は供給管5.7を
経てそれぞれ供給される空気と燃料ガスとによる電池反
応により発電する。そして開閉器12を閉にすることに
より負荷回路15に送電され、負荷11に所要の電力が
供給される。なお電池反応に寄与しない未反応空気、燃
料ガスはそれぞれ排出管6.8から排出される。
With this configuration, the fuel cell main body 1 generates electricity through a cell reaction between air and fuel gas supplied through the supply pipes 5 and 7, respectively. Then, by closing the switch 12, power is transmitted to the load circuit 15, and the required power is supplied to the load 11. Note that unreacted air and fuel gas that do not contribute to the cell reaction are discharged from exhaust pipes 6.8, respectively.

このような燃料電池の運転において負荷に対応する空気
や燃料ガスの流量が不足する時の運転制御について説明
する。第5図において燃料流量演算器16.空気流量演
算器17は電流計13で検出した負荷電流の出力信号が
人力され、負荷電流に対応してガス欠を起こさない燃料
ガス流量、空気流量をそれぞれ計算し、この計算燃料ガ
ス流量、計算空気流量を出力する。比較器18では燃料
流量センサ10で検出した実測燃料ガス流量の出力信号
と燃料流量演算器16からの出力信号とが入力されて比
較され、実測燃料ガス流量が負荷電流に対応する計算燃
料ガス流量より小さいとき出力信号を出力し、この出力
信号により開閉器12を開にする。なお実測燃料ガス流
量が負荷電流に対応する計算燃料ガス流量以上の時は出
力信号は出力せず開閉器12は閉である。
In the operation of such a fuel cell, operation control when the flow rate of air or fuel gas corresponding to the load is insufficient will be explained. In FIG. 5, the fuel flow rate calculator 16. The air flow rate calculator 17 receives the output signal of the load current detected by the ammeter 13 manually, calculates the fuel gas flow rate and air flow rate that will not cause gas shortage in response to the load current, and calculates the calculated fuel gas flow rate and air flow rate. Outputs air flow rate. The comparator 18 inputs and compares the output signal of the measured fuel gas flow rate detected by the fuel flow sensor 10 and the output signal from the fuel flow calculator 16, and the measured fuel gas flow rate becomes the calculated fuel gas flow rate corresponding to the load current. When it is smaller, an output signal is output, and this output signal opens the switch 12. Note that when the measured fuel gas flow rate is greater than or equal to the calculated fuel gas flow rate corresponding to the load current, no output signal is output and the switch 12 is closed.

比較H19では空気流量センサ9で検出した実測空気流
量の出力信号と酸化剤流量演算器17からの出力信号が
人力されて比較され、実測空気流量が負荷電流に対応す
る計算空気流量より小さいとき出力信号を出力し、この
出力信号により開閉器12を開にする。なお実測空気流
量が負荷電流に対応する計算空気流量以上の時は出力信
号は出力せず、開閉器12は閉である。
In comparison H19, the output signal of the measured air flow rate detected by the air flow rate sensor 9 and the output signal from the oxidizer flow rate calculator 17 are manually compared, and when the measured air flow rate is smaller than the calculated air flow rate corresponding to the load current, an output signal is generated. A signal is output, and the switch 12 is opened by this output signal. Note that when the measured air flow rate is greater than or equal to the calculated air flow rate corresponding to the load current, no output signal is output and the switch 12 is closed.

このような系統構成により燃料電池本体1に供給される
燃料ガスまたは空気の流量がjX荷′gi流に対応して
ガス欠を起こさないように計算された流量より小さいと
きは比較器1日または比較器19からの出力信号により
直ちに開閉器12を開にし、負荷回路15を燃料電池本
体lから切離す。
With such a system configuration, when the flow rate of fuel gas or air supplied to the fuel cell main body 1 is smaller than the flow rate calculated so as not to cause a gas shortage corresponding to the jX load 'gi flow, the comparator 1 day or The output signal from the comparator 19 immediately opens the switch 12 and disconnects the load circuit 15 from the fuel cell main body l.

〔発明が解決しようとする!!!!題〕上記のような塩
l−1電池において、燃料電池本体に供給される燃料ガ
スとして純水素が使用されることはまれであり、天然ガ
スあるいはメタノールを改質することにより得られる水
素含有ガスを使用することが大部分である。この場合燃
料ガス中には水素以外にCQt、CO,水蒸気などのガ
スが含まれるが、これらの組成は改質装置の能力や運転
条件により変化する。したがって前記空気や燃料ガス流
量の計算値と実測値を比較する方法では、特に燃料ガス
側においては改′it装置の能力低下環により水素濃度
が低下している場合、水素流量の不足を検出することが
できず、ガス欠を起こした状態で負荷回路に送電すると
いうことが起こり、電池特性を劣化させるという欠点が
ある。
[Invention tries to solve! ! ! ! [Question] In the above-mentioned salt l-1 battery, pure hydrogen is rarely used as the fuel gas supplied to the fuel cell body, and hydrogen-containing gas obtained by reforming natural gas or methanol is used instead. In most cases, . In this case, the fuel gas contains gases such as CQt, CO, and water vapor in addition to hydrogen, but the composition of these gases changes depending on the capacity and operating conditions of the reformer. Therefore, in the method of comparing the calculated value and the measured value of the air or fuel gas flow rate, it is difficult to detect a shortage of the hydrogen flow rate, especially on the fuel gas side, when the hydrogen concentration has decreased due to a reduction in the capacity of the reformer. This has the disadvantage that power is transmitted to the load circuit in a state of gas starvation, which deteriorates the battery characteristics.

また、第5図の運転制御系統において燃料ガスと空気と
の流量の実測値と計算値との比較により負荷回路を切離
しても、燃料ガス、空気の流量ともそこそこに燃料電池
本体1に供給されているので、燃料電池本体は開路状態
での高電圧、すなわち単セル平均で1v前後の電圧を保
ち、かつ通常の運転状態からいきなり負荷遮断されるの
で、燃料電池本体も150℃以上の温度になっている。
Furthermore, by comparing the measured and calculated flow rates of fuel gas and air in the operation control system shown in FIG. Therefore, the fuel cell main body maintains a high voltage in the open circuit state, that is, a voltage of around 1 V on average for a single cell, and since the load is suddenly removed from the normal operating state, the fuel cell main body also reaches a temperature of 150°C or more. It has become.

したがって燃料電池は負荷遮断後高電圧、高温状態にな
るので、周知のように電極の触媒の担体であるカーボン
が極めて腐食しやすく、このため電池特性の劣化が生じ
る。したがってガス欠による負荷遮断により電池が高電
圧、高温のままで放置されるのを防止することが要望さ
れる。
Therefore, since the fuel cell is placed in a high voltage and high temperature state after the load is cut off, as is well known, the carbon that is the carrier of the catalyst in the electrode is extremely susceptible to corrosion, resulting in deterioration of the cell characteristics. Therefore, it is desired to prevent batteries from being left at high voltage and high temperature due to load interruption due to lack of gas.

本発明の目的は、燃料電池に供給される燃料ガス中の水
素量の不足を検知して負荷回路を切離すことができる燃
料電池の運転制御装置と、ガス欠により負荷回路を切離
した状態でも燃料電池を高電圧、高温の状態に放置しな
い燃料電池の運転制御′I装置を提供することである。
An object of the present invention is to provide an operation control device for a fuel cell that can detect an insufficient amount of hydrogen in fuel gas supplied to a fuel cell and disconnect a load circuit, and a device that can disconnect a load circuit even when the load circuit is disconnected due to lack of gas. An object of the present invention is to provide a fuel cell operation control device that does not leave the fuel cell in a high voltage and high temperature state.

(!!!題を解決するための手段〕 上記i題を解決するために、本発明によれば、燃料ガス
と酸化剤ガスとの供給による電池反応により発電する電
力を開閉器を存する負荷回路に供給する燃料電池におい
て、燃料ガスの流量を検出する燃料流量センサと、この
燃料ガスに含まれる水素量を検出する水素濃度計と、こ
の水素濃度計および燃料流量センサにより水素流量を演
算する第1の演算器と、i荷回路に設けられる負荷検出
器と、この検出器で検出した負荷量に対応する水素流量
を演算する第2の演′X器と、第1と第2の演算器から
の出力信号を入力して比較し、第1の演算器で演算され
た水素流量が第2の演X器で演算された水素流量より小
さい時開閉器を開にする出力信号を出力する比較器とか
ら構成するものとする。
(Means for Solving the Problem!!!) In order to solve the above problem i, according to the present invention, a load circuit including a switch for generating electric power by a battery reaction caused by supply of fuel gas and oxidizing gas. In a fuel cell that supplies fuel gas, a fuel flow sensor detects the flow rate of fuel gas, a hydrogen concentration meter detects the amount of hydrogen contained in this fuel gas, and a hydrogen concentration meter and a fuel flow sensor calculate the hydrogen flow rate. a first computing unit, a load detector provided in the load circuit, a second computing unit that computes a hydrogen flow rate corresponding to the load detected by the detector, and first and second computing units. A comparison device that inputs and compares the output signals from the X-X, and outputs an output signal that opens the switch when the hydrogen flow rate calculated by the first X-operator is smaller than the hydrogen flow rate calculated by the second X-X operator. It shall consist of a container.

また、燃料ガスと酸化剤ガスとの供給による電池反応に
より発電する電力を第1の開閉器を備える負荷回路に供
給する燃料電池であって、燃料流量センサと酸化剤it
センサとで検出された実測燃料ガス流量と実測酸化剤ガ
ス流量とを負荷検出器で検出された負荷量に対応してそ
れぞれ計算された計算燃料ガス流量と計算酸化剤ガス流
量と第1と第2の比較器でそれぞれ比較し、実測燃料ガ
ス流量と実測酸化剤ガス流量との少なくとも一方が計算
燃料ガス流量と計算酸化剤ガス流量のそれぞれより小さ
い時、第1または第2の比較器からの出力信号により第
1の開閉器を開にする燃料電池の運転制御装置において
、燃料電池の出力電圧を検出する電圧センサと、負荷回
路に並列に接続され、第2の開閉器と可変抵抗を直列に
接続してなる放電抵抗回路と、実測燃料ガス流量と実測
酸化剤ガス流量とに対応する電気出力を演算する第3の
演算器と、この演算器にて演算された電気出力を電圧セ
ンサで検出した出力電圧で放電抵抗回路に送電するよう
に可変抵抗の抵抗を設定する出力信号を出力する第4の
演算器とを設け、前記第1または第2の比較器からの出
力信号により第2の開閉器を閉にするものとする。
The present invention also provides a fuel cell that supplies electric power generated by a cell reaction caused by the supply of fuel gas and oxidant gas to a load circuit including a first switch, which includes a fuel flow sensor and an oxidant gas.
The measured fuel gas flow rate and the measured oxidizing gas flow rate detected by the sensor are calculated by calculating the calculated fuel gas flow rate and the calculated oxidizing gas flow rate, respectively, corresponding to the load amount detected by the load detector. When at least one of the measured fuel gas flow rate and the measured oxidizing gas flow rate is smaller than the calculated fuel gas flow rate and the calculated oxidizing gas flow rate, respectively, the data from the first or second comparator is compared. In a fuel cell operation control device that opens a first switch in response to an output signal, a voltage sensor that detects the output voltage of the fuel cell is connected in parallel to the load circuit, and a variable resistor is connected in series with the second switch. a discharge resistor circuit connected to a third computing unit that computes an electrical output corresponding to the measured fuel gas flow rate and the measured oxidizing gas flow rate, and a voltage sensor that calculates the electrical output calculated by this computing unit. a fourth arithmetic unit that outputs an output signal for setting the resistance of the variable resistor so that the detected output voltage is transmitted to the discharge resistance circuit; The switch shall be closed.

〔作用〕[Effect]

燃料電池に供給される燃料ガスは改質装置により改質原
料を改質してなる水素に富むガスが使用される。したが
って燃料ガス中の水素流量は燃料ガス供給系に水素濃度
計を設け、燃料流量センサで検出した燃料ガス流量と水
素濃度計で検出した水素濃度から実測水素流量として求
められる。この実測水素流量が負荷回路の負荷量に対応
してガス欠を起こさないように計算された計算水素流量
より小さければ負荷回路の開閉器を開にする。このため
燃料ガス中の水素量が低下した場合、燃料電池の負荷回
路への電力の送電が行なわれないので、電池特性を良好
に保持する。
The fuel gas supplied to the fuel cell is hydrogen-rich gas obtained by reforming a reforming raw material in a reformer. Therefore, the hydrogen flow rate in the fuel gas is determined by providing a hydrogen concentration meter in the fuel gas supply system and determining the actual hydrogen flow rate from the fuel gas flow rate detected by the fuel flow rate sensor and the hydrogen concentration detected by the hydrogen concentration meter. If the measured hydrogen flow rate is smaller than the calculated hydrogen flow rate calculated to prevent gas shortage in accordance with the load amount of the load circuit, the load circuit switch is opened. Therefore, when the amount of hydrogen in the fuel gas decreases, power is not transmitted to the load circuit of the fuel cell, so that the cell characteristics are maintained well.

また、負荷回路に並列して開閉器と可変抵抗とを直列に
接続した放電抵抗回路を設け・燃料電池に供給される燃
料流量センサ、酸化剤流量センサで検出された実測燃料
ガス流量と実測酸化剤ガス流量との少なくともいずれか
一方が負荷回路の負荷量に対応してガス欠を起こさない
ように計算された計算燃料ガス流量、計算酸化剤ガス流
量より小さい時は負荷回路の開閉器を開にするとともに
放電抵抗回路の開閉器を閉にして燃料電池の発電電力の
供給を負荷回路から放電抵抗回路に移す。
In addition, a discharge resistance circuit in which a switch and a variable resistor are connected in series is installed in parallel with the load circuit.The actual fuel gas flow rate and actual oxidation detected by the fuel flow rate sensor and oxidizer flow rate sensor supplied to the fuel cell are installed. If at least one of the oxidizing agent gas flow rate and the oxidizing agent gas flow rate is smaller than the calculated fuel gas flow rate or the calculated oxidizing gas flow rate, which is calculated to prevent gas shortage according to the load amount of the load circuit, the load circuit switch is opened. At the same time, the switch of the discharge resistance circuit is closed to transfer the power generated by the fuel cell from the load circuit to the discharge resistance circuit.

この際、実測燃料ガス流量と実測酸化剤ガス流量に対応
してガス欠を起こさない電気出力を計算し、この電気出
力を負荷回路を切離す時の出力電圧で放電抵抗回路に送
電するように可変抵抗の抵抗を設定する。したがって負
荷遮断時のような電池の高電圧、高温が生じない。
At this time, the electrical output that will not cause a gas shortage is calculated according to the measured fuel gas flow rate and the measured oxidant gas flow rate, and this electrical output is transmitted to the discharge resistance circuit at the output voltage when the load circuit is disconnected. Set the resistance of the variable resistor. Therefore, high voltage and high temperature of the battery do not occur as would occur when the load is cut off.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について発明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の請求項1の実施例による燃料電池の運
転側m装置の系統図である。なお第1図および後述する
第2図において第5図の従来例と同一部品には同じ符号
を付し、その説明を省略する。第1図において燃料ガス
の供給管7に燃料ガスの流量を検出する燃料流量センサ
10と、燃料ガス中の水素濃度を検出する水素濃度計2
1とが設けられている。そして燃料流量センサ10と水
素濃度計21とからの出力信号が入力されて燃料ガス中
の水素流量を計算してその結果を出力する実測水素流量
演算器22と、電流計13で検出した負荷回路15の負
荷電流に対応してガス欠を起こさない水素流量を計算す
る計算水素流量演算器23とが設けられ、実測、計算水
素流量演算器22.23からの出力信号が入力されて比
較され、実測水素流量演算器22で計算された実測水素
流量が計算水素流量演算器23で計算された計算水素流
量より小さい時出力信号を出力する比較器24が設けら
れている。
FIG. 1 is a system diagram of a driving side m-device of a fuel cell according to an embodiment of claim 1 of the present invention. In FIG. 1 and FIG. 2, which will be described later, parts that are the same as those in the conventional example shown in FIG. In FIG. 1, a fuel gas supply pipe 7 includes a fuel flow sensor 10 for detecting the flow rate of fuel gas, and a hydrogen concentration meter 2 for detecting the hydrogen concentration in the fuel gas.
1 is provided. The output signals from the fuel flow rate sensor 10 and the hydrogen concentration meter 21 are inputted to an actual hydrogen flow rate calculator 22 which calculates the hydrogen flow rate in the fuel gas and outputs the result, and a load circuit detected by the ammeter 13. A calculated hydrogen flow rate calculator 23 is provided to calculate a hydrogen flow rate that does not cause gas shortage in response to a load current of 15, and the output signals from the actually measured and calculated hydrogen flow rate calculators 22 and 23 are inputted and compared. A comparator 24 is provided which outputs an output signal when the measured hydrogen flow rate calculated by the measured hydrogen flow rate calculator 22 is smaller than the calculated hydrogen flow rate calculated by the calculated hydrogen flow rate calculator 23.

そして比較器24からの出力信号により開閉器12を開
にするようにしている。
Then, the switch 12 is opened by the output signal from the comparator 24.

このような系統構成により通常時燃料ガスと酸化剤ガス
とが燃料電池本体1に供給されて電池反応により発電し
、開閉器12を閉にして負荷回路に発電した電力を供給
する。この際、燃料ガス中の水素流量は燃料流量センサ
10と水素濃度計21とで検出された燃料ガス流量と水
素濃度とにより実測水素流量演算器22により計算され
る。一方計算水素流量演、算器23により負荷回路15
の電流計13で検出した負荷電流に対応する水素流量が
計算され、実測水素流量演算器22により演算された実
測水素流量と計算水素流量演算器23で計算された計算
水素流量とは常時比較器24で比較されており、実測水
素流量が計算水素流量より小さくなると、比較器24か
ら出力信号が出力される。そしてこの出力信号により開
閉器12を開にして負荷回路15を燃料電池本体1から
切離す、したがって燃料ガス中の水素流量が負荷量に対
して何等かの原因で低下すれば、負荷回路15は燃料電
池本体1から切離して電池特性の劣化を防止する。
With such a system configuration, fuel gas and oxidant gas are normally supplied to the fuel cell main body 1 to generate electricity through a cell reaction, and the switch 12 is closed to supply the generated electricity to the load circuit. At this time, the hydrogen flow rate in the fuel gas is calculated by the actually measured hydrogen flow rate calculator 22 based on the fuel gas flow rate and hydrogen concentration detected by the fuel flow rate sensor 10 and the hydrogen concentration meter 21. On the other hand, the load circuit 15 is calculated by calculating the hydrogen flow rate by the calculator 23.
The hydrogen flow rate corresponding to the load current detected by the ammeter 13 is calculated, and the measured hydrogen flow rate calculated by the measured hydrogen flow rate calculator 22 and the calculated hydrogen flow rate calculated by the calculated hydrogen flow rate calculator 23 are constantly compared to When the measured hydrogen flow rate becomes smaller than the calculated hydrogen flow rate, the comparator 24 outputs an output signal. Then, this output signal opens the switch 12 and disconnects the load circuit 15 from the fuel cell main body 1. Therefore, if the hydrogen flow rate in the fuel gas decreases for some reason relative to the load amount, the load circuit 15 is disconnected from the fuel cell main body 1. It is separated from the fuel cell main body 1 to prevent deterioration of battery characteristics.

第2図は本発明の請求項2の実施例による燃料電池の運
転制御装置の系統図である。第2図において第5図の従
来例と異なるのは燃料電池の出力電圧を検出する電圧計
20と、負荷回路15に並列して開閉器26と可変抵抗
27とを直列に接続した放電抵抗回路28と、比較器1
8または比較器19からの出力信号により開閉器26を
閉にし、さらに燃料1111!E量センサ10と空気流
量センサ9とからの出力信号を入力し、これらのセンサ
で検出された実測燃料ガス流量と実測空気流量とに対応
してガス欠を起こさない電気出力を計算する出力演算器
29と、この出力演X器29からの出力信号を入力し、
出力演算器29で計算された電気出力を放電抵抗回路2
8に電圧計20で検出された出力電圧で送電するように
可このような系統構成により通常の負荷運転では負荷回
路15の開閉器12は閉、放電抵抗回路28の開閉器2
6は開になって負荷回路15に送電される。この状態で
燃料電池本体lに供給される燃料ガス流量または空気流
量が負荷回路15の負荷量に対応して計算された計算燃
料ガス流量、計算空気流量より小さい時には比較器18
または比較器19からの出力信号により開閉器12を開
にするとともに開閉器26を閉にして負荷回路15を燃
料電池本体1カ・ら切離し・代わりに燃料電池が発電す
る電力を放電抵抗回路28に送電する。この際放電抵抗
回路28の可変抵抗27の抵抗は、実測燃料ガス流量と
実測空気流量とに対応して出力64算器29により計算
された電気出力を電圧計20により検出した出力電圧で
放電抵抗回路28に送電するように抵抗値演算器30か
らの出力信号により設定される。したがって燃料電池に
は供給された燃料ガスと空気の流量に対応するガス欠を
起こさない電気出力を放電抵抗回路28に送電する。
FIG. 2 is a system diagram of a fuel cell operation control device according to an embodiment of claim 2 of the present invention. What is different from the conventional example shown in FIG. 5 in FIG. 2 is a voltmeter 20 that detects the output voltage of the fuel cell, and a discharge resistance circuit in which a switch 26 and a variable resistor 27 are connected in series in parallel to the load circuit 15. 28 and comparator 1
8 or the output signal from the comparator 19 closes the switch 26, and the fuel 1111! Output calculation that inputs the output signals from the E quantity sensor 10 and the air flow rate sensor 9, and calculates the electrical output that will not cause a gas shortage in response to the measured fuel gas flow rate and the measured air flow rate detected by these sensors. input the output signal from the output generator 29 and the output generator 29,
The electrical output calculated by the output calculator 29 is sent to the discharge resistance circuit 2.
With such a system configuration, during normal load operation, the switch 12 of the load circuit 15 is closed, and the switch 2 of the discharge resistance circuit 28 is closed.
6 is opened and power is transmitted to the load circuit 15. In this state, when the fuel gas flow rate or air flow rate supplied to the fuel cell main body l is smaller than the calculated fuel gas flow rate or calculated air flow rate calculated in accordance with the load amount of the load circuit 15, the comparator 18
Alternatively, the output signal from the comparator 19 opens the switch 12 and closes the switch 26 to disconnect the load circuit 15 from the fuel cell main body 1 and instead discharge the power generated by the fuel cell to the resistor circuit 28. Transmit electricity to At this time, the resistance of the variable resistor 27 of the discharge resistance circuit 28 is determined by the output voltage detected by the voltmeter 20 and the electrical output calculated by the output 64 calculator 29 corresponding to the measured fuel gas flow rate and the measured air flow rate. It is set by the output signal from the resistance value calculator 30 to transmit power to the circuit 28 . Therefore, the fuel cell transmits to the discharge resistor circuit 28 an electrical output that corresponds to the flow rate of the supplied fuel gas and air and does not cause a gas shortage.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば下記の
効果を有する。
As is clear from the above description, the present invention has the following effects.

請求項1の燃料電池の運転制御装置においては燃料電池
に供給する燃料ガス中の水素mff1を実測し、この実
測水素流量が負荷回路の負荷量に対応するガス欠を起こ
さない水素流量より小さいとき開閉器を開にして負荷回
路を燃料電池から切離すようにしたことにより、負ml
に対して水素量不足の燃料ガスを供給することがないの
で、電池面の局部的な過大な温度上昇がなくなり、電池
特性を長期にわたって安定に保持することができる。
In the fuel cell operation control device according to claim 1, hydrogen mff1 in the fuel gas supplied to the fuel cell is actually measured, and when the measured hydrogen flow rate is smaller than the hydrogen flow rate that does not cause gas shortage corresponding to the load amount of the load circuit. By opening the switch and disconnecting the load circuit from the fuel cell, negative ml
Since fuel gas with an insufficient amount of hydrogen is not supplied to the battery, there is no local excessive temperature rise on the battery surface, and battery characteristics can be stably maintained over a long period of time.

請求項2の燃料電池の運転制御装置においては燃料電池
に供給する燃料ガス流量または酸化剤ガス流量が、負荷
回路の負荷量に対応するガス欠を起こさない計算燃料ガ
ス流量、計算空気流量より小さいとき、負荷回路の開閉
器を開にして燃料電池から切離し、負荷回路に並列に設
けた放電抵抗回路の開閉器を閉にして出力電圧が下がり
始める前に自動的に放電抵抗回路に切換え、放電抵抗回
路には供給される燃料ガスと酸化剤ガスの流量に対応す
るガス欠を起こさない電気出力を負荷回路切離し時の出
力電圧で送電するように可変抵抗の抵抗値を設定するた
め、ガス欠状態での燃料電池の送電がなくなり、かつ負
荷遮断時のように電池が高電圧、高温に放置されないの
で、電池特性を長期にわたって安定に保つことができる
In the fuel cell operation control device of claim 2, the fuel gas flow rate or oxidant gas flow rate supplied to the fuel cell is smaller than the calculated fuel gas flow rate and calculated air flow rate that do not cause gas shortage corresponding to the load amount of the load circuit. When the load circuit is disconnected from the fuel cell by opening the load circuit switch, the discharge resistance circuit switch installed in parallel with the load circuit is closed and the switch is automatically switched to the discharge resistance circuit before the output voltage starts to drop, causing the discharge to start. In the resistance circuit, the resistance value of the variable resistor is set so that the electrical output that does not cause gas shortage corresponding to the flow rate of the fuel gas and oxidant gas supplied is transmitted at the output voltage when the load circuit is disconnected. Since the fuel cell is no longer transmitting power during this period, and the battery is not left exposed to high voltage and high temperature as it would be during load shedding, the battery characteristics can be maintained stably over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による燃料電池の運転制御装置
の系統図、第2図は本発明の異なる実施例による燃料電
池の運転制御装置の系統図、第3図は燃料ガスおよび空
気が負荷に対し充分供給されている場合のセル内温度分
布を示す分布図、第4図は負荷に対し水素が不足した状
態で供給されている場合のセル内温度分布の分布図、第
5図は従来の燃料電池の運転制御装置の系統図である。 1;燃料電池、9:空気2i!滑センサ、10:燃料流
量センサ、13:電流計、12.26  :開閉器、1
5:負荷回路、16;燃料流量演算器、17:空気流量
演算器、18.19.14 :比較器、20:電圧計、
21:水素濃度計、22:実測水素流量演算器、23:
計算水素流量演X器、27;可変抵抗、2日:放[抵抗
回路、29:出力演算器、30:抵抗値演算器。 第1図 第4図
FIG. 1 is a system diagram of a fuel cell operation control device according to an embodiment of the present invention, FIG. 2 is a system diagram of a fuel cell operation control device according to a different embodiment of the present invention, and FIG. 3 is a system diagram of a fuel cell operation control device according to an embodiment of the present invention. Figure 4 is a distribution diagram showing the temperature distribution inside the cell when sufficient hydrogen is supplied to the load, Figure 4 is a distribution diagram of the temperature distribution inside the cell when insufficient hydrogen is supplied to the load, and Figure 5 is a distribution diagram showing the temperature distribution inside the cell when hydrogen is insufficiently supplied to the load. 1 is a system diagram of a conventional fuel cell operation control device. 1; Fuel cell, 9: Air 2i! slip sensor, 10: fuel flow sensor, 13: ammeter, 12.26: switch, 1
5: Load circuit, 16: Fuel flow rate calculator, 17: Air flow rate calculator, 18.19.14: Comparator, 20: Voltmeter,
21: Hydrogen concentration meter, 22: Actual hydrogen flow rate calculator, 23:
Calculation hydrogen flow calculator, 27; Variable resistance, 2nd: Release resistance circuit, 29: Output calculator, 30: Resistance value calculator. Figure 1 Figure 4

Claims (1)

【特許請求の範囲】 1)燃料ガスと酸化剤ガスとの供給による電池反応によ
り発電する電力を開閉器を備える負荷回路に供給する燃
料電池において、供給する燃料ガスの流量を検出する流
量センサと、この燃料ガスに含まれる水素量を検出する
水素濃度計と、燃料流量センサおよび水素濃度計により
水素流量を演算する第1の演算器と、負荷回路に設けら
れる負荷検出器と、この検出器で検出した負荷量に対応
する水素流量を演算する第2の演算器と、第1と第2の
演算器からの出力信号を入力して比較し、第1の演算器
で演算された水素流量が第2の演算器で演算された水素
流量より小さい時開閉器を開にする出力信号を出力する
比較器とからなることを特徴とする燃料電池の運転制御
装置。 2)燃料ガスと酸化剤ガスとの供給による電池反応によ
り発電する電力を第1の開閉器を備える負荷回路に供給
する燃料電池であって、燃料流量センサと酸化剤流量セ
ンサとで検出された実測燃料ガス流量と実測酸化剤ガス
流量とを負荷検出器で検出された負荷量に対応してそれ
ぞれ計算された計算燃料ガス流量と計算酸化剤ガス流量
と第1と第2の比較器でそれぞれ比較し、実測燃料ガス
流量と実測酸化剤ガス流量との少なくとも一方が計算燃
料ガス流量と計算酸化剤ガス流量のそれぞれより小さい
時第1または第2の比較器からの出力信号により第1の
開閉器を開にする燃料電池の運転制御装置において、燃
料電池の出力電圧を検出する電圧センサと、負荷回路に
並列に接続され、第2の開閉器と可変抵抗とを直列に接
続してなる放電抵抗回路と、実測燃料ガス流量と実測酸
化剤ガス流量とに対応する電気出力を演算する第3の演
算器と、この演算器にて演算された電気出力を電圧セン
サで検出した出力電圧で放電抵抗回路に送電するように
可変抵抗の抵抗を設定する出力信号を出力する第4の演
算器とを設け、前記第1または第2の比較器からの出力
信号により第2の開閉器を閉にすることを特徴とする燃
料電池の運転制御装置。
[Claims] 1) In a fuel cell that supplies electricity to a load circuit equipped with a switch, which generates electricity through a cell reaction caused by the supply of fuel gas and oxidant gas, a flow rate sensor that detects the flow rate of supplied fuel gas; , a hydrogen concentration meter that detects the amount of hydrogen contained in this fuel gas, a first calculator that calculates the hydrogen flow rate using the fuel flow rate sensor and the hydrogen concentration meter, a load detector provided in the load circuit, and this detector. A second computing unit calculates the hydrogen flow rate corresponding to the load amount detected by inputting and comparing the output signals from the first and second computing units, and calculating the hydrogen flow rate calculated by the first computing unit. 1. A fuel cell operation control device comprising: a comparator that outputs an output signal that opens a switch when the hydrogen flow rate is smaller than the hydrogen flow rate calculated by the second calculation unit. 2) A fuel cell that supplies electric power generated by a cell reaction caused by the supply of fuel gas and oxidant gas to a load circuit including a first switch, which is detected by a fuel flow sensor and an oxidizer flow sensor. The measured fuel gas flow rate and the measured oxidizing gas flow rate are calculated by the first and second comparators, respectively, and the calculated fuel gas flow rate and the calculated oxidizing gas flow rate are calculated corresponding to the load amount detected by the load detector. When at least one of the measured fuel gas flow rate and the measured oxidizing gas flow rate is smaller than the calculated fuel gas flow rate and the calculated oxidizing gas flow rate, respectively, the first opening/closing is performed by the output signal from the first or second comparator. In a fuel cell operation control device that opens a fuel cell, a voltage sensor that detects the output voltage of the fuel cell is connected in parallel to the load circuit, and a second switch and a variable resistor are connected in series. A resistor circuit, a third computing unit that computes the electrical output corresponding to the measured fuel gas flow rate and the measured oxidant gas flow rate, and the electrical output calculated by this computing unit is discharged at the output voltage detected by the voltage sensor. and a fourth arithmetic unit that outputs an output signal for setting the resistance of the variable resistor so as to transmit power to the resistance circuit, and the second switch is closed by the output signal from the first or second comparator. A fuel cell operation control device characterized by:
JP63232004A 1988-09-16 1988-09-16 Fuel cell operation control device Pending JPH0282459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232004A JPH0282459A (en) 1988-09-16 1988-09-16 Fuel cell operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232004A JPH0282459A (en) 1988-09-16 1988-09-16 Fuel cell operation control device

Publications (1)

Publication Number Publication Date
JPH0282459A true JPH0282459A (en) 1990-03-23

Family

ID=16932435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232004A Pending JPH0282459A (en) 1988-09-16 1988-09-16 Fuel cell operation control device

Country Status (1)

Country Link
JP (1) JPH0282459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827226A3 (en) * 1996-08-26 1998-07-15 General Motors Corporation PEM fuel cell monitoring system
JP2002313385A (en) * 2001-04-11 2002-10-25 Denso Corp Fuel cell system
JP2005235453A (en) * 2004-02-17 2005-09-02 Toyota Motor Corp Fuel cell system
WO2005081654A3 (en) * 2003-04-15 2005-12-15 Gillette Co A management system for a fuel cell and a method thereof
US7921883B2 (en) * 2006-06-07 2011-04-12 Air Products And Chemicals, Inc. Hydrogen dispenser with user-selectable hydrogen dispensing rate algorithms

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827226A3 (en) * 1996-08-26 1998-07-15 General Motors Corporation PEM fuel cell monitoring system
JP2002313385A (en) * 2001-04-11 2002-10-25 Denso Corp Fuel cell system
WO2005081654A3 (en) * 2003-04-15 2005-12-15 Gillette Co A management system for a fuel cell and a method thereof
US7553571B2 (en) 2003-04-15 2009-06-30 The Gillette Company Management system for a fuel cell and method thereof
JP2005235453A (en) * 2004-02-17 2005-09-02 Toyota Motor Corp Fuel cell system
US7921883B2 (en) * 2006-06-07 2011-04-12 Air Products And Chemicals, Inc. Hydrogen dispenser with user-selectable hydrogen dispensing rate algorithms

Similar Documents

Publication Publication Date Title
JP3608017B2 (en) Power system
JPH05151983A (en) Hybrid fuel cell system
JP2006108124A (en) Technique for controlling efficiency of fuel cell system
CN101803094B (en) Fuel cell system
US6581015B2 (en) Technique and apparatus to control the transient response of a fuel cell system
JP2000208161A (en) Operating method and operating device for fuel cell
CN101911357A (en) fuel cell system
US20090263679A1 (en) Shutdown operations for an unsealed cathode fuel cell system
JP2001143732A (en) Solid polymer fuel cell power generation system and method of operating the same
JP5857454B2 (en) Fuel cell system
CN105190976B (en) Fuel cell system and the control method of fuel cell system
US20020105302A1 (en) Technique and apparatus to control the charging of a battery using a fuel cell
JPH08138709A (en) Fuel cell generator
JP5364492B2 (en) Fuel cell power generation system
JP5066929B2 (en) Fuel cell system
JP2009070788A (en) FUEL SUPPLY CONTROL METHOD AND FUEL CELL DEVICE USING THE METHOD
JPH0955219A (en) Fuel cell power generator and operating method thereof
JPH0282459A (en) Fuel cell operation control device
EP1659653B1 (en) Fuel cell system and method for starting operation of fuel cell system
JPH0690932B2 (en) How to operate a fuel cell
US8927165B2 (en) Stack cathode inlet RH (relative humidity) control without RH sensing device feedback
JPH01200567A (en) Fuel cell power generation system
JPH0833782B2 (en) Fuel cell voltage control circuit
US20050089729A1 (en) Technique and apparatus to control the response of a fuel cell system to load transients
JPH0451466A (en) Output control device for fuel cell power generation system