[go: up one dir, main page]

JPH0282576A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0282576A
JPH0282576A JP23411688A JP23411688A JPH0282576A JP H0282576 A JPH0282576 A JP H0282576A JP 23411688 A JP23411688 A JP 23411688A JP 23411688 A JP23411688 A JP 23411688A JP H0282576 A JPH0282576 A JP H0282576A
Authority
JP
Japan
Prior art keywords
conductivity type
impurity
type
concentration
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23411688A
Other languages
Japanese (ja)
Inventor
Junichi Matsuda
順一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23411688A priority Critical patent/JPH0282576A/en
Publication of JPH0282576A publication Critical patent/JPH0282576A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the decline of a carrier mobility while a short channel effect is suppressed and avoid the decline of a gain factor and realize high speed operation by a method wherein an impurity concentration in a semiconductor substrate is made to be high and an effective ionized impurity concentration in the surface is made to be low. CONSTITUTION:P-type impurity is introduced into a p-type Si substrate 1 having a p<->-type substrate concentration (Nsub) 11 of 1X10<15>cm<-3> so as to provide a p-type introduced impurity concentration distribution (NA(x)) 16. With this process, a short channel effect induced in the p-type Si substrate 1 can be suppressed. However, the decline of a carrier mobility is induced in a channel region 5 by Coulomb scattering and a high electric field caused by high concentration ionized impurity. In order to avoid it, n-type impurity is introduced so as to provide an n-type introduced impurity concentration distribution (ND(x)) 26 having a surface concentration of 8.5X10<15>cm<-3> and an effective ionized impurity concentration (NEFF(o)) is suppressed by compensation to obtain a relation of NA(o)+Nsub-ND(o)=-2X10<15>cm<-3> and the effective impurity concentration distribution 36 is formed of NEFF(x) to avoid the decline of the carrier mobility.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、MOSFETを用いた半導体集積回路、特に
MOSFETの微細化に伴って生じる短チャンネル効果
の抑制と高移動度を得ることを目的とする半導体装置と
その製造方法に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention aims to suppress short channel effects and obtain high mobility in semiconductor integrated circuits using MOSFETs, especially as MOSFETs become smaller. The present invention relates to a semiconductor device and a method for manufacturing the same.

近時、MOSFETを用いた半導体集積回路においては
、高密度化の要求にこたえるため構成素子であるMOS
FETの微細化が行われてきた。
Recently, in semiconductor integrated circuits using MOSFETs, in order to meet the demand for higher density, the component MOS
FETs have been miniaturized.

特にゲート電極のサイズ(ゲート長)を小さくしようと
する場合、ゲートをはさんで隣接するS/D領域を形成
するPN接合が互に空乏層でつながり短チヘ・ンネル効
果(しきい値電圧の低下、パンチスルー耐圧の低下)の
問題が生じていた。従来スケーリング則に従ってこれを
防旧する方法が行われているが動作電圧を下げることに
対しては困難が生じてきている。そのため半導体基板濃
度を高くして上記PN接合の空乏層を広がりに<<シて
短チャンネル効果を抑制している。
In particular, when trying to reduce the size of the gate electrode (gate length), the PN junctions that form the adjacent S/D regions across the gate are connected to each other in the depletion layer, resulting in a short channel effect (lower threshold voltage). problems such as a decrease in the punch-through voltage and a decrease in the punch-through withstand voltage). Conventionally, methods have been used to prevent this from obsolete according to the scaling law, but it has become difficult to lower the operating voltage. Therefore, the concentration of the semiconductor substrate is increased to spread out the depletion layer of the PN junction, thereby suppressing the short channel effect.

(ロ)従来の技術 第3図(a) 、 (b)は従来例の短チャンネル効果
を抑制した半導体装置の断面図とその説明図である。
(b) Prior Art FIGS. 3(a) and 3(b) are a sectional view and an explanatory view of a conventional semiconductor device in which the short channel effect is suppressed.

同図(a)において、(101)はp型Si基板、(1
02)はLDD構造のS/’D領域、(103)は絶縁
用SiO*膜、(104)はゲート電極、(105)は
ゲート電圧によりチャンネルが形成きれるチャンネル領
域、(106)はp型導入不純物領域である。
In the same figure (a), (101) is a p-type Si substrate, (1
02) is the S/'D region of the LDD structure, (103) is the insulating SiO* film, (104) is the gate electrode, (105) is the channel region where a channel can be formed by gate voltage, (106) is the p-type introduction This is an impurity region.

同図(b)は、図(a)のゲート直下、深さ方向にみた
不純物濃度分布を表わす。本従来例において、図(a)
のS/D領域(102)を形成するPN接合からの空乏
層の広がりは、図(a)の高濃度p型導入不純物領域(
106) (図(b)のp型不純物濃度分布(NA(x
) ) (116)で示され、p−型Si基板濃度(N
sub)との合成により実効的には実効的不純物濃度分
布(Ngtt(X) )となる)により抑えられるため
、短チャンネル効果は有効に抑制される。
Figure (b) shows the impurity concentration distribution seen in the depth direction directly below the gate in figure (a). In this conventional example, Figure (a)
The spread of the depletion layer from the PN junction forming the S/D region (102) in Figure (a) is as follows:
106) (p-type impurity concentration distribution (NA(x
) ) (116), and the p-type Si substrate concentration (N
Since the short channel effect is effectively suppressed by the effective impurity concentration distribution (Ngtt(X)) by synthesis with sub), the short channel effect is effectively suppressed.

そして上述の関係によれば、ゲート長を更に短かくする
と、p型導入不純物領域(106)も更に高濃度にする
必要がある。
According to the above-mentioned relationship, if the gate length is further shortened, the p-type introduced impurity region (106) must also be made more highly concentrated.

(ハ)発明が解決しようとする課題 しかし上述の従来例によると、微細化がすすむにつれて
p型導入不純物領域(106)は更に高濃度にしなけれ
ばならない。ところが半導体基板表面近傍に存在する実
効的なp型不純物は、ゲート電圧によりチャンネル領域
(105)が形成されるとチャンネル領域(105)中
でイオン化して実効的なイオン化不純物としてキャリア
のクーロン散乱の原因となり、またチャンネル領域(1
05)中の電界が高くなるため、キヘ・リア移動度に影
響を及ぼす。キャリア移動度は実効的なイオン化不純物
量が増加するに従って減少する。
(c) Problems to be Solved by the Invention However, according to the above-mentioned conventional example, as miniaturization progresses, the concentration of the p-type introduced impurity region (106) must be further increased. However, the effective p-type impurity existing near the surface of the semiconductor substrate is ionized in the channel region (105) when the channel region (105) is formed by the gate voltage, and becomes an effective ionized impurity that causes Coulomb scattering of carriers. cause, and also the channel area (1
05) Since the electric field inside becomes higher, it affects the Kihe-Ria mobility. Carrier mobility decreases as the effective amount of ionized impurities increases.

従って微細化がすすむにつれてゲインファクターの低下
をきたし更に又高速化が図れなくなるという欠点を生じ
ていた。
Therefore, as miniaturization progresses, the gain factor decreases, and furthermore, high speed cannot be achieved.

(ニ)課題を解決するための手段 上記課題は、半導体装置としてゲート電極直下の一導電
型半導体基板中に一導電型不純物と反対導電型不純物と
で合成補償(コンペンセイト)してなる補償不純物領域
を設け、少なくとも該ゲート電極直下の一導電型半導体
基板表面近傍からS/p領域の形成された深さと等価な
深さの間に一導電型の不純物濃度の最大の面を配し、か
つ該表面においては一導電型又は反対導電型の低濃度不
純物領域を配し、 そして半導体装置の製造方法として一導電型の半導体基
板表面に第1の5ift膜を形成する工程と、一導電型
不純物を該半導体基板中に4人して一導電型導入不純物
領域を形成する工程と、該一導電型不純物が導入された
半導体基板中に、反対導電型不純物を導入して、該一導
電型不純物と該反対導電型不純物とで合成補R(フンベ
ンセイト)して少なくとも該ゲート電極直下の一導電型
半導体基板表面近傍からS/D領域の形成された深言と
等価な深さの間に一導電型の不純物濃度の最大の面を配
し、かつ該表面においては一導電型又は反対導電型の低
濃度不純物領域を配した補償不純物領域を形成する工程
と、該第1のSin、膜を除去して第2のSiか膜を新
たに該半導体基板上に堆積する工程と、該第2のSiO
2膜表面にポリシリコン膜を堆積し、反対導電型の不純
物を導入する工程と、該ポリシリコン膜をパターニング
してゲート電極を形成する工程とを含むことによって達
成される。
(d) Means for solving the problem The above problem is a compensation impurity region formed by compensating an impurity of one conductivity type and an impurity of the opposite conductivity type in a semiconductor substrate of one conductivity type directly under a gate electrode as a semiconductor device. a surface with the highest impurity concentration of one conductivity type is disposed at least from the vicinity of the surface of the semiconductor substrate of one conductivity type immediately below the gate electrode to a depth equivalent to the depth where the S/p region is formed; A low concentration impurity region of one conductivity type or the opposite conductivity type is arranged on the surface, and the method for manufacturing a semiconductor device includes a step of forming a first 5ift film on the surface of a semiconductor substrate of one conductivity type, and a step of forming a first 5ift film on the surface of a semiconductor substrate of one conductivity type. a step of forming an impurity region of one conductivity type into the semiconductor substrate by four people; and a step of introducing an opposite conductivity type impurity into the semiconductor substrate into which the one conductivity type impurity has been introduced, and forming an impurity region with the one conductivity type impurity. Synthesizing with the impurity of the opposite conductivity type, one conductivity type is formed at least from the vicinity of the surface of the one conductivity type semiconductor substrate directly under the gate electrode to a depth equivalent to the depth where the S/D region is formed. forming a compensating impurity region in which a surface with the highest impurity concentration is disposed, and a low concentration impurity region of one conductivity type or the opposite conductivity type is disposed on the surface; and removing the first Sin film. a step of newly depositing a second SiO film on the semiconductor substrate;
This is achieved by depositing a polysilicon film on the surfaces of the two films, introducing impurities of opposite conductivity type, and patterning the polysilicon film to form a gate electrode.

(*)作用 即ち本発明は、短チャンネル効果を抑制するためゲート
直下の半導体基板中に従来通り高濃度の半導体基板と同
一導電型の不純物を導入しておき、ゲート電界のため短
チヤンネル効果抑制に影響を及ぼすことの少ない半導体
基板表面領域のみの一導電型不純物濃度を反対導電型の
不純物で補償(フンベンセイト)して実効的なイオン化
不純物量を減らすことによりチャンネル領域中のキャノ
アのクーロン散乱を少なくし、またチャンネル領域中の
電界を低くすることができるため、その移動度を上げる
ことができる。
(*) In other words, in order to suppress the short channel effect, the present invention introduces impurities of the same conductivity type as the semiconductor substrate at high concentration into the semiconductor substrate directly under the gate as in the past, and suppresses the short channel effect due to the gate electric field. Canoa Coulomb scattering in the channel region can be reduced by compensating for the impurity concentration of one conductivity type only in the surface region of the semiconductor substrate, which has little effect on the semiconductor substrate, with an impurity of the opposite conductivity type (funbensate) and reducing the effective amount of ionized impurities. Since the electric field in the channel region can be reduced, its mobility can be increased.

従って半導体集積回路の微細化がすすんでもゲインファ
クターの低下が防止され更に又高速化の向上が図れる。
Therefore, even if semiconductor integrated circuits are miniaturized, a decrease in the gain factor can be prevented, and furthermore, the speed can be improved.

(へ)実施例 以下本発明を図示の実施例により具体的に説明する。(f) Example The present invention will be specifically explained below with reference to illustrated embodiments.

第1図(a) 、 (b)は本発明の半導体装置の実施
例説明図である。
FIGS. 1(a) and 1(b) are explanatory diagrams of an embodiment of the semiconductor device of the present invention.

同図(a)は半導体装置の要部断面図、同図(b)はゲ
ート電極直下半導体基板表面からみた不純物濃度分布(
縦軸は不純物濃度(eTll−’)の対数、横軸は図(
a)に示す半導体基板表面からはかった深き(X(μm
)))を表わす。
Figure (a) is a sectional view of the main part of the semiconductor device, and Figure (b) is the impurity concentration distribution (
The vertical axis is the logarithm of the impurity concentration (eTll-'), and the horizontal axis is the figure (
The depth measured from the surface of the semiconductor substrate shown in a) (X (μm
))).

同図(a)において、(1)は比抵抗10〜14Ωmの
p−型Si基板、(2)はLDD構造のn型S/D領域
、(4)はn型ポリシリコンよりなるゲート電極、(3
)はゲート電極を絶縁する絶縁用Sin、膜、(7)は
ゲートSin、膜、(5)はゲート電圧により形成され
るチャンネル領域、(6)は短チヤンネル効果抑制とキ
ルリア移動度向上のための補償不純物領域を表わし、こ
の補償不純物領域(6)は詳しくみると図(b)に示す
ような不純物濃度分布をもって形成される。つまり本実
施例においてはIXIQ”−−1のp′″型基板濃度(
Nsub)(11)をもつp型Si基板(1)にp型導
入不純物濃度分布(NA(x) ) (16)をもつよ
うに(表面濃度6 X 10 ″cm−”、深さ0.7
〜0.8μm)p型不純物を導入する。かくしてp型S
i基板(1)内部で起きる短チャンネル効果を抑制でき
るが、表面濃度が高くて(N5ub+ NA(0) )
、チャンネル領域(5)中ではこの高濃度のイオン化不
純物によるクーロン散乱及び高電界によりキャリア移動
度の低下が起きるので、これを防止するため表面濃度8
.5 X 10”cm−”のn型導入不純物濃度分布(
Nゎ(x) ) (26)をもつようにn型不純物を導
入して補償(コンペンセイト)によりチャンネル領域(
5)の形成される表面での実効的なイオン化不純物濃度
(tbrr(0) )を下げて、NA(o)+N5ub
−N、+(o)= −2X 1016cm−’(負の符
号はn型不純物が多くてn型化していることを表わす)
とし、図(b)のN。、(X)の実効的不純物濃度分布
(36)を形成することによりキャリア移動度の低下を
防止する。表面濃度が5XIQ”cm−”以下の場合に
本効果が顕著となるのでこのように設定することが望ま
しい。又このとき半導体基板内部でのN□。
In the same figure (a), (1) is a p-type Si substrate with a specific resistance of 10 to 14 Ωm, (2) is an n-type S/D region with an LDD structure, (4) is a gate electrode made of n-type polysilicon, (3
) is the insulating Sin film for insulating the gate electrode, (7) is the gate Sin film, (5) is the channel region formed by the gate voltage, and (6) is for suppressing the short channel effect and improving Kirlia mobility. This compensation impurity region (6) is formed with an impurity concentration distribution as shown in Figure (b) in detail. In other words, in this example, the p''' type substrate concentration (
A p-type Si substrate (1) having a p-type introduced impurity concentration distribution (NA(x) ) (16) (surface concentration 6 x 10 ''cm-'', depth 0.7
~0.8 μm) Introduce p-type impurity. Thus p-type S
The short channel effect that occurs inside the i-substrate (1) can be suppressed, but the surface concentration is high (N5ub+ NA(0)).
In the channel region (5), carrier mobility decreases due to Coulomb scattering and high electric field due to this high concentration of ionized impurities, so to prevent this, the surface concentration is set to 8.
.. 5 x 10"cm-" n-type introduced impurity concentration distribution (
N-type impurity is introduced so that Nゎ(x) ) (26) is introduced and the channel region (
5) by lowering the effective ionized impurity concentration (tbrr(0)) at the surface where NA(o)+N5ub is formed.
-N, +(o) = -2X 1016cm-' (The negative sign indicates that there are many n-type impurities and it becomes n-type.)
and N in figure (b). , (X) to prevent carrier mobility from decreasing by forming the effective impurity concentration distribution (36). Since this effect becomes remarkable when the surface concentration is 5XIQ cm- or less, it is desirable to set it in this way. Also, at this time, N□ inside the semiconductor substrate.

(X)は短チヤンネル効果抑制のため高濃度を維持しな
ければならないのでN。(X)は浅く導入する必要があ
る。このときN。、(X)の最大の面は表面より0.3
μmにあり濃度〜5 X 10 ”am−’をもつ。こ
の最大の面の深さは表面よりS/D領域の形成される深
さと等価な深さの間にあることが望ましい。又最大の面
の濃度は半導体基板a度、ゲート長、必要な耐圧、しき
い値電圧等により決める必要がある。
(X) must be kept at a high concentration to suppress the short channel effect, so N. (X) needs to be introduced shallowly. At this time, N. , the largest plane of (X) is 0.3 from the surface
μm and has a concentration of ~5 x 10 "am-'. It is desirable that the depth of this maximum plane is between the surface and the equivalent depth to the depth at which the S/D region is formed. The surface concentration must be determined based on the semiconductor substrate degree, gate length, required breakdown voltage, threshold voltage, etc.

このようにしてゲインファクターの低下の防止と高速化
を図りながらかつ微細化も可能な半導体装置が実現でき
る。
In this way, it is possible to realize a semiconductor device that can prevent a decrease in gain factor, increase speed, and also be miniaturized.

ここでND(0)を例えば4X10”am−’とし、L
ry(o)(=NA(o)+N5ub−No(o>) 
−2X 10 ”cm”の低濃度のp型表面層としても
発明の効果は変わらない。
Here, let ND(0) be, for example, 4X10"am-', and L
ry(o)(=NA(o)+N5ub-No(o>)
Even if the p-type surface layer has a low concentration of −2×10 “cm”, the effect of the invention remains the same.

第2図(a)〜(e)は本発明の半導体装置の製造方法
の実施例説明図である。
FIGS. 2(a) to 2(e) are explanatory diagrams of an embodiment of the method for manufacturing a semiconductor device of the present invention.

同図(a)の(a−1)は半導体装置の断面図、(a−
2)は半導体基板主表面(図(a−1)の零で示した而
)から深さ方向の対数で表示した不純物濃度分布を表わ
す。
(a-1) of the same figure (a) is a cross-sectional view of the semiconductor device;
2) represents the impurity concentration distribution expressed logarithmically in the depth direction from the main surface of the semiconductor substrate (indicated by zero in Figure (a-1)).

先ず比抵抗10〜14Ωmのp−型Si基板(1)上に
厚さ500人のブロック用第1のSiへ膜(13)を形
成する。次にブロック用第1の5i0z膜(13)を介
してイオン注入によりボロンを打込エネルギー120K
eV、  ドーズ量1.6X 10”cm−”で導入し
て表面濃度(iXIQ16cm−’、深さ0.7〜0.
8μm1濃度最大の面の深さ0.3μm、f&大濃度5
X10”e+t+ −”のp型導入不純物領域(56)
を形成する。その濃度分布は図(a−2)の(16)で
示すNA(X)となる。
First, a first Si block film (13) is formed to a thickness of 500 on a p-type Si substrate (1) having a specific resistance of 10 to 14 Ωm. Next, boron is implanted by ion implantation through the first 5i0z film (13) for the block at an energy of 120K.
eV, dose amount 1.6X 10"cm-" and surface concentration (iXIQ16cm-', depth 0.7~0.
8 μm 1 maximum concentration surface depth 0.3 μm, f & large concentration 5
X10"e+t+ -" p-type introduced impurity region (56)
form. The concentration distribution is NA(X) shown by (16) in Figure (a-2).

次に同図(b)の(b−1)は半導体装置の断面図、(
b−2)は半導体基板主表面(図(b−1)の零で表示
した而)から深さ方向の対数で表示した不純物濃度分布
を表わす。そしてここに示すように、イオン注入により
低濃度のリンを深さ〜0.1μm、表面濃度′〜4×1
0”’can−”のn型導入不純物濃度分布(No(x
) ) (26)をもつように打込エネルギー40Ke
V、ドーズ量2×10I′cITI−ffiで導入して
、既に導入しであるp型導入不純物領域(56)と合成
補償して、補償不純物領域(6)(図(b−2)の(3
6)で示すNtyp(X)の実効的不純物濃度分布をも
つ。表面はp型でNaFp(0)  2 X I Q 
”cm−”となる)を形成する。
Next, (b-1) of the same figure (b) is a cross-sectional view of the semiconductor device, (
b-2) represents the impurity concentration distribution expressed logarithmically in the depth direction from the main surface of the semiconductor substrate (indicated by zero in Figure (b-1)). As shown here, low-concentration phosphorus is implanted to a depth of ~0.1 μm and a surface concentration of ~4×1
0"'can-" n-type introduced impurity concentration distribution (No(x
) ) The driving energy is 40Ke to have (26).
V, is introduced at a dose of 2×10 I'cITI-ffi, and the p-type introduced impurity region (56) which has already been introduced is synthesized and compensated to form the compensation impurity region (6) ((b-2) of FIG. 3
6) has an effective impurity concentration distribution of Ntyp(X). The surface is p-type, NaFp(0) 2 X I Q
"cm-") is formed.

次に同図(c)に示すように、第1の5iOi膜(13
)を除去して新らしくゲートSin、膜となる(同図(
e)の(7))第2のSin、膜〈17)を形成する。
Next, as shown in the same figure (c), the first 5iOi film (13
) is removed to form a new gate Sin, film (see figure (
e) (7)) Form the second Sin film (17).

しかる後ゲート電極となるポリシリコン膜(14)を堆
積して全面にPOCR,の拡散によりリンを導入する。
Thereafter, a polysilicon film (14) which will become a gate electrode is deposited, and phosphorus is introduced into the entire surface by diffusion of POCR.

次に同図(d)に示すように、ポリシリコン膜(14)
をパターニングしてゲート電極(4)を形成する。
Next, as shown in the same figure (d), a polysilicon film (14) is formed.
A gate electrode (4) is formed by patterning.

次いでゲート電極をマスクにして低濃度S/D領域(2
2〉を形成する。この形成方法は60KeV、ドーズ量
3×10口cm −”のリンと80KeV、  ドーズ
量3 X 10 ”cm−”のポロンを重ねて導入して
合成補償(コンペンセイト)する方法を用いることもで
きる。
Next, using the gate electrode as a mask, the low concentration S/D region (2
2> is formed. For this formation method, a method may be used in which phosphorus of 60 KeV and a dose of 3×10 cm −” and poron of 80 KeV and a dose of 3×10 cm − are introduced in a stacked manner to compensate for the synthesis.

次に同図(e)に示すように、ゲート電極の上面、側面
に絶縁用Sin、膜(3)を形成してしかる後これをマ
スクにしてAsをイオン注入により(打込エネルギー6
0KeV、  ドーズ量5 X 10 ”cm−” )
導入して高濃度S/D領域(32)を形成する。
Next, as shown in the same figure (e), an insulating Sin film (3) is formed on the upper and side surfaces of the gate electrode, and then, using this as a mask, As is ion-implanted (implantation energy: 6).
0KeV, dose 5 x 10 "cm-")
A high concentration S/D region (32) is formed.

以上のようにして作製された半導体装置はp型表面層で
ある点を除いて第1図の半導体装置と同様な濃度分布を
もち前述したと同様な効果を奏する。
The semiconductor device manufactured as described above has a concentration distribution similar to that of the semiconductor device shown in FIG. 1 except that it is a p-type surface layer, and exhibits the same effects as described above.

(ト)発明の効果 以上のように本発明によれば、半導体基板内部の不純物
濃度を高濃度に、表面の実効的なイオン化不純物濃度を
低くできるので、短チャンネル効果を抑制しつつキャリ
ア移動度の低下も防止できる。従ってゲインファクター
の低下の防止と高速化を図りながらかつ微細化も可能と
なる。
(g) Effects of the Invention As described above, according to the present invention, the impurity concentration inside the semiconductor substrate can be made high and the effective ionized impurity concentration on the surface can be made low. It is also possible to prevent a decrease in Therefore, it is possible to prevent a decrease in gain factor, increase speed, and also achieve miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は、本発明の半導体装置の実
施例説明図、第2図(a)〜(a)は、本発明の半導体
装置の製造方法の実施例説明図、第3図(a) 、 (
b)は、従来例の短チャンネル効果を抑制した半導体装
置の断面図とその説明図である。 (符号の説明) (1)、(101)・・・p型Si基板、 (2)、 
(102)・・・LDD構造のS/D領域、 (22)
、 (32)・・・低濃度、高濃度S/D領域、 (3
)、 (103)・・・絶縁用Sin、膜、(4)。 (104)・・・ゲート電極、 (5)、 (105)
・・・チA・ンネル領域、 (6)・・・補償不純物領
域、 (56)、 (106)・・・導入不純物領域、
(13)、 (17)・・・第1の、第2のSi0g膜
、 (14)・・・n+型ポリシリコン膜、(11)、
(111)(111)”’p−型Si基板濃度(Nsu
b)、 (16)、 (H6)・p型導入不純物濃度分
布(NA(X) )、 (26)・・・n型導入不純物
濃度分布(ND(X) )、 (36)、 (136)
・・・実効的不純物濃度分布(Ntyp(X)=NA(
X)+N5ub  ND(X))、 N・・・不純物濃
度(cTll−”)、 x ”’半導体基板表面より深
さ方向への距wA(μm)を示す。
FIGS. 1(a) and 1(b) are explanatory diagrams of an embodiment of a semiconductor device of the present invention, and FIGS. Figure 3 (a), (
b) is a cross-sectional view of a conventional semiconductor device in which the short channel effect is suppressed, and an explanatory view thereof. (Explanation of symbols) (1), (101)... p-type Si substrate, (2),
(102)...S/D area of LDD structure, (22)
, (32)...Low concentration, high concentration S/D region, (3
), (103)...Insulating Sin, film, (4). (104)...Gate electrode, (5), (105)
... Channel A channel region, (6) ... Compensation impurity region, (56), (106) ... Introduced impurity region,
(13), (17)...first and second Si0g films, (14)...n+ type polysilicon film, (11),
(111) (111)'''p-type Si substrate concentration (Nsu
b), (16), (H6)・P-type introduced impurity concentration distribution (NA(X)), (26)...n-type introduced impurity concentration distribution (ND(X)), (36), (136)
...Effective impurity concentration distribution (Ntyp(X)=NA(
X)+N5ub ND(X)), N... Impurity concentration (cTll-''), x''' Distance wA (μm) from the surface of the semiconductor substrate in the depth direction.

Claims (4)

【特許請求の範囲】[Claims] (1)ゲート電極直下の一導電型半導体基板中に一導電
型不純物と反対導電型不純物とで合成補償(コンペンセ
イト)してなる補償不純物領域を設け、少なくとも該ゲ
ート電極直下の一導電型半導体基板表面近傍からS/D
領域の形成された深さと等価な深さの間に一導電型の不
純物濃度の最大の面を配し、かつ該表面においては一導
電型又は反対導電型の低濃度不純物領域を配したことを
特徴とする半導体装置。
(1) A compensation impurity region formed by compensating an impurity of one conductivity type and an impurity of the opposite conductivity type is provided in a semiconductor substrate of one conductivity type immediately below the gate electrode, and at least a semiconductor substrate of one conductivity type immediately below the gate electrode. S/D from near the surface
A surface with the highest impurity concentration of one conductivity type is arranged between a depth equivalent to the depth where the region is formed, and a low concentration impurity region of one conductivity type or the opposite conductivity type is arranged on the surface. Characteristic semiconductor devices.
(2)請求項1記載の最大の面は前記表面より0.2〜
0.5μmの深さとした半導体装置。
(2) The largest surface according to claim 1 is 0.2 to
A semiconductor device with a depth of 0.5 μm.
(3)請求項1記載の一導電型又は反対導電型の低濃度
不純物領域の表面濃度を最大5×10^1^6cm^−
^3とした半導体装置。
(3) The surface concentration of the low concentration impurity region of one conductivity type or the opposite conductivity type according to claim 1 is set to a maximum of 5×10^1^6 cm^-
Semiconductor device with ^3.
(4)一導電型の半導体基板表面に第1のSiO_2膜
を形成する工程と、 一導電型不純物を該半導体基板中に導入して一導電型導
入不純物領域を形成する工程と、 該一導電型不純物が導入された半導体基板中に反対導電
型不純物を導入して、該一導電型不純物と該反対導電型
不純物とで合成補償(コンペンセイト)して少なくとも
該ゲート電極直下の一導電型半導体基板表面近傍からS
/D領域の形成された深さと等価な深さの間に一導電型
の不純物濃度の最大の面を配し、かつ該表面においては
一導電型又は反対導電型の低濃度不純物領域を配した補
償不純物領域を形成する工程と、 該第1のSiO_2膜を除去して第2のSiO_2膜を
新たに該半導体基板上に堆積する工程と、 該第2のSiO_2膜表面にポリシリコン膜を堆積し、
反対導電型の不純物を導入する工程と、該ポリシリコン
膜をパターニングしてゲート電極を形成する工程とを含
むことを特徴とする半導体装置の製造方法。
(4) a step of forming a first SiO_2 film on the surface of a semiconductor substrate of one conductivity type; a step of introducing an impurity of one conductivity type into the semiconductor substrate to form an introduced impurity region of one conductivity type; An opposite conductivity type impurity is introduced into a semiconductor substrate into which an opposite conductivity type impurity is introduced, and the one conductivity type impurity and the opposite conductivity type impurity are combined and compensated to at least one conductivity type semiconductor substrate immediately below the gate electrode. S from near the surface
A surface with the highest impurity concentration of one conductivity type is arranged between a depth equivalent to the depth where the /D region is formed, and a low concentration impurity region of one conductivity type or the opposite conductivity type is arranged on the surface. forming a compensation impurity region; removing the first SiO_2 film and newly depositing a second SiO_2 film on the semiconductor substrate; depositing a polysilicon film on the surface of the second SiO_2 film. death,
A method for manufacturing a semiconductor device, comprising the steps of introducing impurities of opposite conductivity type and patterning the polysilicon film to form a gate electrode.
JP23411688A 1988-09-19 1988-09-19 Semiconductor device and its manufacture Pending JPH0282576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23411688A JPH0282576A (en) 1988-09-19 1988-09-19 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23411688A JPH0282576A (en) 1988-09-19 1988-09-19 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0282576A true JPH0282576A (en) 1990-03-23

Family

ID=16965885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23411688A Pending JPH0282576A (en) 1988-09-19 1988-09-19 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0282576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064077A (en) * 1991-08-30 2000-05-16 Stmicroelectronics, Inc. Integrated circuit transistor
WO2006043323A1 (en) * 2004-10-20 2006-04-27 Fujitsu Limited Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064077A (en) * 1991-08-30 2000-05-16 Stmicroelectronics, Inc. Integrated circuit transistor
US6190179B1 (en) 1991-08-30 2001-02-20 Stmicroelectronics, Inc. Method of making a field effect transistor having a channel in an epitaxial silicon layer
WO2006043323A1 (en) * 2004-10-20 2006-04-27 Fujitsu Limited Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6717211B2 (en) Shallow doped junctions with a variable profile gradation of dopants
US4928163A (en) Semiconductor device
JPH07321216A (en) CMOS and manufacturing method thereof
JPH0510828B2 (en)
US3883372A (en) Method of making a planar graded channel MOS transistor
JPS62113474A (en) Manufacture of semiconductor integrated circuit
US5480816A (en) Method of fabricating a bipolar transistor having a link base
US6020231A (en) Method for forming LDD CMOS
US5430318A (en) BiCMOS SOI structure having vertical BJT and method of fabricating same
JPH04239760A (en) Manufacture of semiconductor device
KR950011020B1 (en) Insulated gate semiconductor device and manufacturing method thereof
JPS61263274A (en) Manufacturing method of semiconductor device
JP3221901B2 (en) Semiconductor device
JPH0282576A (en) Semiconductor device and its manufacture
JPS62262462A (en) Semiconductor device
JP3194921B1 (en) Method of manufacturing raised strap structure MOS transistor
JPH02219237A (en) Mis type semiconductor device
JPH04313238A (en) Semiconductor device
JPH0428236A (en) Manufacture of semiconductor device
JPH06196643A (en) Semiconductor device
JPS60137055A (en) Semiconductor device in which MOSFET and bipolar transistor are mixed and its manufacturing method
JPS62159470A (en) MOSFET manufacturing method
JPH0736441B2 (en) Method for manufacturing vertical field effect transistor
JPS6126263A (en) Manufacture of semiconductor device
JPH04179162A (en) Semiconductor device and manufacture thereof