JPH0288470A - Method for joining silicon carbide material - Google Patents
Method for joining silicon carbide materialInfo
- Publication number
- JPH0288470A JPH0288470A JP23947788A JP23947788A JPH0288470A JP H0288470 A JPH0288470 A JP H0288470A JP 23947788 A JP23947788 A JP 23947788A JP 23947788 A JP23947788 A JP 23947788A JP H0288470 A JPH0288470 A JP H0288470A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- joined
- joining
- open pores
- carbide material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 101
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005304 joining Methods 0.000 title claims abstract description 15
- 239000011148 porous material Substances 0.000 claims abstract description 24
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 230000002378 acidificating effect Effects 0.000 claims abstract description 6
- 239000003814 drug Substances 0.000 claims description 3
- 229940079593 drug Drugs 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims 1
- 230000035515 penetration Effects 0.000 claims 1
- 239000002344 surface layer Substances 0.000 abstract description 15
- 239000000126 substance Substances 0.000 abstract description 12
- 238000004873 anchoring Methods 0.000 abstract description 6
- 239000007767 bonding agent Substances 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は炭化ケイ素の接合方法に関し、さらに詳しくは
機械加工容易な有機質材料、無機質材料、または金属材
料と優れた特性を有する炭化ケイ素とを安定した強度と
高い信頼性を有する接合面で接合する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining silicon carbide, and more specifically, to a method for joining silicon carbide with an organic material, an inorganic material, or a metal material that is easy to machine, and silicon carbide that has excellent properties. This invention relates to a method of joining with a joint surface having stable strength and high reliability.
一般に、炭化ケイ素は、化学的に非常に安定した材料で
、しかも緻密な材料のため、曲げ強さ、破壊靭性、硬度
、耐熱撃性等に優れ、また熱膨張率が小さく、構造材料
として望ましい特性を備えている。In general, silicon carbide is a very chemically stable material and is also a dense material, so it has excellent bending strength, fracture toughness, hardness, heat shock resistance, etc., and has a low coefficient of thermal expansion, making it desirable as a structural material. It has characteristics.
このように炭化ケイ素は、化学的に安定、かつ、緻密で
あるため、機械加工等の面で不利な面を−有し、このた
め、機械加工容易な有機質材料、無機質材料、または金
属材料と接合し、それぞれの用途に応じた構造材とする
ことが行われている。As described above, silicon carbide is chemically stable and dense, so it has disadvantages in terms of machining, etc. Therefore, it cannot be used as an organic material, an inorganic material, or a metal material that is easy to machine. They are joined together to form structural materials suitable for each purpose.
上記のような炭化ケイ素と他の材料とを接合するに際し
ては、
+11炭化ケイ素の接合面を炭化ケイ素の焼結前に予め
、機械加工又はヤスリ仕上げ等の方法により粗面状態と
する方法、
(2)炭化ケイ素の焼結後、ショートブラスト、ダイヤ
モンドヤスリ等で硬度の高い面を粗面加工する方法
などが採用されている。When joining silicon carbide and other materials as described above, +11 A method of roughening the joining surface of silicon carbide by machining or sanding before sintering the silicon carbide, ( 2) After sintering silicon carbide, a method of roughening the hard surface using short blasting, diamond filing, etc. is adopted.
しかしながら、上記した+11および(2)の方法では
、第5図に示すように粗面加工した領域を拡大してみる
と、それぞれ凸凹部は比較的滑らかな形状を有しており
、この領域に被接合材が入り込んでおり、強固に接合す
る状態を十分に確保することができない。However, in the +11 and (2) methods described above, when the roughened area is enlarged as shown in Figure 5, the uneven parts have a relatively smooth shape. The material to be welded has entered the joint, making it impossible to ensure a sufficiently strong welding condition.
また炭化ケイ素の接合面を機械的に粗くする方法では、
接合面全域を均一に粗面状態とすることが困難である。In addition, in the method of mechanically roughening the joint surface of silicon carbide,
It is difficult to uniformly roughen the entire joint surface.
このため、炭化ケイ素と他の材料との接合部の接合強度
および信輔性は十分なものではなかった。For this reason, the joint strength and reliability of the joint between silicon carbide and other materials have not been sufficient.
本発明の目的は、上記した従来技術の課題を解決し、炭
化ケイ素と他の材料とを接合する際して、それらの接合
部の接合強度および信鎖性を向上させることができる炭
化ケイ素質材料の接合方法を提供することにある。An object of the present invention is to solve the problems of the prior art described above, and to improve the bonding strength and reliability of silicon carbide and other materials when they are bonded together. The object of the present invention is to provide a method for joining materials.
上記した目的を達成するために、本発明の第1は、反応
焼結法で得られた炭化ケイ素質材料の被接合面を強アル
カリ性薬剤、または強酸性薬剤で化学的に処理し、前記
炭化ケイ素質材料の被接合面付近の炭化ケイ素粒間に介
在する前記薬剤による溶出可能な成分を除去して、前記
炭化ケイ素質材料の被接合面から所定の深さの開気孔を
形成し、この開気孔中に流動状態に保持可能な接合材を
浸透させた後、この接合材面に被接合材を接合させこと
を特徴とし、本発明の第2は、前記の開気孔に直接、被
接合材を浸透乃至拡散させることを特徴とする。In order to achieve the above-mentioned object, the first aspect of the present invention is to chemically treat the surface to be joined of a silicon carbide material obtained by a reaction sintering method with a strong alkaline agent or a strong acidic agent, and to Remove components that can be eluted by the drug that are present between silicon carbide grains near the surface of the silicon carbide material to be joined, and form open pores with a predetermined depth from the surface of the silicon carbide material to be joined. The second aspect of the present invention is that after a bonding material that can be maintained in a fluid state is infiltrated into the open pores, a material to be bonded is bonded to the surface of the bonded material. It is characterized by permeating or diffusing materials.
炭化ケイ素質材料を強アルカリ性薬剤又は強酸性薬剤が
化学処理すると、炭化ケイ素質材料中に介在する未反応
金属シリコン等の成分が溶出し、炭化ケイ素質材料の表
層部に複雑な形状の開気孔が形成される。When a silicon carbide material is chemically treated with a strong alkaline agent or a strong acidic agent, components such as unreacted metallic silicon present in the silicon carbide material are eluted, creating complex-shaped open pores in the surface layer of the silicon carbide material. is formed.
この開気孔が形成された表層部に流動可能な材質からな
る接合材等を塗布等の手段に浸透させると、この接合材
は開気孔中に入り込み、炭化ケイ素質材料と、所謂、投
錨作用により強固に接合される。When a bonding material made of a flowable material is infiltrated into the surface layer where open pores are formed by means such as coating, this bonding material enters into the open pores and interacts with the silicon carbide material due to the so-called anchoring action. Strongly bonded.
したがって、被接合材には接合材と化学的に親和性の高
い材料を選定でき、両者の接合強度が向上する。Therefore, a material having high chemical affinity with the bonding material can be selected as the material to be bonded, and the bonding strength between the two can be improved.
また、同様に前記開気孔に被接合を浸透乃至拡散させた
場合にも、被接合材は炭化ケイ素質材料に対して、投錨
作用により強固に接合することとなる。Similarly, when the material to be joined permeates or diffuses into the open pores, the material to be joined is firmly joined to the silicon carbide material due to the anchoring action.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明の接合方法に適用される炭化ケイ素質材
料の組織概略図である。FIG. 1 is a schematic diagram of the structure of a silicon carbide material applied to the joining method of the present invention.
この炭化ケイ素質材料は、反応焼結法により形成され、
粒状の炭化ケイ素lの間隙に未反応の金属シリコン2と
カーボン粒子が混在した組織となっている。This silicon carbide material is formed by a reaction sintering method,
It has a structure in which unreacted metal silicon 2 and carbon particles are mixed in the gaps between granular silicon carbide 1.
このようなmmからなる炭化ケイ素質材料の被接合面を
強アルカリ性薬MC例えば、水酸化ナトリウム、水酸化
カリウム等)又は強酸性薬剤(フッ化水素酸、フン化水
素酸+硝酸)で化学的に処理する。The surfaces to be joined of silicon carbide materials made of such mm are chemically treated with strong alkaline chemicals (e.g., sodium hydroxide, potassium hydroxide, etc.) or strong acid chemicals (hydrofluoric acid, hydrofluoric acid + nitric acid). to be processed.
この化学処理後の炭化ケイ素質材料の被接合面の組織概
略図を第2図に示す。FIG. 2 shows a schematic diagram of the structure of the surface to be joined of the silicon carbide material after this chemical treatment.
第2図から明らかなように炭化ケイ素材料面(表層部)
付近では強アルカリ性薬剤又は強酸性薬剤により金属シ
リコン2が溶出、除去され、表層図に複雑な連通孔の形
状を有する開気孔4が形成される。As is clear from Figure 2, the silicon carbide material surface (surface layer)
Nearby, the metal silicon 2 is eluted and removed by a strong alkaline or acidic chemical, and open pores 4 having a complicated communicating hole shape are formed in the surface layer.
この場合、表層部に形成される開気孔4の大きさ、形状
等は、炭化ケイ素質材料の配合および製作条件により調
整される。In this case, the size, shape, etc. of the open pores 4 formed in the surface layer portion are adjusted by the composition of the silicon carbide material and manufacturing conditions.
また、表層部に形成される開気孔4の深さ等は、化学的
処理条件(例えば、薬剤の濃度、温度、薬剤に対する炭
化ケイ素質材料の浸漬時間等)により調整され、要求さ
れる深さとすることができる。In addition, the depth of the open pores 4 formed in the surface layer is adjusted depending on the chemical treatment conditions (for example, the concentration of the chemical, the temperature, the immersion time of the silicon carbide material in the chemical, etc.), and the required depth can do.
このようにして、炭化ケイ素質材料の表層部に複雑な形
状の開気孔4が形成された後、この表層部に対し、接合
材5を介して機械加工容易な有a質材料、無機質材料又
は金属材料等の他の材料(被接合材6)が接合される。After the complex-shaped open pores 4 are formed in the surface layer of the silicon carbide material in this way, the surface layer is bonded to an easily machinable organic material, an inorganic material, or a bonding material 5. Other materials (materials to be joined 6) such as metal materials are joined.
そして、炭化ケイ素質材料に接合材5を介して被接合材
6を接合する場合、第3図に示すように接合材5は加熱
溶融した状態、液状の状態で開気孔4中に浸透し、図中
、層厚Tで示す領域の層中に充満する。When bonding the material 6 to be bonded to the silicon carbide material via the bonding material 5, the bonding material 5 penetrates into the open pores 4 in a heated and molten state, or in a liquid state, as shown in FIG. In the figure, the layer is filled in the region indicated by the layer thickness T.
この場合、接合材5には、被接合材6との化学的親和性
に優れた材質のものを選定することができる。In this case, the bonding material 5 can be selected from a material that has excellent chemical affinity with the materials 6 to be bonded.
前記接合材5は、炭化ケイ素質材料に対して所謂、投錨
作用により特に物理的に強固に接合し、接合材5と被接
合材6とは化学的に強固に接合させることができる。The bonding material 5 can be physically strongly bonded to the silicon carbide material by a so-called anchoring effect, and the bonding material 5 and the material to be bonded 6 can be chemically strongly bonded.
なお、接合材5の表層部は適宜粗面加工し、接合材5と
被接合材6との接合面を化学的、物理的に強固に接合す
るようにしてもよい。Note that the surface layer portion of the bonding material 5 may be appropriately roughened to chemically and physically bond the bonding surfaces of the bonding material 5 and the material to be bonded 6.
炭化ケイ素質材料に対して、直接、被接合材6を接合す
る場合、加圧加熱により流動可能な被接合材6を開気孔
4が形成された表層部に重ね合せ、加圧加熱操作等によ
り流動化した被接合材6を開気孔4中に拡散させる。When joining the material to be joined 6 directly to a silicon carbide material, the material to be joined 6, which can flow under pressure and heat, is placed on the surface layer where the open holes 4 are formed, and then the material to be joined 6, which can flow under pressure and heat, is placed on the surface layer in which the open holes 4 are formed, and then the material to be joined is placed on the surface layer in which the open holes 4 are formed, and the material is heated under pressure, etc. The fluidized material 6 to be joined is diffused into the open hole 4.
この方法では、第4図に示すように被接合材6が開気孔
4中に直接拡散し、浸透するので、所謂、投錨作用によ
り両者は強固に接合されるものである。In this method, as shown in FIG. 4, the material to be joined 6 directly diffuses and permeates into the open pores 4, so that the two are firmly joined by a so-called anchoring effect.
以上のように本発明によれば、炭化ケイ素質材料中の粒
状の炭化ケイ素間隙に介在する未反応金属シリコン等の
成分が強アルカリ性薬剤又は強酸性薬剤により溶出除去
されて、炭化ケイ素質材料の表層部に複雑な形状の開気
孔が形成され、この開気孔中に接合材又は被接合材が入
りこみ、所謂、投錨作用により炭化ケイ素質材料と被接
合材とを強固に接合することができるなどのすぐれた効
果を有するものである。As described above, according to the present invention, components such as unreacted metal silicon interposed in the granular silicon carbide gaps in the silicon carbide material are eluted and removed by a strong alkaline agent or a strong acid agent, and the silicon carbide material is Complex-shaped open pores are formed in the surface layer, and the joining material or the material to be joined enters into these open pores, and the silicon carbide material and the material to be joined can be firmly joined by a so-called anchoring effect. It has excellent effects.
第1図は本発明に適用される炭化ケイ素質材料の組織概
略図、第2図は炭化ケイ素質材料を強アルカリ薬剤又は
強酸性薬剤により化学的処理したときの表層部の組織概
略図、第3図は炭化ケイ素質材料に接合材を介して被接
合材を接合したときの接合部の断面組織概略図、第4図
は炭化ケイ素質材料に直接、被接合材を接合したときの
接合部の断面&Il織概略図、第5図は従来の接合法に
より接合部の断面組織概略図である。
l・・・・・・炭化ケイ素
2・・・・・・金属シリコン
3・・・・・・カーボン粒
4・・・・・・開気孔
5・・・・・・接合材
6・・・・・・被接合材
第
図
第3rgJ
第4図FIG. 1 is a schematic diagram of the structure of the silicon carbide material applied to the present invention, FIG. 2 is a schematic diagram of the structure of the surface layer when the silicon carbide material is chemically treated with a strong alkaline agent or a strong acid agent, and FIG. Figure 3 is a schematic diagram of the cross-sectional structure of a joint when a material to be joined is joined to a silicon carbide material via a bonding material, and Figure 4 is a diagram of a joint when a material to be joined is joined directly to a silicon carbide material. Fig. 5 is a schematic cross-sectional view of the weave of a joint by a conventional joining method. l...Silicon carbide 2...Metal silicon 3...Carbon grains 4...Open pores 5...Binding material 6...・・To be joined material diagram 3rgJ diagram 4
Claims (2)
面を強アルカリ性薬剤又は強酸性薬剤で化学的に処理し
、前記炭化ケイ素質材料の被接合面付近の炭化ケイ素粒
間に介在する前記薬剤による溶出可能な成分を除去して
、前記炭化ケイ素質材料の被接合面から所定の深さの開
気孔を形成し、この開気孔中に流動状態に保持可能な接
合材を浸透させた後、この接合材面に被接合材を接合さ
せたことを特徴とする炭化ケイ素質材料の接合方法。(1) The surface of the silicon carbide material obtained by the reaction sintering method is chemically treated with a strong alkaline agent or a strong acidic agent, and the silicon carbide grains near the surface of the silicon carbide material are Remove the intervening components that can be eluted by the drug, form open pores with a predetermined depth from the surface of the silicon carbide material to be joined, and infiltrate a bonding material that can be maintained in a fluid state into the open pores. 1. A method for joining silicon carbide materials, comprising: bonding a material to be joined to the surface of the material to be joined.
面を強アルカリ性薬剤又は強酸性薬剤で化学的に処理し
、前記炭化ケイ素質材料の被接合面付近の炭化ケイ素粒
間に介在する前記薬剤による溶出可能な成分を除去して
、前記炭化ケイ素質材料の被接合面から所定の深さの開
気孔を形成し、この開気孔中に流動状態に保持可能な被
接合材を浸透乃至拡散させることを特徴とする炭化ケイ
素質材料の接合方法。(2) The surface of the silicon carbide material obtained by the reaction sintering method is chemically treated with a strong alkaline agent or a strong acidic agent, and the silicon carbide grains near the surface of the silicon carbide material are The intervening components that can be eluted by the drug are removed to form open pores with a predetermined depth from the surface of the silicon carbide material to be joined, and the material to be joined that can be held in a fluid state is placed in the open pores. A method for joining silicon carbide materials characterized by penetration or diffusion.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP23947788A JPH0288470A (en) | 1988-09-24 | 1988-09-24 | Method for joining silicon carbide material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP23947788A JPH0288470A (en) | 1988-09-24 | 1988-09-24 | Method for joining silicon carbide material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0288470A true JPH0288470A (en) | 1990-03-28 |
Family
ID=17045355
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP23947788A Pending JPH0288470A (en) | 1988-09-24 | 1988-09-24 | Method for joining silicon carbide material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0288470A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6863759B2 (en) | 2001-01-24 | 2005-03-08 | M Cubed Technologies, Inc. | Methods for making composite bonded structures |
| JP2013159536A (en) * | 2012-02-08 | 2013-08-19 | Mino Ceramic Co Ltd | Ceramic porous body-metal heat insulating material and method of manufacturing the same |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59195586A (en) * | 1983-03-30 | 1984-11-06 | フォルシュングスツエントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for joining molded body members having silicon carbide surfaces |
| JPS6081072A (en) * | 1983-10-13 | 1985-05-09 | 旭硝子株式会社 | Bonding method |
| JPS63139071A (en) * | 1986-12-01 | 1988-06-10 | 本田技研工業株式会社 | Ceramic body joining method |
-
1988
- 1988-09-24 JP JP23947788A patent/JPH0288470A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59195586A (en) * | 1983-03-30 | 1984-11-06 | フォルシュングスツエントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for joining molded body members having silicon carbide surfaces |
| JPS6081072A (en) * | 1983-10-13 | 1985-05-09 | 旭硝子株式会社 | Bonding method |
| JPS63139071A (en) * | 1986-12-01 | 1988-06-10 | 本田技研工業株式会社 | Ceramic body joining method |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6863759B2 (en) | 2001-01-24 | 2005-03-08 | M Cubed Technologies, Inc. | Methods for making composite bonded structures |
| JP2013159536A (en) * | 2012-02-08 | 2013-08-19 | Mino Ceramic Co Ltd | Ceramic porous body-metal heat insulating material and method of manufacturing the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100432075B1 (en) | A method of coating a non-wetting fluid material on a substrate, a method of manufacturing a ceramic metal structure, a method of bonding a plurality of ceramic bodies, and a layered structure formed by such a method | |
| TW387870B (en) | Method of manufacturing joint body | |
| JP2003523830A (en) | Joining method of copper and stainless steel | |
| JPS60177110A (en) | Sealing method of porous metal | |
| JPH0288470A (en) | Method for joining silicon carbide material | |
| JPH0512402B2 (en) | ||
| JP2013159536A (en) | Ceramic porous body-metal heat insulating material and method of manufacturing the same | |
| US3108861A (en) | Nickel-base brazing alloys | |
| US3339269A (en) | Method of bonding | |
| JPS6077180A (en) | Bonded body | |
| JPS6349382A (en) | Insert material for diffused joining | |
| JPH02217372A (en) | Method for jointing silicon nitride and metal | |
| US5000371A (en) | Method of producing a metallic interface | |
| JPS6119705A (en) | Formation of hard metal layer onto surface of metal | |
| JP3154361B2 (en) | Solid phase diffusion bonding method and material of particle dispersed composite member | |
| KR900004207B1 (en) | Manufacturing method of stainless clad steel | |
| Kuhn | Forging and hot pressing | |
| JPH03103385A (en) | Metallization of ceramic and bonding of ceramic to metal | |
| CA1313291C (en) | Method of producing a metallic interface | |
| JPH0331434A (en) | Method for manufacturing cladding material containing metal matrix composite material | |
| JPS6240981A (en) | Joining method for cast iron | |
| JPH10202782A (en) | Method for refining ceramic film and refined ceramic film | |
| KR0184417B1 (en) | Powder sintered layer formation method by the spray method to which the pressurization process at high temperature is added | |
| JPS629789A (en) | Manufacturing method of titanium clad steel by rolling | |
| JP2003096507A (en) | Method of producing sintered member, and sintered member |