[go: up one dir, main page]

JPH0290457A - flat sealed battery - Google Patents

flat sealed battery

Info

Publication number
JPH0290457A
JPH0290457A JP63243636A JP24363688A JPH0290457A JP H0290457 A JPH0290457 A JP H0290457A JP 63243636 A JP63243636 A JP 63243636A JP 24363688 A JP24363688 A JP 24363688A JP H0290457 A JPH0290457 A JP H0290457A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
open end
welding
battery container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63243636A
Other languages
Japanese (ja)
Inventor
Atsushi Sato
淳 佐藤
Hirokazu Yoshikawa
吉川 博和
Shigeru Ikenari
池成 茂
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63243636A priority Critical patent/JPH0290457A/en
Publication of JPH0290457A publication Critical patent/JPH0290457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は扁平形密閉電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a flat sealed battery.

〔従来の技術〕[Conventional technology]

近年、電子機器の発達に伴い、自己放電が小さく長寿命
のリチウム電池が多く使用されるようになってきた。そ
こで、CMO,S  RAMのメモリバックアップ用電
源として筒形でメタル−ガラスメタルのいわゆるハーメ
チックシールを電池蓋に採用したりチウム−オキシハラ
イド電池(例えば、リチウム−塩化チオニル電池)が開
発され、これらは密閉性が高り10年間以上の長期間に
わたって使用できることから、急速に需要が伸びている
In recent years, with the development of electronic devices, lithium batteries with low self-discharge and long life have come into widespread use. Therefore, as memory backup power sources for CMO and SRAM, cylindrical metal-glass metal so-called hermetic seals were adopted for battery lids, and lithium-oxyhalide batteries (e.g., lithium-thionyl chloride batteries) were developed. Demand is rapidly increasing because it has a high airtightness and can be used for a long period of 10 years or more.

しかし、市場においては、上記筒形のバックアップ用電
池のみならず、ICの消費電流の低減から、あるいは機
器の小形、軽量化に伴う要請から、より小形、薄形のメ
モリバンクアップ用電池が求められている。
However, in addition to the above-mentioned cylindrical backup batteries, the market is demanding smaller and thinner memory bank backup batteries due to the need to reduce current consumption of ICs, or to reduce the size and weight of devices. It is being

一方、従来からも、リチウムー二酸化マンガン電池、リ
チウム−フッ化黒鉛電池などの扁平形のリチウム電池が
商品化されているが、これらの電池の封止は、正極缶の
開口端部と負極缶の外周部との間に合成樹脂製のガスケ
ットを介在させて正極缶の開口端部の内方への締め付け
により封止する、いわゆるクリンプシール方式によるも
のであるため(例えば、特開昭56−167274号公
報)、密閉性を保ち得る期間に限界があって、使用でき
る期間は長くても5〜7年であり、10年以上の使用に
は到底耐えられない。したがって、ユーザーからはハー
メチックシールを採用した密閉性の高い扁平形密閉電池
が求められているが、扁平形密閉電池の場合、電解液注
入後における電解液注入口の封止が困難なことから、そ
のような要望に応えることができていないのが現状であ
る。
On the other hand, flat-shaped lithium batteries such as lithium-manganese dioxide batteries and lithium-fluorinated graphite batteries have been commercialized for some time, but these batteries are sealed by sealing the open end of the positive electrode can and the negative electrode can. This is because it uses the so-called crimp seal method, in which a synthetic resin gasket is interposed between the positive electrode can and the outer circumference, and the opening end of the positive electrode can is sealed by tightening inward (for example, Japanese Patent Laid-Open No. 56-167274). There is a limit to the period during which the airtightness can be maintained, and the maximum usable period is 5 to 7 years, and it is impossible to withstand use for more than 10 years. Therefore, users are demanding a flat sealed battery that uses a hermetic seal and has a high degree of airtightness.However, in the case of a flat sealed battery, it is difficult to seal the electrolyte injection port after the electrolyte is injected. At present, we are unable to meet such demands.

すなわち、筒形電池の場合、形状が大きく、電池総高は
少なくとも25mm以上あり、電解液注入後の封止を電
解液注入口として使用されたパイプの」二端部で行うた
め(例えば、特開昭62−160660号公報)、電池
容器内の電解液面から封止部分までは少なくとも5mm
以上とり得るので、封止のための溶接時の熱が電解液に
及ぼす影響が少ないが、電池総高が高々10mm程度の
扁平形電池では、電解液面から溶接部分までの距離は1
〜21程度しかとれないため、封止溶接時の熱によって
電解液が気化し、電解液の気化物が溶接部分まで出てき
て、溶接を妨げたり、溶接部分にピンホールを発生させ
るので、完全な密閉構造を達成することができない。
In other words, in the case of a cylindrical battery, the shape is large, the total height of the battery is at least 25 mm, and the sealing after injecting the electrolyte is performed at the two ends of the pipe used as the electrolyte injection port (for example, (Kokai No. 62-160660), the distance from the electrolyte surface in the battery container to the sealing part is at least 5 mm.
Therefore, the heat during welding for sealing has little effect on the electrolyte, but in a flat battery with a total battery height of at most 10 mm, the distance from the electrolyte surface to the welded part is 1
Since the electrolyte will be vaporized by the heat during sealing welding, the vaporized electrolyte will come out to the welding area, interfering with welding or creating pinholes in the welding area, so it is completely impossible to remove the electrolyte. It is not possible to achieve a sealed structure.

また、扁平形電池では、電解液注入口を電池蓋の端子部
分に設けると、その溶接部分がガラス層に近すぎて、溶
接時の熱によってガラス層を破損することになるので、
例えば、第6図に示すように、電池容器(5)の底部(
5a)の中央部に貫通孔をあけて電解液注入口(12)
とし、電解液注入後(少なくとも電解液注入時からは、
電池を第6図に示す状態とは上下を反転させた状態にす
る)にその電解液注入口(12)を封止板θωで覆って
、該封止板0ωの外周部を電池容器(5)の底部(5a
)に溶接して封止することが試みられているが、前述し
たように、その溶接部分と電解液の液面との距離が短い
ため、溶接時の熱によって電解液が気化し、電解液の気
化物が溶接部分に出てきて、溶接を妨げたり、溶接部分
にピンホールを発生させて密閉性を損なう原因になる。
In addition, with flat batteries, if the electrolyte inlet is provided at the terminal part of the battery lid, the welded part will be too close to the glass layer, and the glass layer will be damaged by the heat during welding.
For example, as shown in FIG. 6, the bottom of the battery container (5) (
Drill a through hole in the center of 5a) and insert the electrolyte inlet (12).
After injecting the electrolyte (at least from the time of injecting the electrolyte,
6), cover the electrolyte inlet (12) with a sealing plate θω, and cover the outer periphery of the sealing plate θω with the battery container (5). ) bottom (5a
), but as mentioned above, because the distance between the welded part and the electrolyte level is short, the electrolyte vaporizes due to the heat during welding, causing the electrolyte to leak. Vaporized substances may come out to the welding area, interfering with welding, or causing pinholes to occur in the welding area, resulting in a loss of airtightness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記したようなハーメチックシールを採用し
た扁平形密閉電池を作製する際の電解液注入口の封止の
困難さを解消して良好な溶接を達成し、長期使用に耐え
得る密閉性の高い扁平形密閉電池を提供することを目的
とする。
The present invention solves the difficulty of sealing the electrolyte inlet when producing a flat sealed battery that uses a hermetic seal as described above, achieves good welding, and provides sealing that can withstand long-term use. The purpose of the present invention is to provide a flat sealed battery with high performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するためになされたものであ
り、その実施例に対応する第1〜5図、特に第1〜3図
を用いて説明すると、電池容器(5)の底部(5a)の
中央部に電池内部側に先端部(12a)を有する円筒状
またはテーパ筒状の電解液注入口0りを設け、電解液注
入後に上記電解液注入口(12)に封止栓(13)を圧
入し、金属製の外缶θ4を該外缶G4が上記電池容器(
5)の周囲を囲繞するように配置し、核外缶0滲の開口
端部[14a)を電池容器(5)の開口端部(5b)に
溶接したものである。
The present invention has been made to achieve the above object, and will be explained with reference to FIGS. 1 to 5, particularly FIGS. 1 to 3, which correspond to embodiments thereof. ) is provided with a cylindrical or tapered cylindrical electrolyte inlet (12a) having a tip (12a) on the inside of the battery, and after injecting the electrolyte, a sealing plug (13) is provided in the electrolyte inlet (12). ) and press-fit the metal outer can θ4 so that the outer can G4 is connected to the battery container (
5), and the open end [14a] of the outer nuclear can is welded to the open end (5b) of the battery container (5).

〔作用〕[Effect]

電解液注入口0力に封止栓03)を圧入しているので、
封止栓03)にはその周囲から円筒状またはテーパ筒状
の電解液注入口面の反撥応力(上記のような封止栓(1
3)の圧入により、円筒状またはテーパ筒状の電解液注
入口面は押し拡げられるので、電解液注入口(12)に
元の状態に復帰しようとする反撥応力が生じる)がかか
り、両者の密接度が高まって、電解液注入口面は、少な
くとも外缶Oaの開口端部(14a)と電池容器(5)
の開口端部(5b)との溶接が終了するまでの間は、封
止栓03)により封止されている。
Since the sealing plug 03) is press-fitted into the electrolyte injection port 0,
The repulsive stress of the cylindrical or tapered electrolyte inlet surface (sealing plug (1) as described above) is applied to the sealing plug (1) from its surroundings.
By press-fitting (3), the cylindrical or tapered cylindrical electrolyte inlet surface is pushed and expanded, so a repulsive force is applied to the electrolyte inlet (12) to return it to its original state. As the degree of closeness increases, the electrolyte inlet surface is at least connected to the open end (14a) of the outer can Oa and the battery container (5).
Until the welding with the open end (5b) is completed, it is sealed with a sealing plug 03).

その結果、外缶(14の開口端部(14a)と電池容器
(5)の開口端部(5a)との溶接時に電解液の気化物
が溶接部分に出てこす、ピンホールのない確実な溶接が
できて、電池内部は完全に密閉され、密閉性の高い扁平
形電池が得られる。
As a result, when welding the open end (14a) of the outer case (14) and the open end (5a) of the battery container (5), we have ensured that there are no pinholes, such as vaporized electrolyte coming out into the welded part. Welding is possible, and the inside of the battery is completely sealed, resulting in a highly airtight flat battery.

また、本発明の電池では、電池蓋(6)に正極端子(9
)を設けているので、電池容器(5)の開口端部(5b
)は、比較的熱に対して安定な正極(2)に近付くが、
電池容器(5)の底部(5b)側に配置されている熱安
定性の低い負極(1)から遠ざかることになり、電池容
器(5)の開口端部(5b)と外缶側の開口端部(14
a)との溶接時の熱が負極(1)に及ぼす熱影響は、電
池容器(5)の底部(5a)で溶接を行う場合よりも少
なくなり、その結果、負極(1)を構成するリチウムな
どの低融点のアルカリ金属が溶接時の熱によって溶融す
ることが少なくなって、負極構成材料と電解液溶媒とし
て用いられている正極活物質との反応による負極電気量
の損失あるいは溶融した負極構成材料がセパレータ(3
)を貫通して正極(2)と接触し内部短絡を起こすこと
などがほとんど生じない。
Further, in the battery of the present invention, the positive terminal (9) is attached to the battery lid (6).
), the open end (5b) of the battery container (5)
) approaches the positive electrode (2), which is relatively stable against heat, but
It moves away from the negative electrode (1), which has low thermal stability, which is placed on the bottom (5b) side of the battery container (5), and the open end (5b) of the battery container (5) and the open end on the outer can side. Part (14
The thermal effect of the heat during welding with a) on the negative electrode (1) is less than when welding is performed at the bottom (5a) of the battery container (5), and as a result, the lithium constituting the negative electrode (1) Alkali metals with low melting points such as are less likely to melt due to heat during welding, resulting in loss of negative electrode electricity due to reaction between negative electrode constituent materials and positive electrode active material used as electrolyte solvent, or melted negative electrode structure. The material is separator (3
) and comes into contact with the positive electrode (2), which rarely causes an internal short circuit.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面に基づいて説明する。ただ
し、実施例ではリチウム−塩化チオニル系の扁平形密閉
電池について説明するが、本発明はその場合のみに限ら
れるものではない。
Next, embodiments of the present invention will be described based on the drawings. However, although a lithium-thionyl chloride flat sealed battery will be described in the Examples, the present invention is not limited to that case.

第1図は本発明の扁平形密閉電池の第1実施例を示す断
面図であり、第2図(a)は上記第1図に示す電池の要
部のみを拡大して示す断面図であり、第2図(b)は第
2図(a)の分解図である。ただし、断面図においては
、繁雑化を避けるため、断面より背面側に位置する部分
の外形線は図示を省略している。
FIG. 1 is a sectional view showing a first embodiment of the flat sealed battery of the present invention, and FIG. 2(a) is an enlarged sectional view showing only the main parts of the battery shown in FIG. , FIG. 2(b) is an exploded view of FIG. 2(a). However, in the cross-sectional views, to avoid complication, the outline of the portion located on the back side of the cross-section is omitted.

まず、電池の構成について概略的に説明すると、(1)
はリチウムからなる負極、(2)は炭素多孔質成形体か
らなる正極、(3)はガラス繊維不織布からなるセパレ
ータであり、上記負極(1)と正極(2)とを隔離して
いる。(4)は電解液で、(5)はステンレス鋼製の電
池容器、(6)は電池蓋であり、この電池蓋(6)は環
状でステンレス鋼製のボディ(7)とガラスからなる環
状の絶縁層(8)とステンレス鋼製の正極端子(9)と
からなり、上記ボディ(7)の外周部(7a)は電池容
器(5)の開口端部(5b)にその内周側から接触して
溶接されている。00)は正極集電体であり、ステンレ
ス鋼製網からなり、正極端子(9)の下部にスポット溶
接されている。(11)はガラス繊維不織布からなる絶
縁体で、正極(2)および正極集電体0[I)と電池蓋
(6)のボディ(7)との間を絶縁している。Q21は
電解液注入口であり、この電解液注入口(12)は電池
容器(5)の底部(5a)の中央部に設けられているが
、本実施例のものは先端部(12a) (第2図参照)
を電池内部側に有する円筒状をしている。03)は封止
栓で、この封止栓03)は、電解液を上記電解液注入口
(12)から電池内部に注入したのちに、電解液注入口
(12)に圧入されたものである。(14)はステンレ
ス鋼製の外缶であり、この外缶(14は上記電池容器(
5)の周囲を囲繞し、その開口端部(14a)が電池容
器(5)の開口端部(5b)に外周側から接触して溶接
されている。この電池は、外径36mm、電池総高6.
5開の円板状をした扁平形電池であり、前記負極(1)
、正極(2)、セパレータ(3)および電解液(4)な
どの発電要素は電池容器(5)と電池蓋(6)とで形成
される空間内に収容されている。
First, to roughly explain the structure of the battery, (1)
is a negative electrode made of lithium, (2) is a positive electrode made of a carbon porous molded body, and (3) is a separator made of glass fiber nonwoven fabric, which separates the negative electrode (1) and the positive electrode (2). (4) is an electrolytic solution, (5) is a battery container made of stainless steel, and (6) is a battery lid. This battery lid (6) is annular and is made of a stainless steel body (7) and glass. The outer periphery (7a) of the body (7) is connected to the open end (5b) of the battery container (5) from the inner periphery side. Welded in contact. 00) is a positive electrode current collector, which is made of a stainless steel mesh and is spot welded to the lower part of the positive electrode terminal (9). (11) is an insulator made of glass fiber nonwoven fabric, which insulates between the positive electrode (2) and the positive electrode current collector 0[I] and the body (7) of the battery lid (6). Q21 is an electrolyte injection port, and this electrolyte injection port (12) is provided at the center of the bottom (5a) of the battery container (5), but in this example, the electrolyte injection port (12) is provided at the tip (12a) ( (See Figure 2)
It has a cylindrical shape with an inner side of the battery. 03) is a sealing plug, and this sealing plug 03) is press-fitted into the electrolyte injection port (12) after the electrolyte is injected into the battery from the electrolyte injection port (12). . (14) is an outer can made of stainless steel, and this outer can (14 is the above-mentioned battery container (
5), and its open end (14a) is in contact with and welded to the open end (5b) of the battery container (5) from the outer peripheral side. This battery has an outer diameter of 36 mm and a total height of 6.
It is a flat battery in the shape of a five-open disk, and the negative electrode (1)
, a positive electrode (2), a separator (3), an electrolytic solution (4), and other power generating elements are housed in a space formed by a battery container (5) and a battery lid (6).

つぎに、主要な構成部材について詳しく説明すると、負
極(1)はリング状に打抜いたリチウムシートを電池容
器(5)の底部内面に圧着したものであって、負極活物
質のリチウムのみで構成され、正極(2)はアセチレン
ブラックを主成分とし、これに黒鉛とポリテトラフルオ
ロエチレンを添加した炭素質を主材とする材料の多孔質
成形体、いわゆる炭素多孔質成形体からなるものである
。電解液(4)は塩化チオニルに四塩化アルミニウムリ
チウムを1mol/A溶解した塩化チオニル溶液からな
り、塩化チオニルは上記のように電解液の溶媒であると
ともに正極活物質でもある。このように塩化チオニルが
正極活物質として用いられていることからも明らかなよ
うに、上記正極(2)はそれ自身が反応するものではな
く、正極活物質の塩化チオニルと負極(1)からイオン
化して溶出してきたリチウムイオンとの反応場所を提供
するものである。
Next, to explain the main components in detail, the negative electrode (1) is a lithium sheet punched into a ring shape and pressed onto the bottom inner surface of the battery container (5), and is composed only of lithium as the negative electrode active material. The positive electrode (2) consists of a porous molded body made of a carbonaceous material mainly composed of acetylene black and to which graphite and polytetrafluoroethylene are added, a so-called carbon porous molded body. . The electrolytic solution (4) consists of a thionyl chloride solution in which 1 mol/A of lithium aluminum tetrachloride is dissolved in thionyl chloride, and thionyl chloride is not only the solvent of the electrolytic solution as described above, but also the positive electrode active material. As is clear from the fact that thionyl chloride is used as the positive electrode active material, the positive electrode (2) itself does not react, but is ionized from the positive electrode active material thionyl chloride and the negative electrode (1). This provides a site for reaction with the lithium ions that have been eluted.

電池容器(5)は、厚さ0.5mmのステンレス鋼板で
外径33mm、高さ61の容器状に形成され、その底部
(5a)の中央部には内径2.1mmで電池内部側に先
端部(12a)を有する高さ約1 、5mmの円筒状の
電解液注入口(121が設けられている。なお、円筒状
の電解液注入口面とは、電解液の注入に際し、電解液の
通過し得る空隙が円筒によって形成されたものであるこ
とを意味している。
The battery container (5) is made of a stainless steel plate with a thickness of 0.5 mm and is formed into a container shape with an outer diameter of 33 mm and a height of 61 mm, and the center of the bottom (5a) has an inner diameter of 2.1 mm and a tip facing inside the battery. A cylindrical electrolyte inlet (121) with a height of about 1.5 mm and a portion (12a) is provided.The cylindrical electrolyte inlet surface is the surface of the electrolyte when injecting the electrolyte. This means that the space through which it can pass is formed by a cylinder.

電池蓋(6)は前記のようにステンレス鋼製のボディ(
7)とガラスからなる環状の絶縁層(8)とステンレス
鋼製の正極端子(9)とからなり、上記ガラスからなる
絶縁層(8)はその外周面でステンレス鋼製のボディ(
7)の内周面に融着し、その内周面でステンレス鋼製の
正極端子(9)の外周面に融着していて、いわゆるメタ
ル−ガラス−メタルのハーメチックシールを持ち、また
、前記のように電池蓋(6)のボディ(7)の外周部(
7a)は電池容器(5)の開口端部(5b)に溶接され
ていて、この電池はいわゆる完全密閉構造となり得るよ
うに構成されている。
As mentioned above, the battery cover (6) has a stainless steel body (
7), an annular insulating layer (8) made of glass, and a positive electrode terminal (9) made of stainless steel, and the insulating layer (8) made of glass has a stainless steel body (
7), and the inner peripheral surface is fused to the outer peripheral surface of the positive electrode terminal (9) made of stainless steel, and has a so-called metal-glass-metal hermetic seal. The outer periphery of the body (7) of the battery cover (6) as shown in
7a) is welded to the open end (5b) of the battery container (5), and this battery is configured to have a so-called completely sealed structure.

封止栓03)は、本実施例では直径2.3mmのポリテ
トラフルオロエチレン球からなり、この封止栓03)の
直径は前記電解液注入口(12)の内径より若干大きく
、前記のように電解液注入後の電解液注入口(121に
圧入されている。そのため、この封止栓03)にはその
周囲から電解液注入口(12)の反撥応力がかかり、両
者の密接度が高くなっていて、電解液注入口(12)は
、少なくとも外缶(14の開口端部(14a)と電池容
器(5)の開口端部(5b)との溶接が終了するまでの
間は、上記封止栓03)によって封止されているので、
外缶(14の開口端部(14a )と電池容器(5)の
開口端部(5b)との溶接時に、電解液の気化物が溶接
部分に出てくることがなく、溶接がスムーズに行い得る
とともに、溶接部分にピンホールが発生することがない
In this embodiment, the sealing plug 03) is made of a polytetrafluoroethylene ball with a diameter of 2.3 mm, and the diameter of the sealing plug 03) is slightly larger than the inner diameter of the electrolyte injection port (12), as described above. It is press-fitted into the electrolyte injection port (121) after the electrolyte is injected into the electrolyte injection port (121).Therefore, the repulsive stress of the electrolyte injection port (12) is applied to this sealing plug 03 from around it, and the closeness between the two is high. The electrolyte inlet (12) is in the above-mentioned state at least until the welding of the open end (14a) of the outer case (14) and the open end (5b) of the battery container (5) is completed. Since it is sealed by the sealing plug 03),
When welding the open end (14a) of the outer case (14) and the open end (5b) of the battery container (5), the vaporized electrolyte does not come out to the welded part, and the welding can be performed smoothly. At the same time, pinholes do not occur in the welded area.

外缶側は、厚さ0.3mmのステンレス鋼板で外径36
mm、高さ6 、5mmの容器状(缶状)に形成され、
電池容器(5)の周囲を囲繞するように配置され、その
底部(+4b)で前記電解液注入口0りの基端部(12
b)側(第2図参照)の開口部を覆い、その開口端部(
14a)が電池容器(5)の開口端部(5b)にその外
周側から接触して溶接されている。そして、この外缶(
14)は、負極(1)に接触している電池容器(5)と
の溶接により、負極端子としての作用を兼ねることにな
る。
The outer can side is a stainless steel plate with a thickness of 0.3 mm and an outer diameter of 36 mm.
It is formed into a container shape (can shape) with a height of 6 mm and a height of 5 mm.
It is arranged so as to surround the battery container (5), and the base end (12) of the electrolyte injection port 0 is located at the bottom (+4b).
Cover the opening on the b) side (see Figure 2), and cover the opening end (
14a) is in contact with and welded to the open end (5b) of the battery container (5) from its outer circumferential side. And this outer can (
14) doubles as a negative electrode terminal by welding it to the battery container (5) which is in contact with the negative electrode (1).

また、上記外缶(141の底部(14b)には防爆用の
薄肉部05)が設けられていて、この電池が高温加熱下
にさらされたり、高電圧で充電されるなど、電池が異常
事態に遭遇して、電池内部の圧力が異常に上昇したとき
には、その内圧上昇によって、上記薄内部05)が安全
性の確保できる範囲内の圧力で破壊して、高圧下での電
池破裂、いわゆる電池爆発を防止できるようにしている
。本実施例では、この薄肉部05)の厚みを0.07m
mにしているが、一般には、この薄肉部θωの厚みは0
.05〜0.20闘の範囲から選ばれる。
In addition, the bottom (14b) of the outer can (141) is provided with an explosion-proof thin-walled part 05, and if the battery is exposed to high temperature heating or charged at high voltage, the battery may When the pressure inside the battery rises abnormally due to the rise in internal pressure, the thin interior 05) breaks down within the pressure range that can ensure safety, causing the battery to explode under high pressure. It is designed to prevent explosions. In this embodiment, the thickness of this thin part 05) is 0.07 m.
m, but generally the thickness of this thin part θω is 0.
.. Selected from the range of 0.05 to 0.20.

この電池は例えば次に示すようにして作製される。This battery is manufactured, for example, as shown below.

まず、電池容器(5)の底部(5a)の中央部に電解液
注入口(12)を前記特定の態様で設けておき、電池蓋
(6)の正極端子(9)の下部に正極集電体0口)をス
ポット溶接し、ボディ(7)と正極集電体00)との間
に絶縁体(11)を挿入した状態にしておく。
First, the electrolyte inlet (12) is provided in the central part of the bottom (5a) of the battery container (5) in the above-described specific manner, and the positive electrode current collector is placed under the positive electrode terminal (9) of the battery lid (6). The body (00) is spot welded, and the insulator (11) is inserted between the body (7) and the positive electrode current collector (00).

そして、上記電池容器(5)の底部内面にリング状に打
抜いたリチウムシートを圧着して負極(1)を構成し、
その上にセパレータ(3)を載置する。つぎに上記セパ
レータ(3)上に正極(2)を載置し、ついで電池蓋(
6)を電池容器(5)に嵌合し、電池蓋(6)のボディ
(7)の外周部(7a)と電池容器(5)の開口端部(
5b)との接合部を炭酸ガスレーザーで溶接した。この
封止にあたっての炭酸ガスレーザーの出力は700Wで
、溶接速度は60mm/secであった。
Then, a lithium sheet punched into a ring shape is crimped onto the bottom inner surface of the battery container (5) to form a negative electrode (1),
A separator (3) is placed on top of it. Next, place the positive electrode (2) on the separator (3), and then place the battery lid (
6) into the battery container (5), and connect the outer periphery (7a) of the body (7) of the battery lid (6) and the open end (
The joint with 5b) was welded using a carbon dioxide laser. The output of the carbon dioxide laser for this sealing was 700 W, and the welding speed was 60 mm/sec.

つぎに、上記組立中の電池を第1図に示す状態とは上下
を反転させた状態にして、電解液を電解液注入口(12
)から電池内部に注入した後、封止栓03)を上記電解
液注入口θカに圧入し、それら全体を外缶(14)に電
池容器(5)の底部(5a)側から挿入して、外缶Oa
が電池容器(5)の周囲を囲繞するように外缶(14)
を配置し、外缶Q41の開口端部(14a)を内方に締
め付けて電池容器(5)の開口端部(5b)にその外周
側から接触させ、炭酸ガスレーザーで外缶側の開口端部
(14a)を電池容器(5)の開口端部(5b)に溶接
して外缶(14)と電池容器(5)との間隙を封止し、
所望とする電池を作製した。このときの溶接条件は、レ
ーザー出力が700Wで、溶接速度が60mm/see
であった。
Next, turn the battery being assembled above upside down from the state shown in Figure 1, and pour the electrolyte into the electrolyte injection port (12).
) into the battery, the sealing plug 03) is press-fitted into the electrolyte injection port θ, and the whole is inserted into the outer can (14) from the bottom (5a) side of the battery container (5). , outer can Oa
The outer can (14) surrounds the battery container (5).
The open end (14a) of the outer can Q41 is tightened inward and brought into contact with the open end (5b) of the battery container (5) from its outer circumferential side, and the open end of the outer can is removed using a carbon dioxide laser. Welding the part (14a) to the open end (5b) of the battery container (5) to seal the gap between the outer can (14) and the battery container (5),
A desired battery was produced. The welding conditions at this time were a laser output of 700W and a welding speed of 60mm/see.
Met.

この溶接はスムーズに行うことができ、また、後記のよ
うにヘリウムリークディテクターでリーク量を測定した
ところリーク量が10−910−9at/seeと少な
く高気密性で、密閉性の高い電池が得られた。
This welding can be performed smoothly, and when the leakage amount was measured with a helium leak detector as described later, the leakage amount was as low as 10-910-9at/see, resulting in a highly airtight battery. It was done.

第3図は、本発明の扁平形密閉電池の第2実施例を示す
断面図であり、第3図のA部は第3図に示す電池の要部
のみを拡大して示す断面図である。
FIG. 3 is a sectional view showing a second embodiment of the flat sealed battery of the present invention, and section A in FIG. 3 is an enlarged sectional view showing only the main parts of the battery shown in FIG. 3. .

この第3図に示す第2実施例の電池は、電解液注入口0
りの形状が前記第1図に示す第1実施例の電池と変わっ
ていて、テーパ筒状をしているが、それ以外の構成は第
1図に示す第1実施例の電池とほぼ同様である。
The battery of the second embodiment shown in FIG. 3 has an electrolyte injection port 0.
The shape of the battery is different from that of the battery of the first embodiment shown in FIG. 1, and is tapered cylindrical, but other than that, the structure is almost the same as that of the battery of the first embodiment shown in FIG. be.

それ故、電解液注入口(12)とそれに関連する部分に
ついてのみ説明する。
Therefore, only the electrolyte inlet (12) and related parts will be described.

電池容器(5)は、前記第1図に示す第1実施例の電池
の場合と同様に厚さ0 、5mmのステンレス鋼板で外
径33mm、高さ6mmの容器状に形成されたものであ
るが、その底部(5a)の中央部には電池内部側に先端
部(12a) (第3図のA部参照)を有するテーパ筒
状の電解液注入口θ2)が設けられている。なお、テー
パ筒状の電解液注入口(12)とは、電解液の注入に際
し、電解液の通過し得る空隙がテーパ筒で形成されたも
のであることを意味している。
The battery container (5) is made of a stainless steel plate with a thickness of 0.5 mm and is shaped like a container with an outer diameter of 33 mm and a height of 6 mm, as in the case of the battery of the first embodiment shown in FIG. 1. However, in the center of the bottom (5a), there is provided a tapered cylindrical electrolyte inlet θ2) having a tip (12a) (see section A in FIG. 3) on the inside of the battery. Note that the tapered cylindrical electrolyte injection port (12) means that a tapered tube forms a gap through which the electrolyte can pass during injection of the electrolyte.

上記電解液注入口(12)の基端部(12b) (第3
図のA部参照)の内径は3mmで、先端部(12a)の
最も内径の小さい部分の内径は2.1mmに形成されて
いる。
Base end (12b) of the electrolyte injection port (12) (third
(see part A in the figure) has an inner diameter of 3 mm, and the inner diameter of the smallest inner diameter portion of the tip (12a) is 2.1 mm.

そして、この電解液注入口(12)から電解液を電池内
部に注入したのち、上記電解液注入口(12)に直径2
、3mmのポリテトラフルオロエチレン球からなる封止
栓03)が圧入されている。
After injecting the electrolyte into the battery from this electrolyte injection port (12), the electrolyte injection port (12) has a diameter of 2 mm.
, a sealing plug 03) made of a 3 mm polytetrafluoroethylene ball is press-fitted.

このように、この第3図に示す第2実施例の電池におい
ても、電解液注入口(12)の最も内径の小さい部分よ
り若干大きい直径を有する封止栓03)を電解液注入口
(12)に圧入しているので、封止栓03)にはその周
囲から上記圧入に伴う電解液注入口(12)の反撥応力
がかかり、両者の密接度が高くなって、少なくとも外缶
(14)の開口端部(14a)と電池容器(5)の開口
端部(5b)との溶接が終了するまでの間、電解液注入
口θカは上記封止栓03)によって封止されているので
、外缶(14)の開口端部(14a )の電池容器(5
)の開口端部(5b)への溶接時に電解液の気化物が溶
接部分に出てきて溶接を妨げたり、溶接部分にピンホー
ルを発生させるようなことがない。なお、上記外缶(1
4は、前記第1図に示す第1実施例の場合と同様に、厚
さ0.3mmのステンレス鋼板で形成されていて、その
直径は36mmで、高さは6.5市であり、その開口端
部(148)は電池容器(5)の開口端部(5b)に炭
酸ガスレーザーにより溶接されている。そして、その溶
接は、前記第1図に示す第1実施例の電池の場合と同様
に、出カフ00W、 溶接速度60mm/secで行わ
れている。また、この第3図に示す第2実施例の電池に
おいても、電解液注入後の溶接を負極(1)から離れた
外缶θ滲の開口端部(14a)と電池容器(5)の開口
端部(5b)とで行うので、負極(1)を構成するリチ
ウムへの影響が少なく、リチウムと塩化チオニル(塩化
チオニルは正極活物質であるが、電解液溶媒としても使
用されている)との反応による負極電気量の損失あるい
は溶融したリチウムがセパレータ(3)を貫通して正極
(2)と接触し内部短絡を起こすことなどを少なくする
ことができる。
In this way, also in the battery of the second embodiment shown in FIG. ), the repulsive stress of the electrolyte inlet (12) due to the press-fitting is applied to the sealing plug 03) from its periphery, and the closeness between the two becomes high, causing at least the outer can (14) Until the welding between the open end (14a) of the battery container (5) and the open end (5b) of the battery container (5) is completed, the electrolyte inlet θ is sealed by the sealing plug 03). , the battery container (5) at the open end (14a) of the outer can (14).
) When welding to the open end (5b) of the welding part, vaporized electrolyte solution does not come out to the welded part and interfere with welding or cause pinholes in the welded part. In addition, the above outer can (1
4 is made of a stainless steel plate with a thickness of 0.3 mm, as in the case of the first embodiment shown in FIG. The open end (148) is welded to the open end (5b) of the battery container (5) using a carbon dioxide laser. The welding was performed at a power output of 00 W and a welding speed of 60 mm/sec, as in the case of the battery of the first embodiment shown in FIG. 1. Also, in the battery of the second embodiment shown in FIG. 3, welding after injecting the electrolyte is performed between the open end (14a) of the outer can θ and the opening of the battery container (5), which is remote from the negative electrode (1). Since it is carried out at the end (5b), there is little effect on the lithium that constitutes the negative electrode (1), and lithium and thionyl chloride (thionyl chloride is a positive electrode active material, but is also used as an electrolyte solvent). It is possible to reduce the loss of negative electrode electricity due to this reaction, or the occurrence of internal short circuits caused by molten lithium penetrating the separator (3) and coming into contact with the positive electrode (2).

つぎに、本発明の実施例の電池の外缶側の開口端部(1
4a)と電池容器(5)の開口端部(5b)との溶接時
の溶接不良の発生と、従来試みられた扁平形密閉電池の
封止板06)の外周部と電池容器(5)の底部(5a)
との溶接時の溶接不良の発生について調べた結果を第1
表に示す。
Next, the open end (1
4a) and the open end (5b) of the battery container (5), and the occurrence of welding defects when welding the open end (5b) of the battery container (5) and the outer periphery of the sealing plate 06) of the flat sealed battery that was previously attempted. Bottom (5a)
The results of the investigation into the occurrence of welding defects during welding with
Shown in the table.

第1表中において、溶接不良発生電池個数を示す欄の数
値の分母は溶接に供した全電池個数を表し、分子はピン
ホールの発生による溶接不良が発生した電池個数を表す
。また、電池の種別を示す第1実施例および第2実施例
はこれまでに説明したとおりであり、これらは封止栓0
3)にいずれもポリテトラフルオロエチレン球を用いて
おり、その封止栓(13)の直径と電解液注入口θ2)
の最小内径部分の内径との関係などは前記したとおりで
ある。
In Table 1, the denominator of the numerical value in the column indicating the number of batteries with welding defects represents the total number of batteries subjected to welding, and the numerator represents the number of batteries with welding defects due to the generation of pinholes. In addition, the first example and the second example showing the types of batteries are as described above, and these have a sealing plug of 0.
3) all use polytetrafluoroethylene bulbs, and the diameter of the sealing plug (13) and the electrolyte injection port θ2)
The relationship between the minimum inner diameter portion and the inner diameter is as described above.

また、第3実施例および第4実施例は、封止栓03)と
してステンレス鋼球を用いたもので、第3実施例は封止
栓03)として直径2.3mmのステンレス鋼球を用い
たほかは第1実施例と同様の構成からなり、第4実施例
は封止栓面として直径2.3mmのステンレス鋼球を用
いたほかは第2実施例と同様の構成からなるものである
。そして、これら第1実施例〜第4実施例における外缶
(14の開口端部(14a)と電池容器(5)の開口端
部(5b)との炭酸ガスレーザーによる溶接時の条件は
、第1実施例などで例示したのと同様に出カフ00 W
 、溶接速度60mm/secである。
Further, in the third and fourth examples, a stainless steel ball was used as the sealing plug 03), and in the third example, a stainless steel ball with a diameter of 2.3 mm was used as the sealing plug 03). Otherwise, the structure is the same as that of the first embodiment, and the fourth embodiment has the same structure as the second embodiment, except that a stainless steel ball with a diameter of 2.3 mm is used as the sealing plug surface. The conditions for welding the open end (14a) of the outer can (14) and the open end (5b) of the battery container (5) using a carbon dioxide laser in these first to fourth embodiments are as follows. In the same way as exemplified in Example 1, the output of the cuff is 00 W.
, the welding speed was 60 mm/sec.

比較例1は従来試みられた扁平形密閉電池を示すもので
あって、この比較例1の電池は第6図に示す構成からな
り、電池容器(5)の底部(5a)の中央部に直径2m
mの貫通孔をあけて電解液注入口(12)とし、電解液
の注入後に厚さ0.3mm、直径5mmの円板状ステン
レス鋼板からなる封止板00で上記電解液注入口θ2)
を覆い、封止板06)の外周部を電池容器(5)の底部
(5a)に炭酸ガスレーザーで溶接している。
Comparative Example 1 shows a flat sealed battery that has been attempted in the past.The battery of Comparative Example 1 has the configuration shown in FIG. 2m
A through hole of m is made to serve as an electrolyte injection port (12), and after the electrolyte is injected, a sealing plate 00 made of a disc-shaped stainless steel plate with a thickness of 0.3 mm and a diameter of 5 mm is used to connect the electrolyte injection port θ2).
The outer periphery of the sealing plate 06) is welded to the bottom (5a) of the battery container (5) using a carbon dioxide laser.

ただし、その溶接部分が電解液面に近いので、炭酸ガス
レーザーの出力は400Wと低くし、また溶接速度も2
0mm/secと遅くして、前記実施例の場合よりおだ
やかな溶接条件を選んでいる。
However, since the welded part is close to the electrolyte surface, the output of the carbon dioxide laser should be low at 400W, and the welding speed should be set at 2.
The welding speed was set to 0 mm/sec, and milder welding conditions were selected than in the case of the previous example.

第 表 第1表に示すように、比較例1の電池では、溶接に供し
た全部の電池に溶接不良が発生したが、本発明の実施例
の電池はいずれも溶接不良が発生しなかった。
As shown in Table 1, in the batteries of Comparative Example 1, welding defects occurred in all the batteries subjected to welding, but in all the batteries of the examples of the present invention, welding defects did not occur.

また、第1実施例〜第4実施例の電池はいずれもヘリウ
ムリークディテクターで測定したリーク量が10−91
0−9at/sec以下であり、高い気密性を有し、密
閉性の高いことを示していた。
In addition, all of the batteries of the first to fourth examples had a leakage amount of 10-91 measured with a helium leak detector.
It was 0-9 at/sec or less, indicating high airtightness and high airtightness.

上記実施例では、封止栓(13)はいずれも球状のもの
を用いたが、封止栓03)は球状のものだけではなく、
例えば第4図に示すように先端部(13a )が球面状
になった円柱状の封止栓03)や、第5図に示すように
先端部f138)が丸みを帯びた円錐状の封止栓03)
であってもよい。要するに、封止栓03)としては、先
端が電解液注入口(12)の最も内径の小さい部分より
小径で、かつ一部に上記電解液注入口(12)の最も内
径の小さい部分よりも大きい直径を存する部分を持つも
のであればよい。
In the above embodiment, the sealing plugs (13) were all spherical, but the sealing plug 03) was not only spherical.
For example, as shown in Fig. 4, there is a cylindrical sealing plug 03) with a spherical tip (13a), or a conical sealing with a rounded tip f138) as shown in Fig. 5. Plug 03)
It may be. In short, the sealing plug 03) has a tip whose diameter is smaller than the part with the smallest inner diameter of the electrolyte injection port (12), and a part of which is larger than the part with the smallest inner diameter of the electrolyte injection port (12). Any material having a portion that has a diameter may be used.

また、実施例では封止栓03)としてポリテトラフルオ
ロエチレン製のものを用いたが、封止栓03)の材質と
しては、上記ポリテトラフルオロエチレン以外にも、同
様にフッ素樹脂であるエチレン−テトラフルオロエチレ
ン共重合体や、ステンレス鋼、ニッケルなどの金属など
を用いることができる。
In addition, in the example, a material made of polytetrafluoroethylene was used as the sealing plug 03), but the material of the sealing plug 03) may be other than the above-mentioned polytetrafluoroethylene. Tetrafluoroethylene copolymer, stainless steel, metal such as nickel, etc. can be used.

そして、電解液注入口θカの形状を円筒状またはテーパ
筒状と表現したが、本発明は電池総高が高くても10m
m程度の扁平形電池を対象としている関係で、それらの
高さは実施例でも示したように、1.5mm程度のもの
であって、高さの高いものではない。
Although the shape of the electrolyte inlet θ is described as cylindrical or tapered, the present invention is capable of 10 m even if the total height of the battery is high.
Since the object is a flat battery of about 1.5 mm in size, the height of the battery is about 1.5 mm, as shown in the example, and is not very tall.

また、実施例では絶縁層(8)をガラスで構成したが、
ガラスに代えてセラミックスで絶縁層(8)を構成して
もよい。さらに、実施例では、負極活物質としてリチウ
ムを用い、正極活物質として塩化チオニルを用いたりチ
ウム−塩化チオニル電池について説明したが、負極活物
質としてはナトリウム、カリウムなどのリチウム以外の
アルカリ金属であってもよいし、正極活物質も塩化チオ
ニル以外に塩化スルフリル、塩化ホスホリルなどの常温
(25“C)で液体のオキシハロゲン化物(オキシハラ
イド)であってもよい。本発明は主として上記のような
オキシハロゲン化物を正極活物質および電解液の溶媒と
して用いる電池を対象としているが、本発明はそれのめ
にとどまらず、有機電解液を用いるハーメチックシール
構造の扁平形密閉電池にも適用することができる。
Further, in the example, the insulating layer (8) was made of glass, but
The insulating layer (8) may be made of ceramic instead of glass. Furthermore, in the examples, lithium was used as the negative electrode active material and thionyl chloride was used as the positive electrode active material, and a lithium-thionyl chloride battery was described. In addition to thionyl chloride, the positive electrode active material may also be an oxyhalide that is liquid at room temperature (25 C), such as sulfuryl chloride or phosphoryl chloride. Although the present invention is intended for batteries that use oxyhalides as a positive electrode active material and a solvent for an electrolyte, the present invention is not limited to this, but can also be applied to flat sealed batteries with a hermetic seal structure that use an organic electrolyte. can.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、電池容器(5)の底
部(5a)の中央部に円筒状またはテーバ筒状の電解液
注入口(12)を設け、電解液注入後、上記電解液注入
口θ2)に封止栓03)を圧入することにより、電解液
注入口(12)を封止栓03)で封止した状態で、外缶
0/8の開口端部(14a)を電池容器(5)の開口端
部(5b)に溶接するようにしたので、溶接不良の発生
がない密閉性の高い扁平形密閉電池を提供することがで
きた。また、電解液注入後の溶接を負極(1)から離れ
た外缶(14)の開口端部(14a)と電池容器(5)
の開口端部(5b)とで行うので、負極(1)を構成す
るリチウムなどへの熱影響が少なくなり、負極構成材料
と電解液との反応による負極電気量の損失あるいは溶融
した負極構成材料がセパレーク(3)を貫通して正極(
2)と接触し内部短絡を起こすことを少なくすることが
できる。
As explained above, in the present invention, a cylindrical or tapered cylindrical electrolyte inlet (12) is provided in the center of the bottom (5a) of the battery container (5), and after the electrolyte is injected, the electrolyte inlet By press-fitting the sealing plug 03) into the inlet θ2), the open end (14a) of the outer can 0/8 is inserted into the battery container while the electrolyte inlet (12) is sealed with the sealing plug 03). Since welding was performed on the open end (5b) of (5), it was possible to provide a flat sealed battery with high airtightness and no welding defects. In addition, after the electrolyte was injected, welding was performed between the open end (14a) of the outer can (14) away from the negative electrode (1) and the battery container (5).
Since this is carried out at the open end (5b) of the negative electrode (1), the thermal effect on the lithium etc. that constitutes the negative electrode (1) is reduced, and the loss of negative electrode electricity due to the reaction between the negative electrode constituent material and the electrolyte or the melted negative electrode constituent material is reduced. penetrates the separate lake (3) and connects to the positive electrode (
2) It is possible to reduce the occurrence of internal short circuits due to contact with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の扁平形密閉電池の第1実施例を示す断
面図であり、第2図(a)は第1図に示す電池の要部の
みを拡大して示す断面図で、第2図(+))は第2図(
a)の分解図である。第3図は本発明の扁平形密閉電池
の第2実施例を示す断面図であり、第3図のA部は第3
図に示す電池の要部のみを拡大して示す断面図である。 第4図および第5図は本発明の扁平形密閉電池に使用す
る封止栓の他の例を示す断面図である。第6図は従来試
みられた扁平形密閉電池を示す断面図である。 (1)・・・負極、 (2)・・・正極、 (3)・・
・セパレータ、(4)・・・電解液、 (5)・・・電
池容器、 (5a)・・・底部、(5b)・・・開口端
部、 (6)・・電池蓋、 (7)・・・ボディ、(7
a)・・・外周部、 (8)・・・絶縁層、 (9)・
・・正極端子、θ2)・・・電解液注入口、 (12a
)・・・先端部、03)・・・封止栓、 0滲・・・外
缶、 (14a)・・・開口端部第1図 第 図 1・・・負極 2・・・正極 3・・セパレータ 4・・・電解液 5・・・電池容器 5a・・・底部 5b・・開口端部 6・・・電池蓋 7・・ボディ 7a・・外周部 8・・・絶縁層 9・・正極端子 12・・・電解液注入口 12a・・・先端部 13・・・封止栓
FIG. 1 is a sectional view showing a first embodiment of the flat sealed battery of the present invention, and FIG. 2(a) is an enlarged sectional view showing only the main parts of the battery shown in FIG. Figure 2 (+)) is Figure 2 (
FIG. FIG. 3 is a sectional view showing a second embodiment of the flat sealed battery of the present invention, and section A in FIG.
FIG. 2 is an enlarged cross-sectional view showing only the essential parts of the battery shown in the figure. FIGS. 4 and 5 are cross-sectional views showing other examples of sealing plugs used in the flat sealed battery of the present invention. FIG. 6 is a sectional view showing a conventionally attempted flat sealed battery. (1)...Negative electrode, (2)...Positive electrode, (3)...
・Separator, (4)...Electrolyte, (5)...Battery container, (5a)...Bottom, (5b)...Open end, (6)...Battery lid, (7) ...Body, (7
a)...outer periphery, (8)...insulating layer, (9)...
・Positive terminal, θ2) ・Electrolyte inlet, (12a
)...Tip part, 03)...Sealing plug, 0 leak...Outer can, (14a)...Open end part Fig. 1 Fig. 1...Negative electrode 2...Positive electrode 3. Separator 4 Electrolyte 5 Battery container 5a Bottom 5b Open end 6 Battery lid 7 Body 7a Outer periphery 8 Insulating layer 9 Positive electrode Terminal 12... Electrolyte inlet 12a... Tip part 13... Sealing plug

Claims (1)

【特許請求の範囲】[Claims] (1)発電要素を金属製の電池容器(5)と電池蓋(6
)とで形成される空間内に収容する扁平形密閉電池であ
って、上記電池蓋(6)は金属製で環状のボディ(7)
と上記環状のボディ(7)の内周側に位置しガラスまた
はセラミックスからなる環状の絶縁層(8)と上記環状
の絶縁層(8)の中心部に位置する正極端子(9)とか
らなり、該電池蓋(6)のボディ(7)の外周部(7a
)は前記電池容器(5)の開口端部(5b)に溶接され
、電池容器(5)の底部(5a)の中央部には電池内部
側に先端部(12a)を有する円筒状またはテーパ筒状
の電解液注入口(12)が設けられ、電解液注入後に上
記電解液注入口(12)に封止栓(13)を圧入し、金
属製の外缶(14)を該外缶(14)が上記電池容器(
5)の周囲を囲繞するように配置し、該外缶(14)の
開口端部(14a)を電池容器(5)の開口部端部(5
b)に溶接してなることを特徴とする扁平形密閉電池。
(1) The power generation element is made of metal battery container (5) and battery lid (6).
), the battery lid (6) is made of metal and has an annular body (7).
and an annular insulating layer (8) made of glass or ceramics located on the inner circumferential side of the annular body (7), and a positive terminal (9) located in the center of the annular insulating layer (8). , the outer periphery (7a) of the body (7) of the battery cover (6)
) is welded to the open end (5b) of the battery container (5), and in the center of the bottom (5a) of the battery container (5) is a cylindrical or tapered tube having a tip (12a) on the inside of the battery. A shaped electrolyte inlet (12) is provided, and after injecting the electrolyte, a sealing plug (13) is press-fitted into the electrolyte inlet (12), and a metal outer can (14) is inserted into the outer can (14). ) is the above battery container (
5), and the open end (14a) of the outer can (14) is placed so as to surround the open end (5) of the battery container (5).
b) A flat sealed battery characterized by being formed by welding.
JP63243636A 1988-09-27 1988-09-27 flat sealed battery Pending JPH0290457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243636A JPH0290457A (en) 1988-09-27 1988-09-27 flat sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243636A JPH0290457A (en) 1988-09-27 1988-09-27 flat sealed battery

Publications (1)

Publication Number Publication Date
JPH0290457A true JPH0290457A (en) 1990-03-29

Family

ID=17106768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243636A Pending JPH0290457A (en) 1988-09-27 1988-09-27 flat sealed battery

Country Status (1)

Country Link
JP (1) JPH0290457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065335A1 (en) * 2019-09-30 2021-04-08
EP3836269A1 (en) * 2019-12-13 2021-06-16 Samsung SDI Co., Ltd. Rechargeable battery
JP2023531752A (en) * 2020-12-04 2023-07-25 チューハイ コスミクス バッテリー カンパニー,リミテッド Button batteries and electronic devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065335A1 (en) * 2019-09-30 2021-04-08
WO2021065335A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Secondary cell
CN113950763A (en) * 2019-09-30 2022-01-18 株式会社村田制作所 Secondary battery
EP3836269A1 (en) * 2019-12-13 2021-06-16 Samsung SDI Co., Ltd. Rechargeable battery
JP2023531752A (en) * 2020-12-04 2023-07-25 チューハイ コスミクス バッテリー カンパニー,リミテッド Button batteries and electronic devices

Similar Documents

Publication Publication Date Title
EP0360039B1 (en) A flat typed sealed battery with hermetic sealing structure
KR100449763B1 (en) Cap assembly and secondary battery applying the same
US4544078A (en) Sealed closure for sealing and closing an opening in a container
US4182028A (en) Hermetically sealed button-type electrochemical cell and method for making same
CN212303778U (en) Button or cylindrical battery
JPH0290455A (en) Cylindrical sealed battery
KR102435496B1 (en) Secondary battery for small device and method of manufacturing the same
JPH0290457A (en) flat sealed battery
JPH0668861A (en) Lithium-ion secondary battery
JPH0265048A (en) flat sealed battery
JPH04267061A (en) lithium-iodine battery
JPH0265049A (en) flat sealed battery
JPH0290456A (en) Manufacturing method of flat sealed battery
JPH0215559A (en) Method for manufacturing non-aqueous solvent batteries
JPS60165040A (en) Sealed type battery
JPS60249241A (en) sealed battery
JPH0215558A (en) Method for manufacturing non-aqueous solvent batteries
JPH0265052A (en) flat sealed battery
JPH03216954A (en) Flat sealed battery
JPH0648766Y2 (en) Airtight terminal
JPH02139867A (en) flat sealed battery
JPH0132676Y2 (en)
JPH0265053A (en) flat sealed battery
JPS60198051A (en) sealed battery
JPH03216955A (en) flat sealed battery