JPH0293083A - Method for preventing corrosion of inner surface of copper alloy pipe - Google Patents
Method for preventing corrosion of inner surface of copper alloy pipeInfo
- Publication number
- JPH0293083A JPH0293083A JP63240742A JP24074288A JPH0293083A JP H0293083 A JPH0293083 A JP H0293083A JP 63240742 A JP63240742 A JP 63240742A JP 24074288 A JP24074288 A JP 24074288A JP H0293083 A JPH0293083 A JP H0293083A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- soln
- reducing agent
- copper alloy
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、銅又は銅合金の防食方法に関し、更に詳しく
は、船舶、化学プラント、発電プラント等の海水利用熱
交換器、復水器などの銅又は銅合金管内面の防食方法に
関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for preventing corrosion of copper or copper alloys, and more specifically, to a seawater heat exchanger, condenser, etc. for ships, chemical plants, power plants, etc. This invention relates to a method for preventing corrosion of the inner surface of copper or copper alloy tubes.
現在、各種プラントの海水利用熱交換器、復水器類の銅
合金管の防食対策としては、冷却海水中に微量の鉄イオ
ンを注入することによって行われ、鉄イオン注入方法と
しては、硫酸第一鉄溶液を注入する方法と本発明者らが
先に提案した硫酸第一鉄溶液中に力yボン酸イ寸ンを共
存させた溶液を注入する方法(特願昭61〜29159
6号)がある。後者は、鉄イオンの急激なコロイド化を
抑制し、鉄被膜の付着量をコントロールするものである
。鉄イオン注入による防食は海水中に注入された第一鉄
イオン(Fe計)が酸化物状態、コロイド状態となり管
内面に鉄被膜を形成することによる。Currently, corrosion prevention measures for copper alloy pipes in seawater heat exchangers and condensers in various plants are carried out by injecting small amounts of iron ions into cooling seawater. A method of injecting a ferrous sulfate solution and a method of injecting a solution in which a ferrous sulfate coexisted with a ferrous sulfate solution proposed by the present inventors (Japanese Patent Application No. 61-29159)
No. 6). The latter suppresses rapid colloidalization of iron ions and controls the amount of iron coating deposited. Corrosion prevention by iron ion implantation is due to the fact that ferrous ions (Fe) injected into seawater turn into oxide and colloid states and form an iron coating on the inner surface of the tube.
通常、海水を冷却水として使用するプラントでは、海水
取水管糸、各種機器類への海洋生物の付着によるトラブ
ルを防止するため、海水取水口に必ず塩素の注入がおこ
なわれる。塩素は滅菌剤であると同時に酸化剤であるた
め、塩素が海水中に存在すると注入された第一鉄イオン
の酸化、コロイド化を促進し、鉄被膜の形成を著しく阻
害する。Normally, in plants that use seawater as cooling water, chlorine is always injected into the seawater intake to prevent problems caused by marine organisms adhering to the seawater intake pipes and various equipment. Since chlorine is both a sterilizing agent and an oxidizing agent, the presence of chlorine in seawater promotes the oxidation and colloidalization of the injected ferrous ions, significantly inhibiting the formation of iron coatings.
プラントによっては、同一個所の海水取水口から、複数
の復水器や熱交換器に海水が供給されているケースが多
く、取水口に塩素注入が行なわれるため、鉄イオン注入
する機器類のみ塩素注入をストップすることができない
。Depending on the plant, seawater is often supplied to multiple condensers and heat exchangers from the same seawater intake, and since chlorine is injected into the intake, only the equipment that is injected with iron ions is chlorinated. Unable to stop injection.
第6図に塩素存在下で、60mの銅合金管に@5図に示
した試験装置で鉄イオン注入を適用した場合の管内面の
畝付着量の分布を示す。なお、特願昭61−29159
6号に記載の方法においても、塩素が存在すると鉄イオ
ンの酸化を促進すると同時に力pボン酸イオンも酸化す
るため、コロイド化を抑制できず、鉄被−の形成を著し
く阻害する。Figure 6 shows the distribution of the amount of ridges deposited on the inner surface of a 60m copper alloy pipe when iron ions were implanted in the presence of chlorine using the testing apparatus shown in Figure 5. In addition, patent application No. 61-29159
Even in the method described in No. 6, the presence of chlorine promotes the oxidation of iron ions and at the same time oxidizes p-boxylate ions, making it impossible to suppress colloid formation and significantly inhibiting the formation of iron coatings.
注入条件
■ 注入濃度及び注入日数
Fe”+とじてt Oppmとし、注入は2日間連続し
て行なった。Injection conditions (1) Injection concentration and number of days of injection Fe''+ was taken as tOppm, and injection was carried out for two consecutive days.
■ 銅合金管径及び管内海水流速
管径=26φ、管内海水流速: 2 m / sec■
硫酸第一鉄溶液の注入
第5図において、海水タンク01に汲み上げられた海水
02を海水ポンプ03で塩化ビニy管04を経て銅合金
管05へ供給した。鉄イオンの注入は硫酸第一鉄溶液槽
06内の硫酸第一鉄溶液07を定はポンプ08でビニー
ルホース09を経て塩化ビニ/L/管04の末端に注入
しも第6図において、破線Aは塩素注入がない場合、実
線Bは塩素を0.2 ppm注入した場合、実線Cは塩
素をlllL6ppm注入した場合の畝付着量を示すが
、塩素が存在すると鉄の付着が著しく悪くなることが判
る。又、付着状態もしわ状でありよくなかった。■ Copper alloy pipe diameter and seawater flow rate in the pipe Pipe diameter = 26φ, seawater flow rate in the pipe: 2 m / sec ■
Injection of ferrous sulfate solution In FIG. 5, seawater 02 pumped into a seawater tank 01 was supplied to a copper alloy pipe 05 via a vinyl chloride Y pipe 04 using a seawater pump 03. In order to inject iron ions, the ferrous sulfate solution 07 in the ferrous sulfate solution tank 06 is injected into the end of the vinyl chloride/L/pipe 04 using the pump 08 through the vinyl hose 09. A shows the amount of ridge adhesion when no chlorine is injected, solid line B shows the amount of ridge adhesion when 0.2 ppm of chlorine is injected, and solid line C shows the amount of ridge adhesion when 6 ppm of chlorine is injected, but the presence of chlorine significantly worsens iron adhesion. I understand. Further, the adhesion state was not good as it was wrinkled.
本発明は海水中に塩素が存在している場合でも、銅合金
管内面に防食に有効な鉄被嘆を形成させる防食方法を提
供しようとするものである。The present invention aims to provide a corrosion prevention method for forming an iron coating on the inner surface of a copper alloy pipe that is effective for corrosion prevention even when chlorine is present in seawater.
海水中への塩素の注入をストップすることは、前述した
ように不可能である。このため、海水中の塩素を消去す
る手段について鋭意研究を行なった結果、秩イオン注入
点の上流地点にて、亜硫酸ナトリウム、チオ硫酸ナトリ
ウム、亜硫酸水素ナトリウム、シュウ酸、ヒドラジノ、
ヒドロキシルアミン、水素化硼素塩等の還元剤を注入す
ることにより、酸化剤である塩素を消去できることを確
認した。As mentioned above, it is impossible to stop the injection of chlorine into seawater. For this reason, as a result of intensive research on means to eliminate chlorine in seawater, we found that sodium sulfite, sodium thiosulfate, sodium bisulfite, oxalic acid, hydrazino,
It was confirmed that chlorine, an oxidizing agent, could be eliminated by injecting a reducing agent such as hydroxylamine or boron hydride salt.
本発明はこの知見に基づいて完成されたものでちる。The present invention has been completed based on this knowledge.
すなわち、本発明は鉄イオン溶液と還元剤溶液とを海水
中に注入して銅又は銅合金管内面を防食する方法におい
て上記還元剤溶液の注入点を上記鉄イオン溶液の注入点
の海水の流れの上流側に設定することを特徴とする銅又
は銅合金管内面の防食方法である。That is, the present invention provides a method for preventing corrosion of the inner surface of a copper or copper alloy pipe by injecting an iron ion solution and a reducing agent solution into seawater. This is a corrosion prevention method for the inner surface of a copper or copper alloy pipe, characterized by setting the corrosion prevention method on the upstream side of a copper or copper alloy pipe.
塩素(CI4)は還元剤、例えば亜硫酸ナトリウム(N
a25O3)とは第1式に、チオ硫酸ナトリウム(Na
zSsOm)とは第2式に示したように反応し、塩素イ
オン(CZ−)となり、滅菌剤、酸化剤としての機能を
喪失する。Chlorine (CI4) is a reducing agent, such as sodium sulfite (N
a25O3) means sodium thiosulfate (Na
zSsOm) reacts as shown in the second equation, becomes chlorine ion (CZ-), and loses its function as a sterilizing agent and oxidizing agent.
CI4+H20+Na*SO3
+ 2−
一2Ct+2H+2Na +SO4第1式%式%
−8CA +2Na +10H+2SO4第2式このだ
め、I海水中に還元剤を注入することによシ塩素を消去
することができる。CI4+H20+Na*SO3 + 2- -2Ct+2H+2Na +SO4 1st formula % formula % -8CA +2Na +10H+2SO4 2nd formula In this case, cyclochlorine can be eliminated by injecting a reducing agent into the seawater.
第3図及び第4図は残留塩素l」度がa 5 ppm(
○印)、11.25 ppm (’、iJ印)と異なる
海水中に一定檜の亜硫酸ナトリウム(NalSO3)及
びチオ硫酸ナトリウム(Na2S20B)を下記条件下
で注入したときの、注入点からの塩素濃度の減衰曲線を
示したものである。Figures 3 and 4 show that the degree of residual chlorine is a 5 ppm (
Chlorine concentration from the injection point when a constant amount of sodium sulfite (NalSO3) and sodium thiosulfate (Na2S20B) are injected into seawater different from ○ mark) and 11.25 ppm (', iJ mark) under the following conditions. This shows the attenuation curve of .
試験条件
(イ)使用した海水通水用チューブー−−25+wφの
ビシM−ス(ロ)ビニールホース内海水流速−一−2m
/5ec(五6m”/Hr)(ハ)海 水 温
度−一−23〜24°C(ニ)還元剤注入祉
■NuzSO1−−−10ras Na25O1/17
容液を約10cc/minにて注入。Test conditions (a) Seawater flow tube used - 25+wφ bis M-space (b) Seawater flow velocity in vinyl hose - 1-2 m
/5ec (56m"/Hr) (c) Sea water temperature -1-23~24°C (d) Reducing agent injection ■NuzSO1---10ras Na25O1/17
Inject the liquid at a rate of approximately 10cc/min.
■Na2S103−−−10rasNa!5203/を
溶液を約10CC/minにて注入。■Na2S103---10rasNa! 5203/ solution was injected at approximately 10 CC/min.
第5図及び第4図に見られるように還元剤を注入するこ
とにより、海水中の塩素を消去することができる。By injecting a reducing agent as shown in FIGS. 5 and 4, chlorine in seawater can be eliminated.
第1図は本発明の一突施例における銅合金管内面の防食
法のフローを示す図である。FIG. 1 is a diagram showing the flow of a corrosion prevention method for the inner surface of a copper alloy tube in a one-shot embodiment of the present invention.
第1図において1は海水取水口であり、海水ポンプ3に
より汲みあげられた海水2は海水導・R4を経て例えば
復水器、熱交換器類の銅合金管5へ供給される。6は硫
酸第一鉄溶液槽、7は硫酸第一鉄溶液、8は定量供給ポ
ンプ、9は海水導管14へ硫酸第一鉄溶液7を注入する
ための例えばゴムホース、ビニールホース、塩化ビニ/
l/管である。10は還元剤溶液槽、11は還元剤溶液
例えば亜硫酸ナトリウム、チオ硫酸ナトリウム等の溶液
である。12は還元剤溶液11を海水導管4へ注入する
ための定量供給ポンプ、13は例えばゴムホース、ビニ
ールホース、塩化ビニIv管であり、硫酸第一鉄溶液7
の注入点14aよシ海水導管4の上流側に設けた注入点
14bに連結されている。In FIG. 1, 1 is a seawater intake port, and seawater 2 pumped up by a seawater pump 3 is supplied to copper alloy pipes 5 of condensers, heat exchangers, etc. through a seawater conductor R4. 6 is a ferrous sulfate solution tank, 7 is a ferrous sulfate solution, 8 is a metering pump, and 9 is a rubber hose, vinyl hose, vinyl chloride/vinyl chloride solution, etc. for injecting the ferrous sulfate solution 7 into the seawater pipe 14.
l/tube. 10 is a reducing agent solution tank, and 11 is a reducing agent solution such as a solution of sodium sulfite, sodium thiosulfate, etc. 12 is a metering pump for injecting the reducing agent solution 11 into the seawater conduit 4; 13 is, for example, a rubber hose, a vinyl hose, or a vinyl chloride IV pipe;
The injection point 14a is connected to an injection point 14b provided on the upstream side of the seawater conduit 4.
このような系において、定量供給ポンプ12により海水
2中へ還元剤溶fPL11を注入することにより、第3
図及び第4図にて示したように、海水中の塩素を消去す
ることができる。この場合還元剤溶液11の注入量は海
水2中の塩素濃度、硫酸第一鉄溶液7の注入点14aと
還元剤溶液11の注入点14aとの距螺、あるいは海水
2の流量によって変化するものであるが、還元剤溶液1
1の濃度、定電ポンプ12の吐出縫により容易にコント
ロールすることが可能である。In such a system, the third
As shown in the figure and FIG. 4, chlorine in seawater can be eliminated. In this case, the injection amount of the reducing agent solution 11 changes depending on the chlorine concentration in the seawater 2, the distance between the injection point 14a of the ferrous sulfate solution 7 and the injection point 14a of the reducing agent solution 11, or the flow rate of the seawater 2. However, reducing agent solution 1
The concentration of 1 can be easily controlled by the discharge sewing of the constant voltage pump 12.
還元剤溶液7の注入により海水2中の塩素が硫酸第一鉄
溶液7の注入点14aで消去されていることを確認後、
定数ポンプ8により硫酸第一鉄溶液7を注入点14aよ
り注入する。硫酸第一鉄溶液7の注入点14aにおいて
は、海水2中の塩素は消去されているため、塩素の影響
を受けることなく、銅合金管5内面に防食性に優れる鉄
被膜を形成させることができる。After confirming that the chlorine in the seawater 2 has been eliminated by the injection of the reducing agent solution 7 at the injection point 14a of the ferrous sulfate solution 7,
The ferrous sulfate solution 7 is injected from the injection point 14a using the constant pump 8. At the injection point 14a of the ferrous sulfate solution 7, the chlorine in the seawater 2 has been eliminated, so an iron coating with excellent corrosion resistance can be formed on the inner surface of the copper alloy tube 5 without being affected by chlorine. can.
第2図は、本発明方法を下記条件下で1用したときの銅
合金管5内面の鉄披模量の分布を示したものである。FIG. 2 shows the distribution of the amount of iron on the inner surface of the copper alloy tube 5 when the method of the present invention was used under the following conditions.
■銅合金管形状−−−26晴φX60m■銅合金管内の
海水流速−−−2m/sec■海 水 温 度−一−
25±1°C■硫1浚第−鉄注入濃度一−−1,2pp
masFe”■還 元 剤 溶 液−−−Na重80゜
■還元剤溶液注入濃度−−−2.0 ppmasNa3
sO3■還元剤溶液の注入点
硫酸第一鉄溶液注入点の20m上流地点。■Copper alloy tube shape---26mmφ
25±1°C■ Sulfur 1 dredged - Ferrous injection concentration 1--1,2pp
masFe''■Reducing agent solution---Na weight 80°■Reducing agent solution injection concentration---2.0 ppmasNa3
sO3■ Reducing agent solution injection point 20m upstream of the ferrous sulfate solution injection point.
■鉄m模処理日数−−−5日
■海水中の塩素濃度−−−[125ppm第2図には還
元剤溶液を注入しない場合の鉄被模量も併記しているが
、還元剤溶液を注入することにより鉄被膜の形成が著し
く向上することが判る。■Number of days for simulated iron treatment --- 5 days ■Concentration of chlorine in seawater --- [125 ppm Figure 2 also shows the amount of simulated iron without injecting the reducing agent solution. It can be seen that the formation of the iron coating is significantly improved by the injection.
海水中への塩素の注入を停止できないプランFの復水器
、熱交換器類の防食対策として極めて有効であシ、機器
類の信頼性が向上する。It is extremely effective as a corrosion prevention measure for condensers and heat exchangers in Plan F, which cannot stop the injection of chlorine into seawater, and improves the reliability of the equipment.
第1図は本発明方法の一実n例を示すフロー図、第2図
は本発明の一ブ3施例として行なった亜硫酸ナトリウム
を注入した場合の鉄被膜付着量の分布を示すグラフ、第
3図は亜硫酸ナトリウムを注入した場合の海水中の塩素
濃度の減衰を示すグラフ、第4図は、チオmt 酸ナト
リウムを注入した場合のl海水中の塩素成度の減衰を示
すグラフ、第5図は従来の方法の11.v成の一態様を
示すフロー図、第6図は、従来の方法にょる鉄被嘆付着
址の分布を示すグラフである。FIG. 1 is a flow diagram showing one example of the method of the present invention, and FIG. 2 is a graph showing the distribution of the amount of iron coating when sodium sulfite is injected as a third embodiment of the present invention. Figure 3 is a graph showing the attenuation of the chlorine concentration in seawater when sodium sulfite is injected, Figure 4 is a graph showing the attenuation of the chlorine concentration in seawater when sodium thiomtate is injected, and Figure 5 is a graph showing the attenuation of the chlorine concentration in seawater when sodium thiomtate is injected. The figure shows 11. of the conventional method. FIG. 6, which is a flowchart showing one aspect of V formation, is a graph showing the distribution of iron deposits according to the conventional method.
Claims (1)
銅合金管内面を防食する方法において、上記還元剤溶液
の注入点を上記鉄イオン溶液の注入点の海水の流れの上
流側に設定することを特徴とする銅又は銅合金管内面の
防食方法。In a method for preventing corrosion of the inner surface of a copper or copper alloy pipe by injecting an iron ion solution and a reducing agent solution into seawater, the injection point of the reducing agent solution is placed upstream of the injection point of the iron ion solution in the flow of seawater. A method for preventing corrosion on the inner surface of a copper or copper alloy pipe.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63240742A JPH0293083A (en) | 1988-09-28 | 1988-09-28 | Method for preventing corrosion of inner surface of copper alloy pipe |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63240742A JPH0293083A (en) | 1988-09-28 | 1988-09-28 | Method for preventing corrosion of inner surface of copper alloy pipe |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0293083A true JPH0293083A (en) | 1990-04-03 |
Family
ID=17064025
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63240742A Pending JPH0293083A (en) | 1988-09-28 | 1988-09-28 | Method for preventing corrosion of inner surface of copper alloy pipe |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0293083A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9741438B2 (en) | 2013-09-16 | 2017-08-22 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and program method thereof |
| US9747995B2 (en) | 2010-02-17 | 2017-08-29 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices, operating methods thereof and memory systems including the same |
| US9881685B2 (en) | 2010-08-26 | 2018-01-30 | Samsung Electronics Co., Ltd. | Nonvolatile memory device, operating method thereof and memory system including the same |
| US10217516B2 (en) | 2010-02-09 | 2019-02-26 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices, operating methods thereof and memory systems including the same |
| US11377742B2 (en) | 2016-09-30 | 2022-07-05 | Daikin Industries, Ltd. | Method for producing piping and method for forming oxide film on inner surface of copper pipe |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01306585A (en) * | 1988-06-03 | 1989-12-11 | Kobe Steel Ltd | Method for preventing corrosion of heat exchanger tube |
-
1988
- 1988-09-28 JP JP63240742A patent/JPH0293083A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01306585A (en) * | 1988-06-03 | 1989-12-11 | Kobe Steel Ltd | Method for preventing corrosion of heat exchanger tube |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10217516B2 (en) | 2010-02-09 | 2019-02-26 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices, operating methods thereof and memory systems including the same |
| US9747995B2 (en) | 2010-02-17 | 2017-08-29 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices, operating methods thereof and memory systems including the same |
| US10199116B2 (en) | 2010-02-17 | 2019-02-05 | Samsung Electronics Co., Ltd. | Non-volatile memory devices, operating methods thereof and memory systems including the same |
| US10650903B2 (en) | 2010-02-17 | 2020-05-12 | Samsung Electronics Co., Ltd. | Non-volatile memory devices, operating methods thereof and memory systems including the same |
| US11062784B2 (en) | 2010-02-17 | 2021-07-13 | Samsung Electronics Co., Ltd. | Non-volatile memory devices, operating methods thereof and memory systems including the same |
| US11715537B2 (en) | 2010-02-17 | 2023-08-01 | Samsung Electronics Co., Ltd. | Non-volatile memory devices, operating methods thereof and memory systems including the same |
| US12322457B2 (en) | 2010-02-17 | 2025-06-03 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices, operating methods thereof and memory systems including the same |
| US9881685B2 (en) | 2010-08-26 | 2018-01-30 | Samsung Electronics Co., Ltd. | Nonvolatile memory device, operating method thereof and memory system including the same |
| US9741438B2 (en) | 2013-09-16 | 2017-08-22 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and program method thereof |
| US11377742B2 (en) | 2016-09-30 | 2022-07-05 | Daikin Industries, Ltd. | Method for producing piping and method for forming oxide film on inner surface of copper pipe |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Bianchi et al. | Horse shoe corrosion of copper alloys in flowing sea water: mechanism, and possibility of cathodic protection of condenser tubes in power stations | |
| JP3398572B2 (en) | Failure prevention method for aluminum brass pipes serving as seawater flow paths | |
| Merrill et al. | Corrosion control by deposition of CaCO₃ films: part 1, A practical approach for plant operators | |
| JPH0293083A (en) | Method for preventing corrosion of inner surface of copper alloy pipe | |
| Larson | Chemical control of corrosion | |
| GB1579217A (en) | Her closed circuit water system composition for addition to a central heating system or ot | |
| Finan et al. | An ecologically acceptable method of preventing corrosion/scale problems by control of water conditions | |
| JPH04341585A (en) | Method for preventing corrosion of copper alloy tube | |
| JPS63145788A (en) | Anticorrosive | |
| JP7743128B1 (en) | Corrosion prevention methods for copper alloy piping | |
| JPH1128461A (en) | Water-based metal corrosion suppression method | |
| McClanahan et al. | Effect of pH on quality of calcium carbonate film deposited from moderately hard and hard water | |
| JPS5844747B2 (en) | Addition method of hydrogen peroxide in continuous pickling of stainless steel strip | |
| JPH01306585A (en) | Method for preventing corrosion of heat exchanger tube | |
| JPH0353080A (en) | Method for preventing corrosion of inside of copper alloy tube | |
| JPS61266586A (en) | Corrosion prevention method for copper pipes for water supply piping | |
| GB2125833A (en) | Conversion coatings | |
| Geiger et al. | Advances in alkaline cooling water treatment technology | |
| JPS60106584A (en) | Method for preventing deposition of adhesive sea organism | |
| JPS63121681A (en) | Method for preventing corrosion of copper alloy pipe | |
| JPH0293084A (en) | Anticorrosive injector | |
| JP7168278B1 (en) | Method for preventing adhesion of marine organisms and anti-adhesion agent for marine organisms | |
| JPS5835268B2 (en) | Anticorrosion agent for highly concentrated water in the circulation system | |
| JP4456387B2 (en) | Anticorrosion method for copper water piping. | |
| Wagner et al. | An investigation of microbiologically mediated corrosion of copper-nickel piping systems selectively treated with ferrous sulfate |