JPH03109202A - Fuel reformer for fuel cell system - Google Patents
Fuel reformer for fuel cell systemInfo
- Publication number
- JPH03109202A JPH03109202A JP1247760A JP24776089A JPH03109202A JP H03109202 A JPH03109202 A JP H03109202A JP 1247760 A JP1247760 A JP 1247760A JP 24776089 A JP24776089 A JP 24776089A JP H03109202 A JPH03109202 A JP H03109202A
- Authority
- JP
- Japan
- Prior art keywords
- passage
- fuel
- catalytic combustion
- gas
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 57
- 239000007789 gas Substances 0.000 claims abstract description 34
- 239000003054 catalyst Substances 0.000 claims abstract description 32
- 238000007084 catalytic combustion reaction Methods 0.000 claims abstract description 32
- 238000005192 partition Methods 0.000 claims abstract description 20
- 238000002407 reforming Methods 0.000 claims abstract description 20
- 239000000567 combustion gas Substances 0.000 claims abstract description 15
- 239000002737 fuel gas Substances 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 238000001833 catalytic reforming Methods 0.000 abstract 1
- 238000006057 reforming reaction Methods 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052851 sillimanite Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、燃料電池システムの燃料改質装置に関するも
ので、特に燃料改質装置の加熱器に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel reformer for a fuel cell system, and particularly to a heater for a fuel reformer.
(従来の技術)
火力発電や原子力発電等は化石燃料の化学エネルギーを
熱エネルギーや核エネルギーに変えてから電気エネルギ
ーを得るのに対し、燃料電池は化学エネルギーから直接
電気エネルギーを得る。この燃料電池は、反応物が外部
から連続的に供給される化学電池であり、燃料電池本体
、燃料改質装置、電力変換装置が主な構成要素であって
、これらの構成要素に制御装置、排熱回収装置等が加わ
り燃料電池システムを構成する。(Conventional technology) While thermal power generation, nuclear power generation, etc. obtain electrical energy by converting the chemical energy of fossil fuels into thermal energy or nuclear energy, fuel cells obtain electrical energy directly from chemical energy. This fuel cell is a chemical cell in which reactants are continuously supplied from the outside, and the main components are a fuel cell main body, a fuel reformer, and a power converter, and these components include a control device, A fuel cell system is configured with the addition of an exhaust heat recovery device, etc.
このうち燃料改質装置は、原料ガスとしての化石燃料ガ
スを水素リッチの改質ガスへ改質する装置であり、脱硫
原料ガスを水素と炭酸ガスと一酸化炭素にする改質器と
、改質ガス中の一酸化炭素を許容濃度以下にするCO変
成器とから構成される。Among these, the fuel reformer is a device that reforms fossil fuel gas as a raw material gas into hydrogen-rich reformed gas. It consists of a CO transformer that reduces carbon monoxide in quality gas to below the permissible concentration.
例えば、第8図に示すように、燃料ガス人口50から燃
料ガス室41に流入した燃料ガスは、矢印へ方向から反
応管42に入り、この反応管42に充填されたペレット
状触媒43で改質反応を起こした後、反応後の改質ガス
が流通管44に入り、図示矢印B方向に流れ、燃料ガス
出口46からCO変成器に供給される。このとき、バー
ナ52により生成される火炎によって加熱室53が加熱
され、反応管42内での改質反応が促進され、燃料ガス
が水素と炭酸ガスと一酸化炭素を含む改質ガスに変換さ
れる。For example, as shown in FIG. 8, the fuel gas flowing into the fuel gas chamber 41 from the fuel gas population 50 enters the reaction tube 42 from the direction of the arrow, and is reformed by the pellet catalyst 43 filled in the reaction tube 42. After the reaction occurs, the reacted reformed gas enters the flow pipe 44, flows in the direction of arrow B in the figure, and is supplied from the fuel gas outlet 46 to the CO shift converter. At this time, the heating chamber 53 is heated by the flame generated by the burner 52, the reforming reaction within the reaction tube 42 is promoted, and the fuel gas is converted into a reformed gas containing hydrogen, carbon dioxide, and carbon monoxide. Ru.
(発明が解決しようとする課題)
しかしながら、従来の燃料電池システムの燃料改質装置
によると、改質反応に用いる触媒がペレット状触媒であ
るため、燃料ガスとの接触面積が小さく、均一加熱が困
難で、圧力損失が大きく、還元反応にもとづくススの発
生により反応管が目詰りを起こしやすいという問題があ
った。(Problems to be Solved by the Invention) However, in the conventional fuel reformer of the fuel cell system, the catalyst used for the reforming reaction is a pellet catalyst, so the contact area with the fuel gas is small and uniform heating is not possible. This method is difficult, has a large pressure loss, and has problems in that the reaction tube is likely to become clogged due to the generation of soot caused by the reduction reaction.
本発明は、このような問題点を解決するためになされた
もので、特定構造をもつ接触面積の大きな第1の通路と
第2の通路を有するハニカム状ブロック(多孔体)を用
い、前記第1の通路または第2の通路のうちの一方の通
路に接触燃焼用触媒を担持し、他方の通路に改質用触媒
を担持することにより、触媒燃焼を利用して改質用触媒
を加熱し、燃料ガスの改質ガスへの改質反応を促進する
ようにした小型化可能な燃料電池システムの改質装置を
提供することを目的とする。The present invention was made to solve these problems, and uses a honeycomb-like block (porous body) having a specific structure and a first passage and a second passage having a large contact area. By supporting a catalyst for catalytic combustion in one of the first passage or the second passage and supporting a reforming catalyst in the other passage, the reforming catalyst can be heated using catalytic combustion. An object of the present invention is to provide a reformer for a fuel cell system that can be downsized and promotes the reforming reaction of fuel gas into reformed gas.
(課題を解決するための手段)
本発明の第1の発明の燃料電池システムの燃料改質装置
は、隔壁より囲まれる多数のそれぞれ独立した貫通孔か
らなる第1の通路侮、この第1の通路から隔壁を介して
隔離され、互いに隣傍する隔壁を連結する連結壁により
区分形成される第2の通路と、前記第1の通路または第
2の通路のうちの一方の通路内壁に担持され、燃料ガス
を改質ガスに変換する改質用触媒と、前記第1の通路ま
たは第2の通路のうちの他方の通路内壁に担持され、接
触燃焼用ガスを接触燃焼させる接触燃焼用触媒とから成
るハニカム状多孔体を備えたことを特徴とする。(Means for Solving the Problems) A fuel reformer for a fuel cell system according to a first aspect of the present invention includes a first passageway consisting of a large number of independent through holes surrounded by a partition wall, a second passage separated from the passage via a partition wall and defined by a connecting wall that connects adjacent partition walls; , a reforming catalyst that converts fuel gas into reformed gas; and a catalytic combustion catalyst that is supported on the inner wall of the other of the first passage or the second passage and catalytically burns the catalytic combustion gas. It is characterized by having a honeycomb-like porous body consisting of.
本発明の第2の発明の燃料電池システムの燃料改質装置
は、第1の発明の燃料改質装置に加えて、前記改質用触
媒が担持される通路から流出される改質ガスから熱を奪
い該通路に流入する燃料ガスに熱を与える第1の熱交換
器と、前記接触燃焼用触媒と接触燃焼させる接触燃焼用
、Itスを供給する接触燃焼ガス供給源と、前記接触燃
焼用触媒が担持される通路から排出される接触燃焼排ガ
スから熱を奪い、前記改質用触媒が担持される通路に流
入する燃料ガスに熱を与える第2の熱交換器と、を備え
たことを特徴とする。A fuel reformer for a fuel cell system according to a second aspect of the present invention, in addition to the fuel reformer according to the first aspect, generates heat from the reformed gas flowing out from the passage in which the reforming catalyst is supported. a first heat exchanger that provides heat to the fuel gas flowing into the passage; a catalytic combustion gas supply source that supplies gas for catalytic combustion to catalytically combust the fuel gas with the catalytic combustion catalyst; A second heat exchanger that removes heat from the catalytic combustion exhaust gas discharged from the passageway in which the catalyst is supported and gives heat to the fuel gas flowing into the passageway in which the reforming catalyst is supported. Features.
(作用)
本発明の燃料改質装置によると、前述した特定構造のハ
ニカム状多孔体を用いているため、この多孔体の有する
貫通孔を囲む隔壁のすべてを、熱伝達、物質移動等の接
触面として利用し、接触燃焼用ガスと燃料ガスとの異な
る流体がそれぞれ独立して流れる第1の通路と第2の通
路間の接触面積を増大させ、接触燃焼用触媒による・加
熱と改質用触媒による改質反応を圧力損失の少ないハニ
カム構造体にて同時に促進し、小型の改質器であっても
改質反応の効率を飛躍的に向上させられる。(Function) According to the fuel reformer of the present invention, since the honeycomb-like porous body having the above-described specific structure is used, all of the partition walls surrounding the through holes of this porous body are used for contact such as heat transfer and mass transfer. The area of contact between the first passage and the second passage through which different fluids, catalytic combustion gas and fuel gas, flow independently is increased by using the catalytic combustion catalyst for heating and reforming. The reforming reaction by the catalyst is simultaneously promoted in the honeycomb structure with low pressure loss, and the efficiency of the reforming reaction can be dramatically improved even with a small reformer.
(実施例) 以下、本発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
まず本発明の燃料改質装置を用いたリン酸型燃料電池シ
ステムについて説明する。First, a phosphoric acid fuel cell system using the fuel reformer of the present invention will be explained.
第9図に示すように、リン酸型燃料電池システムは、燃
料電池本体61、燃料改質装置62、電流変換装置63
、排熱回収装置64が主な構成要素である。As shown in FIG. 9, the phosphoric acid fuel cell system includes a fuel cell main body 61, a fuel reformer 62, and a current converter 63.
, an exhaust heat recovery device 64 is the main component.
燃料電池本体61は、リン酸水溶液からなる電解質溶液
にアノード65とカソード66が接触され、アノード6
5側に導かれる水素リッチガス中の水素とカソード66
側に導かれる空気中の酸素とを例えば白金を触媒として
電気化学的に反応させて発電する。In the fuel cell main body 61, an anode 65 and a cathode 66 are brought into contact with an electrolyte solution consisting of an aqueous phosphoric acid solution.
Hydrogen in the hydrogen-rich gas led to the 5 side and the cathode 66
Electricity is generated by electrochemically reacting oxygen in the air introduced to the side using, for example, platinum as a catalyst.
燃料改質装置62は、化石燃料ガスを水素リッチガスに
改質する装置であって、化石燃料ガス中の硫黄化合物を
除去する脱硫器75と、脱硫原料ガスを水素と炭酸ガス
と一酸化炭素とにする改質器76と、−酸化炭素を許容
濃度以下にするCO変換器77とから構成される。CO
変換器77で改質された改質ガスは水素リッチガスとし
て燃料電池本体61のアノード65に送られる。なお、
電流変換装置63は燃料電池本体61で発電された直流
電流を実用的な交流電流に変換するものである。The fuel reformer 62 is a device for reforming fossil fuel gas into hydrogen-rich gas, and includes a desulfurizer 75 that removes sulfur compounds from the fossil fuel gas, and converts the desulfurization raw material gas into hydrogen, carbon dioxide, and carbon monoxide. and a CO converter 77 that reduces carbon oxide to a permissible concentration or less. C.O.
The reformed gas reformed by the converter 77 is sent to the anode 65 of the fuel cell main body 61 as hydrogen-rich gas. In addition,
The current converter 63 converts the direct current generated by the fuel cell main body 61 into a practical alternating current.
以上の如(構成されたリン酸型燃料電池システムの燃料
改質器76は、第1図、第2図および第3図に示すよう
な改質器本体(多孔体)30を有している。燃料改質器
76は、第2図に示すように多数個の改質器本体3oが
積層されて直方体状に形成されている。この改質器本体
3oは第2図で示す矢印六方向からB方向に貫通する貫
通孔からなる第1の通路と、この第1の通路から隔離さ
れ図示矢印C,E方向から図示矢印り、F方向に連通さ
れる第2の通路とからなる。この場合、図示矢印六方向
から接触燃焼用ガス(混合気)が第1の通路に入り、そ
の燃焼排ガスが図示矢印B方向から外部に排出されると
ともに、図示矢印CまたはE方向から燃料ガスが入り第
2の通路を通って図示矢印りまたはF方向に改質反応後
の改質ガスが流出される。The fuel reformer 76 of the phosphoric acid fuel cell system configured as described above has a reformer body (porous body) 30 as shown in FIGS. 1, 2, and 3. The fuel reformer 76 is formed into a rectangular parallelepiped shape by stacking a large number of reformer bodies 3o as shown in FIG. The second passage is separated from the first passage and communicates from the direction of arrows C and E in the direction of arrows C and F in the illustration. In this case, the catalytic combustion gas (mixture) enters the first passage from the direction of the six arrows shown, the combustion exhaust gas is discharged to the outside from the direction of the arrow B, and the fuel gas enters from the direction of the arrow C or E. The reformed gas after the reforming reaction is discharged through the second passage in the direction of the arrow or F in the figure.
接触燃焼用ガスに用いられる混合気は、LNG、LPG
等の炭化水素燃料と予熱空気とを流量制御装置33.3
4により流量調整した混合器35により所定の空燃比に
なるよう混合して用いる。このような混合気が流入され
る改質器本体30の第1の通路の内壁表面には接触燃焼
用触媒が担持される。接触燃焼用触媒としては、白金、
パラジウム、ロジウム、コバルト等の少なくとも一種を
用い、ハニカム構造体からなる改質器本体の表面にγ−
A2□Q3、Zr0i等を担持させたうえでこれらの接
触燃焼用触媒を付着させることが好ましい。The mixture used for catalytic combustion gas is LNG, LPG
A flow rate control device 33.3 controls hydrocarbon fuel such as
The mixture is used after being mixed to a predetermined air-fuel ratio using the mixer 35 whose flow rate is adjusted by 4. A catalyst for catalytic combustion is supported on the inner wall surface of the first passage of the reformer main body 30 into which such an air-fuel mixture is introduced. As a catalyst for catalytic combustion, platinum,
Using at least one of palladium, rhodium, cobalt, etc., γ-
It is preferable to support A2□Q3, Zr0i, etc. and then attach these catalysts for catalytic combustion.
この改質器本体30の具体的な構成は、例えば第4図お
よび第5図に示すハニカム状多孔体からなる。第4図、
第5図に記載するように多孔体の端面Xから端面X°へ
向かって、独立した多数の貫通孔10からなる第1の通
路が貫いており、端面x、x’の貫通孔10(第1の通
路)を除(部分11は外壁12と一体的に気密に連結封
止されている。そして端面x、x’ と異なるY面には
外壁12外に開口する開口13があり、2面には別の開
口13’、Y″面には開口1<’ Z’面には開口1
4がそれぞれ設けられている。The specific structure of this reformer main body 30 is, for example, a honeycomb-shaped porous body shown in FIGS. 4 and 5. Figure 4,
As shown in FIG. 5, a first passage consisting of a large number of independent through holes 10 penetrates from the end surface X to the end surface X° of the porous body, and the through holes 10 (first The portion 11 is integrally and airtightly connected and sealed with the outer wall 12.There is an opening 13 that opens to the outside of the outer wall 12 in the Y plane, which is different from the end faces x and x'. another opening 13' on the Y'' plane, opening 1<' on the Z' plane.
4 are provided respectively.
そして、端面Xに多数存在する貫通孔10の開口に接触
燃焼用ガスを矢印Aのように流入させ、接触触媒燃焼さ
せて矢印B方向に燃焼排ガスを流出させる。一方Y面の
開口13から2面の開口13゛へ、同様にZ°面の開口
14からY°面の開口14°へ矢印C%D%E%Fのよ
うに燃料ガス(低温の熱交換目的流体)を流し、前記接
触燃焼用ガス(高温の伝熱媒体)と熱交換を行う。次に
、第4図に示す多孔体のM−M’での切断断面を第6図
に示す。Then, the catalytic combustion gas is caused to flow into the openings of the many through holes 10 in the end surface X in the direction of arrow A, catalytic combustion is performed, and the combustion exhaust gas is caused to flow out in the direction of arrow B. On the other hand, the fuel gas (low-temperature heat exchange A target fluid) is flowed to exchange heat with the catalytic combustion gas (high temperature heat transfer medium). Next, FIG. 6 shows a cross section taken along line MM' of the porous body shown in FIG. 4.
すなわち、第6図に示すように、第4図の端面Xに開口
する独立した多数の貫通孔10は、各貫通孔10が隔壁
15によって囲まれた独立貫通孔となっているものであ
って、その独立した貫通孔10を区分する隔壁15が隣
接する他の独立した貫通孔10の隔壁15と、同様に隔
壁15が外壁12とそれぞれ連結壁16で連結されてい
る。その結果、各貫通孔lOの周囲に隔壁15、外壁1
2および連結壁16により連続した第2の通路17が区
分形成され、その第2の通路17が開口13.13°お
よび開口14.14°に連通されて外壁12外に開口し
ている構造より成っている。That is, as shown in FIG. 6, a large number of independent through holes 10 opening in the end surface X in FIG. 4 are each an independent through hole surrounded by a partition wall 15. The partition wall 15 that divides the independent through hole 10 is connected to the partition wall 15 of the adjacent independent through hole 10, and similarly, the partition wall 15 is connected to the outer wall 12 by a connecting wall 16. As a result, a partition wall 15 and an outer wall 1 are formed around each through hole IO.
2 and the connecting wall 16 form a continuous second passage 17, and the second passage 17 communicates with the opening 13.13° and the opening 14.14° and opens to the outside of the outer wall 12. It has become.
したがって、第7図に示すとおり、このハニカム状多孔
体は、それぞれ独立した貫通孔10を囲む隔壁15の4
辺a%b%C%dの方向のすべての面で貫通孔lOと異
なる第2の通路17と接しており、熱交換体として使用
する場合の伝熱面積、接触面積が通常のハニカム構造体
に比べてかなり大きく、したがって熱交換効率、触媒反
応等の効率が格段に向上する多孔体になっている。Therefore, as shown in FIG.
The honeycomb structure is in contact with the second passage 17, which is different from the through hole IO, on all sides in the direction of side a%b%C%d, and has a normal heat transfer area and contact area when used as a heat exchanger. It is a porous body that is considerably larger than that of the porous body, which greatly improves heat exchange efficiency, catalytic reaction efficiency, etc.
また、この多孔体は各貫通孔10がそれぞれ独立して存
在し、各貫通孔10を区分形成する隔壁15も独立して
いて、隣接する貫通孔10の隔壁15と隔壁を共有せず
、しかも、独立している各隔壁15が連結壁16によっ
て連結されているため、熱応力による変形が調節でき、
熱的に柔軟な構造となっている。In addition, in this porous body, each through hole 10 exists independently, and the partition wall 15 that divides each through hole 10 is also independent, and does not share a partition wall with the partition wall 15 of an adjacent through hole 10. Since the independent partition walls 15 are connected by the connecting wall 16, deformation due to thermal stress can be adjusted.
It has a thermally flexible structure.
なお第4図に示す多孔体は隔壁15と隔壁15とを結ぶ
連結壁16が第6図〜第7図に示すように貫通孔10に
対して対称位置に接続されているが、必ずしも対称であ
る必要ではない。また第4図〜第5図は各貫通孔10か
らなる第1の通路の周囲の連続した第2の通路17の開
口を13.13° 14.14°を4個所に設けたが
、第2の通路17の開口を開口13.14のみとしても
もちろんよい。Note that in the porous body shown in FIG. 4, the connecting walls 16 connecting the partition walls 15 are connected at symmetrical positions with respect to the through holes 10 as shown in FIGS. 6 to 7, but they are not necessarily symmetrical. There is no need to be. In addition, in FIGS. 4 and 5, the continuous second passage 17 surrounding the first passage consisting of each through hole 10 is provided at four locations with an angle of 13.13° and 14.14°. Of course, the passage 17 may have only the openings 13 and 14.
この多孔体を形成する材料としては、緻密な材料を任意
に選ぶことができるが、具体的には金属質、セラミック
質、ガラス質等の材料またはその複合材料がよい。As the material for forming this porous body, any dense material can be selected, and specifically, materials such as metal, ceramic, glass, etc., or composite materials thereof are preferable.
中でも耐火物、陶磁器、ガラ・ス、炭素材料などの無機
材料または金属材料が好ましく、この無機材料は例えば
カーボン、ムライト、コージェライト、シリカ、ジルコ
ン、シリカ−アルミナ、シリマナイト、ジルコニア、ジ
ルコンムライト、スピネル、ジルコニア−スピネル、チ
タニア、アルミナ、粘土、ベリリア、アルミナ−チタネ
ート、ムライト−アルミナチタネート、マグネシア−ア
ルミナチタネート、ゼオライト、バイコールガラス、炭
化ケイ素、窒化ケイ素、LaCo0為、La−5r−C
oos 、5r−Ce−Y−0,5r−Ce−Zn−
0、BaTi0z 、GaAs% Zr0−Ca0%
ZnO5S n Oi 、F e * Os
s 5rTioz 、PbO−Zr0i −Ti
Oa 、LiTags 、LaCr0z 、Ga
P% CBN% Zr0% ZrO* −Y* O
3、TaC,GaAsP。Among them, inorganic materials or metal materials such as refractories, ceramics, glass, carbon materials, etc. are preferable, and these inorganic materials include, for example, carbon, mullite, cordierite, silica, zircon, silica-alumina, sillimanite, zirconia, zircon mullite, and spinel. , zirconia-spinel, titania, alumina, clay, beryllia, alumina-titanate, mullite-alumina titanate, magnesia-alumina titanate, zeolite, Vycor glass, silicon carbide, silicon nitride, LaCo0, La-5r-C
oos, 5r-Ce-Y-0,5r-Ce-Zn-
0, BaTi0z, GaAs% Zr0-Ca0%
ZnO5S n Oi , Fe * Os
s5rTioz, PbO-Zr0i-Ti
Oa, LiTags, LaCr0z, Ga
P% CBN% Zr0% ZrO* -Y* O
3. TaC, GaAsP.
L a B a等およびこれらの組み合せより成る材料
、また、金属材料はアルミニウム、銅、鉄などが、押出
成形によって比較的容易にこの多孔体を一体的に製造で
きるので、好ましい材料である。Materials such as L a B a and combinations thereof, and metal materials such as aluminum, copper, and iron are preferable materials because the porous body can be manufactured integrally by extrusion molding relatively easily.
またこの多孔体の貫通孔の断面形状はどのような形状で
もよいが、特に円、楕円、三角形、四角形、五角形、六
角形等が好ましい。Further, the cross-sectional shape of the through-holes of this porous body may be any shape, but circles, ellipses, triangles, quadrangles, pentagons, hexagons, etc. are particularly preferred.
前述した第2の通路の内壁にはニッケルを主成分とする
改質用触媒の表層が形成されている。改質用触媒の成分
はニッケル質に限定されるものではない。A surface layer of a reforming catalyst containing nickel as a main component is formed on the inner wall of the second passage mentioned above. The components of the reforming catalyst are not limited to nickel.
このような燃料改質器76は、第1図に示すように通路
21から改質ガスを排出し、その改質ガスのもつ熱を第
1の熱交換器22に、て燃料ガスに与え、熱を奪われた
改質ガスがCO変成器77に送られる。一方、第1の熱
交換器22にて改質ガスのもつ熱を奪った燃料ガスは、
通路20を経て第2の熱交換器23に流入される。そし
て燃料ガスは改質器本体30の第1の通路から排出され
た燃料排ガスから熱を奪い、昇温した状態で通路24よ
り改質器本体30に送られる。一方第2の熱交換器23
にて熱を奪われた燃料排ガスは通路25から外部に排出
される。Such a fuel reformer 76 discharges reformed gas from the passage 21 as shown in FIG. The reformed gas from which heat has been removed is sent to the CO shift converter 77. On the other hand, the fuel gas that has taken the heat of the reformed gas in the first heat exchanger 22 is
It flows into the second heat exchanger 23 via the passage 20. Then, the fuel gas absorbs heat from the fuel exhaust gas discharged from the first passage of the reformer body 30, and is sent to the reformer body 30 through the passage 24 in a heated state. On the other hand, the second heat exchanger 23
The fuel exhaust gas from which heat has been removed is discharged to the outside from the passage 25.
昇温された燃料ガスが通路24から改質器本体30に第
2図または第3図に示す矢印CおよびE方向から流入さ
れると、第2の通路にて改質用触媒による改質反応を生
じ、改質ガスに変換されて矢印りおよびF方向から流出
し、通路21から第1の熱交換器22を経て次のCO変
成器77に送られる。When the heated fuel gas flows from the passage 24 into the reformer main body 30 in the directions of arrows C and E shown in FIG. 2 or 3, a reforming reaction by the reforming catalyst occurs in the second passage. The reformed gas is converted into reformed gas, flows out from the direction of the arrow and F, and is sent from the passage 21 to the next CO shift converter 77 via the first heat exchanger 22.
一方改質器本体30の貫通孔10からなる第1の通路を
矢印AからB方向に流通される接触燃焼用ガスは、燃料
供給源としての混合気35から供給される。この接触燃
焼用ガスを供給するのは、改質器本体30で生じる改質
反応が吸熱反応であり、多量の熱を必要とするからであ
る。On the other hand, the catalytic combustion gas flowing in the direction from arrow A to arrow B through the first passage formed by the through hole 10 of the reformer main body 30 is supplied from the air-fuel mixture 35 as a fuel supply source. This catalytic combustion gas is supplied because the reforming reaction occurring in the reformer main body 30 is an endothermic reaction and requires a large amount of heat.
この実施例では、通常のハニカム構造体よりも熱移動、
物質移動等のための接触面積の広い前述した特種構造を
もつ多孔体を用いているため、熱交換効率、反応効率等
の効率を飛躍的に上昇させ、改質反応を促進する。これ
により、同一熱効率、同一反応効率を保持しつつ、燃料
改質装置76の小型化を図ることができる。したがって
、小型な燃料改質装置であっても接触燃焼用触媒による
加熱作用と相俟って改質用触媒による改質能力は極めて
高いという効果がある。この実施例では、第1の熱交換
器22および第2の熱交換器23を用いて燃料ガスをあ
らかじめ昇温させた状態で改質器3oに流入させるとと
もに、発熱反応の熱を効率的に燃料ガスの昇温に用い、
改質反応を促進することができるという効果がある。In this example, the heat transfer rate is higher than that of a normal honeycomb structure.
Since a porous body having the above-mentioned special structure with a wide contact area for mass transfer is used, heat exchange efficiency, reaction efficiency, etc. are dramatically increased, and the reforming reaction is promoted. Thereby, it is possible to downsize the fuel reformer 76 while maintaining the same thermal efficiency and reaction efficiency. Therefore, even in a small fuel reformer, the reforming ability of the reforming catalyst is extremely high due to the heating effect of the catalytic combustion catalyst. In this embodiment, the fuel gas is heated in advance using the first heat exchanger 22 and the second heat exchanger 23 and then flows into the reformer 3o, and the heat of the exothermic reaction is efficiently transferred. Used to raise the temperature of fuel gas,
This has the effect of promoting the reforming reaction.
(発明の効果)
以上説明したように、本発明の燃料電池システムの燃料
改質装置によれば、改質反応により発生する改質ガスの
もつ熱を効率よく燃料ガスの昇温に用い、かつハニカム
構造多孔体からなる改質器中の触媒接触燃焼の燃焼ガス
のもつ熱により昇温された燃料ガスを接触面積の大きな
多孔体に効率よく改質触媒反応をさせるようにしたので
、燃料ガスを改質ガスへ効率よ(変換することができ、
改質装置の容量の小型化を図ることができるという効果
がある。しかも、バーナ加熱に比較して改質用触媒が等
温度にかつ迅速に加熱される。また、低い圧力損失であ
るため、ブロワな小型化することができるという効果が
ある。(Effects of the Invention) As explained above, according to the fuel reformer of the fuel cell system of the present invention, the heat of the reformed gas generated by the reforming reaction can be efficiently used to raise the temperature of the fuel gas, and The fuel gas, which has been heated by the heat of the combustion gas from catalytic combustion in the reformer made of a honeycomb structure porous body, is efficiently subjected to a reforming catalytic reaction in the porous body with a large contact area. can be efficiently converted into reformed gas (
This has the effect that the capacity of the reformer can be made smaller. Moreover, compared to burner heating, the reforming catalyst is heated to the same temperature and quickly. Moreover, since the pressure loss is low, there is an effect that the blower can be made smaller.
第1図は本発明の第1の実施例の燃料改質装置の改質器
の積層状態を表わす概略構成図、第2図はその燃料改質
装置を表わす概略斜視図、第3図はその燃料改質装置の
燃料ガスの流路を表わすシステム図、第4図および第5
図は本発明の実施例における多孔体の具体例の外観を示
す説明図、第6図は第4図のM−M’の断面を示す説明
図、第7図は第6図の部分拡大断面図、第8図は従来の
燃料改質装置を表わす概略構成図、第9図は本発明を適
用したリン酸型燃料電池システムの回路構成を表わす回
路図である。
a!、料挿ガ叉
0
2
13、
5
6
7
2
3
0
6
・・・貫通孔(第1の通路)、
・・・外壁、
14 ・・・開口、
・・・隔壁、
・・・連結壁、
・・・第2の通路、
・・・第1の熱交換器、
・・・第2の熱交換器、
・・・改質器本体、
・・・燃料改質器。FIG. 1 is a schematic configuration diagram showing the stacked state of the reformers of a fuel reformer according to a first embodiment of the present invention, FIG. 2 is a schematic perspective view showing the fuel reformer, and FIG. 3 is a schematic perspective view of the fuel reformer. System diagrams showing the fuel gas flow path of the fuel reformer, Figures 4 and 5
The figure is an explanatory diagram showing the external appearance of a specific example of a porous body in an embodiment of the present invention, FIG. 6 is an explanatory diagram showing a cross section taken along line M-M' in FIG. 4, and FIG. 7 is a partially enlarged cross section of FIG. 6. 8 is a schematic configuration diagram showing a conventional fuel reformer, and FIG. 9 is a circuit diagram showing a circuit configuration of a phosphoric acid fuel cell system to which the present invention is applied. a! , insertion fork 0 2 13, 5 6 7 2 3 0 6 ... through hole (first passage), ... outer wall, 14 ... opening, ... partition wall, ... connecting wall, ...second passage, ...first heat exchanger, ...second heat exchanger, ...reformer main body, ...fuel reformer.
Claims (1)
からなる第1の通路と、 この第1の通路から隔壁を介して隔離され、互いに隣接
する隔壁を連結する連結壁により区分形成される第2の
通路と、 前記第1の通路または第2の通路のうちの一方の通路内
壁に担持され、燃料ガスを改質ガスに変換する改質用触
媒と、 前記第1の通路または第2の通路のうちの他方の通路内
壁に担持され、接触燃焼用ガスを接触燃焼させる接触燃
焼用触媒と、 から成るハニカム状多孔体を備えたことを特徴とする燃
料電池システムの燃料改質装置。(2)前記改質用触媒
が担持される通路から流出される改質ガスから熱を奪い
、該通路に流入する燃料ガスに熱を与える第1の熱交換
器と、 前記接触燃焼用触媒と接触燃焼させる接触燃焼用ガスを
供給する接触燃焼ガス供給源と、前記接触燃焼用触媒が
担持される通路から排出される接触燃焼排ガスから熱を
奪い、前記改質用触媒が担持される通路に流入する燃料
ガスに熱を与える第2の熱交換器と、 を備えたことを特徴とする請求項1に記載の燃料電池シ
ステムの燃料改質装置。(1) A first passage consisting of a large number of independent through holes surrounded by a partition wall, and a first passage separated from the first passage via a partition wall and divided by a connecting wall connecting adjacent partition walls. a reforming catalyst that is supported on the inner wall of one of the first passage or the second passage and converts the fuel gas into reformed gas; A fuel reforming device for a fuel cell system, comprising: a catalytic combustion catalyst supported on the inner wall of the other of the passages to catalytically combust catalytic combustion gas; and a honeycomb-shaped porous body. (2) a first heat exchanger that removes heat from the reformed gas flowing out from the passage in which the reforming catalyst is supported and gives heat to the fuel gas flowing into the passage; and the catalytic combustion catalyst. A catalytic combustion gas supply source that supplies catalytic combustion gas to be catalytically combusted; and a catalytic combustion gas supply source that supplies heat from the catalytic combustion exhaust gas discharged from the passage in which the catalyst for catalytic combustion is carried, and the passage in which the catalyst for reforming is carried. The fuel reformer for a fuel cell system according to claim 1, further comprising: a second heat exchanger that provides heat to the inflowing fuel gas.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1247760A JPH0755802B2 (en) | 1989-09-22 | 1989-09-22 | Fuel reformer for fuel cell system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1247760A JPH0755802B2 (en) | 1989-09-22 | 1989-09-22 | Fuel reformer for fuel cell system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03109202A true JPH03109202A (en) | 1991-05-09 |
| JPH0755802B2 JPH0755802B2 (en) | 1995-06-14 |
Family
ID=17168256
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1247760A Expired - Fee Related JPH0755802B2 (en) | 1989-09-22 | 1989-09-22 | Fuel reformer for fuel cell system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0755802B2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0677327A1 (en) * | 1994-02-18 | 1995-10-18 | Westinghouse Electric Corporation | Hydrocarbon reforming catalyst material and configuration of the same |
| EP0945174A1 (en) * | 1998-03-25 | 1999-09-29 | DBB Fuel Cell Engines Gesellschaft mit beschränkter Haftung | Reactor unit for a catalytic chemical reaction, specifically for catalytic reforming of methanol |
| EP1020400A1 (en) * | 1999-01-15 | 2000-07-19 | DBB Fuel Cell Engines Gesellschaft mit beschränkter Haftung | Device for the combination of two heterogeneous catalytic reactions |
| DE102004040664A1 (en) * | 2004-08-20 | 2006-02-23 | Behr Gmbh & Co. Kg | Heat exchangers, generators and heating and / or air conditioning |
| JP2007198706A (en) * | 2006-01-30 | 2007-08-09 | National Institute Of Advanced Industrial & Technology | Internal heat generation type heat exchange structure having crossed channel directions |
| JP2010235406A (en) * | 2009-03-31 | 2010-10-21 | Toyota Industries Corp | Reformer |
| EP2329556A4 (en) * | 2008-08-26 | 2014-04-16 | Idatech Llc | Fuel cell systems including hydrogen-producing assemblies |
| US9017436B2 (en) | 2008-08-26 | 2015-04-28 | Dcns | Fuel processing systems with thermally integrated componentry |
| WO2015068783A1 (en) * | 2013-11-06 | 2015-05-14 | イビデン株式会社 | Heat exchanger |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0280301A (en) * | 1988-06-30 | 1990-03-20 | Fuji Electric Co Ltd | Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell |
-
1989
- 1989-09-22 JP JP1247760A patent/JPH0755802B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0280301A (en) * | 1988-06-30 | 1990-03-20 | Fuji Electric Co Ltd | Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0677327A1 (en) * | 1994-02-18 | 1995-10-18 | Westinghouse Electric Corporation | Hydrocarbon reforming catalyst material and configuration of the same |
| EP0945174A1 (en) * | 1998-03-25 | 1999-09-29 | DBB Fuel Cell Engines Gesellschaft mit beschränkter Haftung | Reactor unit for a catalytic chemical reaction, specifically for catalytic reforming of methanol |
| US6180081B1 (en) | 1998-03-25 | 2001-01-30 | Xcellsis Gmbh | Reactor unit for a catalytic chemical reaction, especially for a catalyzing methanol reformer |
| EP1020400A1 (en) * | 1999-01-15 | 2000-07-19 | DBB Fuel Cell Engines Gesellschaft mit beschränkter Haftung | Device for the combination of two heterogeneous catalytic reactions |
| DE102004040664A1 (en) * | 2004-08-20 | 2006-02-23 | Behr Gmbh & Co. Kg | Heat exchangers, generators and heating and / or air conditioning |
| JP2007198706A (en) * | 2006-01-30 | 2007-08-09 | National Institute Of Advanced Industrial & Technology | Internal heat generation type heat exchange structure having crossed channel directions |
| EP2329556A4 (en) * | 2008-08-26 | 2014-04-16 | Idatech Llc | Fuel cell systems including hydrogen-producing assemblies |
| US9017436B2 (en) | 2008-08-26 | 2015-04-28 | Dcns | Fuel processing systems with thermally integrated componentry |
| JP2010235406A (en) * | 2009-03-31 | 2010-10-21 | Toyota Industries Corp | Reformer |
| WO2015068783A1 (en) * | 2013-11-06 | 2015-05-14 | イビデン株式会社 | Heat exchanger |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0755802B2 (en) | 1995-06-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100723371B1 (en) | Denaturation device | |
| US7025903B2 (en) | Reformer system process | |
| JP3845124B2 (en) | Solid oxide fuel cell stack | |
| CA2251627C (en) | Thermally enhanced compact reformer | |
| US8986405B2 (en) | Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas | |
| US20020168308A1 (en) | Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen | |
| US20060257709A1 (en) | Modularly built high-temperature fuel cell system | |
| JP4063430B2 (en) | Fluid processing equipment | |
| JP2003506306A (en) | Compact reactor | |
| RU2003116515A (en) | MULTIFUNCTIONAL ENERGY SYSTEM (OPTIONS) | |
| KR100898855B1 (en) | Micro Channel Reforming Reactor With Heat Exchanger | |
| JPH03109202A (en) | Fuel reformer for fuel cell system | |
| JP2008521184A (en) | Equipment for carrying out chemical reactions | |
| US20020131919A1 (en) | Modular fuel processing system for plate reforming type units | |
| KR100857703B1 (en) | Reaction vessel and reaction apparatus | |
| JP4090234B2 (en) | Hydrogen-containing gas generator | |
| JP6001800B2 (en) | Fuel cell stack structure | |
| US7927750B2 (en) | Micro channel heater for even heating | |
| JP5284050B2 (en) | Fuel cell module | |
| JP3733753B2 (en) | Hydrogen purification equipment | |
| KR101626649B1 (en) | Metal foam catalyst for fuel reforming and fuel reforming apparatus having microchannels | |
| JP5448985B2 (en) | Auxiliary device for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell system | |
| JPH03109934A (en) | Fuel reformer for fuel cell system | |
| JP5145566B2 (en) | Externally heated hydrogen production apparatus and fuel cell power generation system using the same | |
| JPH0335241B2 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |