JPH0310038A - Method for setting alloy components in ti alloy having excellent corrosion resistance - Google Patents
Method for setting alloy components in ti alloy having excellent corrosion resistanceInfo
- Publication number
- JPH0310038A JPH0310038A JP23938889A JP23938889A JPH0310038A JP H0310038 A JPH0310038 A JP H0310038A JP 23938889 A JP23938889 A JP 23938889A JP 23938889 A JP23938889 A JP 23938889A JP H0310038 A JPH0310038 A JP H0310038A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- corrosion resistance
- bond order
- alloying
- bcc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 70
- 230000007797 corrosion Effects 0.000 title claims abstract description 70
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 57
- 239000000956 alloy Substances 0.000 title claims abstract description 57
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 20
- 238000005275 alloying Methods 0.000 claims abstract description 36
- 239000013078 crystal Substances 0.000 claims abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 238000004090 dissolution Methods 0.000 description 10
- 239000010953 base metal Substances 0.000 description 9
- 230000010287 polarization Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000004138 cluster model Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 238000004219 molecular orbital method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、耐食性に便れたTi合金を製造する場合の
、合金用添加元素の成分設定方法に関し、特にTi合金
の耐食性の評価を行うため・の指数として平均結合次数
百Oを採用した合金成分の設定方法に関するものである
。[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for setting the composition of additive elements for an alloy when manufacturing a Ti alloy with good corrosion resistance, and in particular to evaluating the corrosion resistance of a Ti alloy. The present invention relates to a method for setting alloy components that uses an average bond order of several hundred O as an index of .
Tiは、不動態化されやすい特徴を有しているが、不動
態被膜が破壊されやすい塩酸、硫酸などの還元性環境で
は腐食されやすい、そのため従来からTIに種々の合金
用元素を添加することにより、耐食性を改善したTi合
金の開発が行われてきた。この従来のTi合金の開発、
特性の管理においては、該Ti合金の単数ないし複数の
性質に及ぼす合金用元素の影響を実験・測定により求め
、これらのデータに基づいて最適合金組成を決定する、
いわゆる試行11誤的な方法が常用的に行われている。Ti has the characteristic of being easily passivated, but it is easily corroded in reducing environments such as hydrochloric acid and sulfuric acid, where the passive film is easily destroyed.For this reason, various alloying elements have traditionally been added to Ti. Therefore, Ti alloys with improved corrosion resistance have been developed. Development of this conventional Ti alloy,
In property management, the influence of alloying elements on one or more properties of the Ti alloy is determined through experiments and measurements, and the optimal alloy composition is determined based on these data.
The so-called trial-and-error method is commonly used.
しかしながら従来の試行鉗誤約手法によれば、多大な費
用と時間を要し極めて非能率的であり、特に多元系の合
金についてこのような方法を実施するのは極めて困難で
ある。また、従来あまり実験例のない元素、例えばv等
を母金属とする合金を開発する場合はさらに膨大な研究
開発投資を必要とする。さらにこの試行IW誤的手法に
よる場合は、その評価も不正確であるため材料の信較性
の向上や高性能化を図る上で大きな問題となっている。However, the conventional trial-and-error method requires a great deal of cost and time and is extremely inefficient, and is particularly difficult to implement with multi-component alloys. Further, when developing an alloy using an element, such as v, as a base metal, which has not been tested in many cases, an even larger amount of research and development investment is required. Furthermore, when this trial IW error method is used, the evaluation is inaccurate, which poses a major problem in improving the reliability and performance of materials.
本発明は、上記従来の問題点を解決するためになされた
もので、予め耐食性指標図を求め、これに基づいて耐食
性を予測し、限定された範囲での合金についてのみ実験
することにより耐食性の優れたTi合金を開発でき、研
究開発投資を軽減できる耐食性に優れたTi合金の合金
成分設定方法を提供することを目的としている。The present invention was made in order to solve the above-mentioned conventional problems, and by obtaining a corrosion resistance index map in advance, predicting the corrosion resistance based on this, and conducting experiments only on alloys within a limited range, the corrosion resistance can be evaluated. The object of the present invention is to provide a method for setting the alloy composition of a Ti alloy with excellent corrosion resistance, which enables the development of an excellent Ti alloy and reduces investment in research and development.
〔問題点を解決するための手段〕
本発明者等は上記問題を解決すべく種々の研究を行い、
母金属と合金用元素との間の結合力の大きさを表す結合
次数(以下Boと表す)を用いることにより、Ti合金
の耐食性を評価し得るとの知見を得た。[Means for solving the problem] The present inventors conducted various studies to solve the above problem, and
It has been found that the corrosion resistance of Ti alloys can be evaluated by using the bond order (hereinafter referred to as Bo) representing the magnitude of the bonding force between the base metal and the alloying element.
本発明は、上記知見に基づくもので、合金用i元素の純
Tiに封する結合次数(Bo)i及び該i元素の合金中
の原子分率χiがら、次式%式%()
により平均結合次数Toを求める。そしてこの平均結合
次数百0が、合金用元素を含むTi合金の結晶構造に応
じて、
hCpの場合は、3.513≦Bo≦4 、000bc
cの場合は、2.790≦百〇≦3.000となるよう
に合金用元素の種類及びその添加量を定めたことを特徴
とする耐食性に優れたTi合金の合金成分設定方法であ
る。The present invention is based on the above knowledge, and the bond order (Bo) i of element i for alloy sealed in pure Ti and the atomic fraction χi of element i in the alloy are calculated by the following formula % formula % (). Find the bond order To. In the case of hCp, this average bond order number 100 is 3.513≦Bo≦4,000bc, depending on the crystal structure of the Ti alloy containing the alloying element.
In the case of c, the type of alloying element and its addition amount are determined so that 2.790≦100≦3.000, which is a method for setting the alloy composition of a Ti alloy with excellent corrosion resistance.
また、合金用元素を含むTi合金の結晶構造がbccの
場合は、2.860≦13o≦3.000となるように
合金用元素及びその添加量を定めるのがより好ましい。Further, when the crystal structure of the Ti alloy containing the alloying element is bcc, it is more preferable to determine the alloying element and its addition amount so that 2.860≦13o≦3.000.
ここで上記平均結合次数百0が、3.513以下(h
c p −T i) 、2.790以下(bcc−TI
)の場合は、上述の耐食性向上効果が得られず、またこ
の平均結合次数Toが4.000以上(hcp−T i
) 、3.000以上(bcc−Ti)となるように
合金用元素を添加した場合は、熱間においても加工困難
となるため好ましくない。Here, the above average bond degree 100 is 3.513 or less (h
c p -T i), 2.790 or less (bcc-TI
), the above-mentioned corrosion resistance improvement effect cannot be obtained, and the average bond order To is 4.000 or more (hcp-Ti
), 3.000 or more (bcc-Ti), it is not preferable because it becomes difficult to process even in hot conditions.
なお、上記i元素の結合次数(Bo)iは分子軌道法(
Discrete−VariaLional(DV)
Xαクラスター法)によって求めることができる。こ
のDV−Xαクラスター法は、数個〜数十個からなる原
子の集合体(クラスター)模型を用いて行う分子軌道計
算法である。Note that the bond order (Bo) i of element i above is determined by the molecular orbital method (
Discrete-VariaLional(DV)
It can be determined by the Xα cluster method). This DV-Xα cluster method is a molecular orbital calculation method performed using an aggregate (cluster) model of several to several dozen atoms.
第9図は、本発明者が上記計算に用いたクラスター模型
を示し、第9図(4)は最密六方格子(hcP)、MT
+、、クラスター模型であり、第9図1blは体心立方
格子(b CC) 、 MT l +aクラスター模型
である。但し、図中・はTI、○は合金用元素Mである
。FIG. 9 shows the cluster model used by the inventor in the above calculation, and FIG. 9 (4) shows a close-packed hexagonal lattice (hcP), MT
+,, cluster model, and Fig. 9 1bl is a body-centered cubic lattice (b CC), MT l +a cluster model. However, in the figure, ◯ indicates TI, and ◯ indicates alloying element M.
上記各図において、格子定数から原子間距離を設定し、
クラスター(分子)の電子構造をスレータ−(SlaL
er)の提案したXαポテンシャルを用いて、セルフコ
ンシステントに解く、但し通常の方法とは異なり永年方
程式を解(とき、空間にランダムに選んだサンプル点で
ハミルトニアンと重なり積分の行列要素を計算し、電子
エネルギー固存値と固有関数を求める。In each of the above figures, the interatomic distance is set from the lattice constant,
The electronic structure of a cluster (molecule) is defined by SlaL
However, unlike the usual method, the secular equation is solved self-consistently using the Xα potential proposed by Er). , find the electron energy eigenvalues and eigenfunctions.
このクラスター法はバンド計算法とは異なり、局所電子
状態を調べるのに通している。第9図のクラスター模型
を用いて合金用元素のまわりの電子状態を調べることに
より、合金効果を表すパラメータ、即ちTi母金属と合
金用元素Mとの間の結合次数Boを求めることができる
。この結合次数Boは母金属Tiと合金用元素Mのそれ
ぞれの原子軌道の重なり積分を、第9図のクラスター内
の合金用元素Mの周りのすべての母金lXTi原子に対
して計算して求める。ここで多元合金の場合は、上述の
式により、合金用元素M中のi元素の結合次数(Bo)
iの平均値である平均結合次数Boを求める。This cluster method differs from the band calculation method in that it allows us to investigate local electronic states. By examining the electronic state around the alloying element using the cluster model shown in FIG. 9, it is possible to determine a parameter representing the alloying effect, that is, the bond order Bo between the Ti base metal and the alloying element M. This bond order Bo is determined by calculating the overlapping integral of the respective atomic orbits of the base metal Ti and the alloying element M for all base metal lXTi atoms around the alloying element M in the cluster in Figure 9. . In the case of a multi-component alloy, the bond order (Bo) of element i in alloying element M is determined by the above formula.
The average bond order Bo, which is the average value of i, is determined.
なお、母金属の中の合金用元素Mのd軌道エネルギ準位
(以下Mdと表す)を用いることによってもTi合金の
耐食性を評価することができる。Note that the corrosion resistance of the Ti alloy can also be evaluated by using the d-orbital energy level (hereinafter referred to as Md) of the alloying element M in the base metal.
この場合に合金用元素Mを含むクラスターによっテ計算
したd”9子レベルには、合金用元素Mに基づく新たな
;子準位1g、Ltgの2つの電子レベルが現れる。こ
の両者の平均値をとってMdとして表す、また多元合金
の場合は合金用元素M中の各i元素のMdから算出した
平均(t[Mdを用いる。In this case, two new electron levels, 1g and Ltg, based on the alloying element M appear at the d''9 electron level calculated by the cluster containing the alloying element M. The average of these two In the case of a multi-element alloy, use the average (t[Md) calculated from the Md of each i element in the alloying element M.
なお本発明者等は、13o−%dを用いた相安定性指t
1図を開発し、すでに出願している(特開昭62−50
435号公tg参照)、この出願では、合金の機械的性
質を改善するために、過剰に元素を添加した場合に有害
な相を予測するだめの指標図を作成したものであるが、
本発明はW o −TX dを用いてTi合金の耐食性
を示す指標図を作成したものである。In addition, the present inventors have determined the phase stability index t using 13o-%d.
Figure 1 has been developed and has already been applied for (Japanese Unexamined Patent Application Publication No. 62-50
In this application, an index diagram was created to predict harmful phases when excessive elements are added in order to improve the mechanical properties of alloys.
The present invention uses W o -TX d to create an index diagram showing the corrosion resistance of Ti alloys.
この発明においては、Ti合金の耐食性が母金属と合金
用元素との間の結合力の大きさに関係することを見出し
、この結合力を表す結合次数を耐食性を示すパラメータ
として用いるようにしたから、上記結合次数を合金用元
素のf1類あるいは添加量から算出することによりTi
合金の耐食性を推定することが可能となる。これにより
最適合金組成決定のための試行錯誤的な試験の範囲を狭
い範囲に限定することができ、この範囲の合金について
実験を行うだけでよく、従来方法に比較して大幅に費用
、労力及び時間を軽減することができ、かつTi合金の
耐食性の改善を高い信頬性でもって実現できる。In this invention, it has been discovered that the corrosion resistance of Ti alloys is related to the magnitude of the bonding force between the base metal and the alloying element, and the bond order representing this bonding force is used as a parameter indicating corrosion resistance. , by calculating the above bond order from the f1 class of alloying elements or the amount added
It becomes possible to estimate the corrosion resistance of the alloy. This makes it possible to limit the scope of trial-and-error tests for determining the optimal alloy composition to a narrow range, and it is only necessary to conduct experiments on alloys within this range, which requires significantly less cost, effort, and effort than conventional methods. The time can be reduced, and the corrosion resistance of the Ti alloy can be improved with high reliability.
以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
後述する実施例はそれぞれhcp−7i又はbcc−T
iにおける平均結合次数百0の最適範囲を見出すため行
ったものであるが、第1の実施例では、該最適範囲の設
定のための分極測定及び浸漬試験に腐食性溶液として硫
酸溶液を用い、第2の実施例では該腐食性溶液として塩
酸溶液を用いた。また各実施例では、具体例1として上
記分極測定等を70℃の腐食性溶液で行った例と、具体
例2として腐食率測定を沸騰状態の腐食性t8W!i、
中で行った例とを示している。Examples described below are hcp-7i or bcc-T, respectively.
This was done to find the optimal range for the average bond order of several hundred for i. In the first example, a sulfuric acid solution was used as a corrosive solution in the polarization measurement and immersion test for setting the optimal range. In the second example, a hydrochloric acid solution was used as the corrosive solution. Further, in each example, as a specific example 1, the above polarization measurement etc. were carried out in a corrosive solution at 70°C, and as a specific example 2, a corrosion rate measurement was carried out in a corrosive t8W! i,
An example of what was done inside is shown.
まず、第1の実施例における具体例1を第1図〜第9図
を用いて詳細に説明する。First, a specific example 1 of the first embodiment will be explained in detail using FIGS. 1 to 9.
まず最初に合金用元素の添加量とTo、’idとの関係
を調査した。First, the relationship between the amount of alloying elements added and To,'id was investigated.
第1図は、第9図(8)のhcp−7+のクラスター模
型を用い、Tiを母金属とし、図示する各種の合金用元
素を加えたとき、合金のTo、udが指標図上のどの位
Iに変化するかを示す0例えば、純TiにZ「やHfを
加えると@o、pdは、図示のTiの位置から添加量が
増加するほど右上方に変化し、一方、AIを加えると左
下方に変化する2
第2図は、第9図t)のbζc−Tiのクラスター模型
を用い、TIを母金属とし、図示する各種の合金用元素
を加えたとき、合金の百o、TXdがt¥I標図上のど
の位置に変化するかを示す0例えばMoを加えると、図
示のTiの位置から左上方に変化し、V、Crを加える
とほぼ左方に変化する。Figure 1 shows how To and ud of the alloy are on the index diagram when using the cluster model of hcp-7+ in Figure 9 (8), using Ti as the base metal, and adding the various alloying elements shown. For example, when adding Z' or Hf to pure Ti, @o, pd changes upward and to the right as the amount of addition increases from the position of Ti shown in the figure.On the other hand, when adding AI Figure 2 shows that using the cluster model of bζc-Ti in Figure 9 t), using TI as the base metal, and adding the various alloying elements shown in the figure, the alloy 100, For example, when Mo is added, it changes to the upper left from the position of Ti, and when V and Cr are added, it changes almost to the left.
またFa、Co、Niを添加した場合、To、Mdは純
Tiに比べて下方に変化する。Furthermore, when Fa, Co, and Ni are added, To and Md change downward compared to pure Ti.
次に2元系のh c p −T i合金(α合一&)、
a:純Ti、 b二Ti 10wL%A1(以下、
原子%を用いる)、c :Tl−2Affi、 d
:T 1−2Nb、e :Ti−2Ta、r :Ti−
10Hf、g :T 1−10zr(D各合金を溶製し
、70℃、lOw(%硫酸溶液中で、分極測定及び浸漬
試験を行った。Next, binary h c p -T i alloy (α coalescence &),
a: pure Ti, b two Ti 10wL%A1 (hereinafter,
(using atomic %), c: Tl-2Affi, d
:T 1-2Nb, e : Ti-2Ta, r : Ti-
10Hf, g: T 1-10zr (D) Each alloy was melted and subjected to polarization measurements and immersion tests in a sulfuric acid solution at 70°C.
第3図は分極測定の一例として、g:Ti −IQZ「
合金の結果を示す、また第4図は上記2元の相合金の結
合次数Boと活性溶解ピークの電流密度の関係を示す、
第3.第4図から明らかなように、Z「は活性t8融ピ
ークの電流密度を減少させる元素であり、その他、Nb
、Ta、Hrも活性溶解ピークの1i流密度を減少させ
た。一方、Ajは、活性ピークの電流密度を上昇させた
。また、この試験から、合金系に関係なく、結合次数B
eと活性溶解ピークのt流密度には、定量的関係が認め
られ、結合次数Boが大きい合金系はど、活性i′8%
fビークの電流密度が低いことがわかった。Figure 3 shows g:Ti-IQZ' as an example of polarization measurement.
Figure 4 shows the relationship between the bond order Bo and the current density of the active dissolution peak of the binary phase alloy.
Third. As is clear from Figure 4, Z'' is an element that reduces the current density of the active t8 melting peak, and
, Ta, and Hr also decreased the 1i current density of the active dissolution peak. On the other hand, Aj increased the current density at the active peak. Also, from this test, it was found that regardless of the alloy system, the bond order B
A quantitative relationship is recognized between e and the t current density of the active dissolution peak, and the alloy system with a large bond order Bo has an active i' of 8%.
It was found that the f-peak current density was low.
このことは、Boがh c p −T i合金の耐食性
を評価するのに重要なパラメータであることを示唆して
いる。そして同図からBO≧3.513以上で純Tiよ
りも耐食性が改善されることが判る。This suggests that Bo is an important parameter for evaluating the corrosion resistance of hcp-Ti alloys. From the same figure, it can be seen that when BO≧3.513 or more, the corrosion resistance is improved compared to pure Ti.
この結果T1合金がhcp講造である場合、上述のよう
に3oが4.000以上では熱間においても加工困難と
なる点を考慮に入れると、結合次数百0を3.513≦
Bo≦4.000の範囲に設定することができる。As a result, if the T1 alloy is HCP Kozo, taking into account that it is difficult to process even in hot when 3o is 4.000 or more as mentioned above, the bond order is 3.513≦3.513≦
It can be set within the range of Bo≦4.000.
なお、第5図は、浸71試験における腐食減量とBoと
の関係を示し、同図からBoが大きい合金系はど耐食性
良好となっていることが判り、またこれC本第4図の結
果に対応している。In addition, Figure 5 shows the relationship between corrosion loss and Bo in the immersion 71 test, and it is clear from the figure that alloy systems with higher Bo have better corrosion resistance, and this also reflects the results shown in Figure 4 of the C book. It corresponds to
次に、Fe、V、Cr、Moを11〜22aL%の範囲
で添加した2元系bcc−Ti合金(β合金)について
も同様の検討を行った場合について説明する。Next, a similar study will be described for a binary bcc-Ti alloy (β alloy) to which Fe, V, Cr, and Mo are added in a range of 11 to 22 aL%.
第6図は分掻測定の一例としてTi −11Moの結果
を示し、第7図はこれら2元β相合金の結合次数BOと
発生溶解ピークの電流密度との関係を示す、第6図、第
7図からも明らかなように、結合次数BOと活性溶解ピ
ークのtfL密度との間には、定量的関係が認められる
。これは合金系の種類との関連はなく、かつBOが大き
い合金系はど、活性熔解ピークの電流密度が低い、この
ことからBoがbcc−Ti合金についても耐食性を評
価するのに重要なパラメータであることを示唆している
。そしてBo≧2.790以上で純Tiよりも耐食性を
改善できることが判る。Figure 6 shows the results for Ti-11Mo as an example of scratching measurements, and Figure 7 shows the relationship between the bond order BO of these binary β-phase alloys and the current density of the generated melting peak. As is clear from Figure 7, a quantitative relationship is observed between the bond order BO and the tfL density of the active dissolution peak. This is not related to the type of alloy system, and the current density at the active melting peak is low in alloy systems with large BO.This shows that Bo is an important parameter for evaluating the corrosion resistance of BCC-Ti alloys as well. This suggests that It can be seen that when Bo≧2.790 or more, the corrosion resistance can be improved more than that of pure Ti.
この結果Ti合金がbcc+Maである場合、上記加工
性、つまりBOが3.000以上では熱間でも加工困難
となる点を考慮すると、結合次数■Oを2.790≦B
o≦3.000の範囲に設定することができる。As a result, when the Ti alloy is bcc+Ma, considering the above-mentioned workability, that is, the fact that when BO is 3.000 or more, it is difficult to work even under hot conditions, the bond order ■O is set to 2.790≦B
It can be set in the range of o≦3.000.
なお、Fa、V、Moは腐食電位(カソード反応)をノ
ープル側にシフトさせる元素であり、特にMoは第6図
に示すように腐食電位を大きくシフトさせ、自然浸漬状
態で不動態を示した。これら腐食電位をシフトさせる元
素は、第2図のTf。In addition, Fa, V, and Mo are elements that shift the corrosion potential (cathode reaction) toward the no-pull side, and Mo in particular shifts the corrosion potential significantly as shown in Figure 6, showing passivity in the natural immersion state. . The elements that shift these corrosion potentials are Tf in FIG.
−[d図上でTiの位置からMdを左方に変化させる。- [d Change Md to the left from the position of Ti on the diagram.
このことから、ldレベルは腐食電位と関係があり%T
Oとともに耐食性の評価に役立つパラメータであること
がわかる。また、′IJIB図は浸漬試験における腐食
減量とBoとの関係を示す。From this, the ld level is related to the corrosion potential and %T
It can be seen that along with O, it is a useful parameter for evaluating corrosion resistance. Further, the 'IJIB diagram shows the relationship between corrosion loss in the immersion test and Bo.
同図からBoが大きい合金系はど耐食性良好となってい
ることが判り、またこれは第7図の結果に対応している
。It can be seen from the figure that the alloy system with a large Bo content has good corrosion resistance, and this corresponds to the results shown in Fig. 7.
次にこの第1の実施例における具体例2について説明す
る。Next, a second specific example of the first embodiment will be explained.
ここでは、40%t(! S O4″fP!1! i8
液中でbcc−Ti合金の腐食率を測定した。Here, 40%t(! SO4″fP!1! i8
The corrosion rate of the bcc-Ti alloy was measured in liquid.
従来材のT i −35M o −3N b合金は、極
めて耐食性が良好とされる合金であるが、Me添加量が
多いため、加工性に間脛があった。The Ti-35Mo-3Nb alloy, which is a conventional material, is an alloy that is said to have extremely good corrosion resistance, but because of the large amount of Me added, it has poor workability.
これに対して、第1表に示すようにBe≧2.860と
なるようにZn、Hfを添加した本発明合金は、加工性
が良好で、かつ耐食性についても従来材を上回る超耐食
性を示した。On the other hand, as shown in Table 1, the alloy of the present invention, in which Zn and Hf are added so that Be≧2.860, has good workability and exhibits super corrosion resistance that exceeds that of conventional materials. Ta.
このようにbccii造を有し、かつBo≧2.860
のTi合金は超耐食性を有することが判る。In this way, it has a bccii structure, and Bo≧2.860
It can be seen that the Ti alloy has super corrosion resistance.
この結果bcc構造の場合には、結合次数百〇の範囲を
さらに2.860≦Bo≦3.000という最適範囲に
設定することができる。As a result, in the case of the bcc structure, the range of bond order 100 can be further set to the optimal range of 2.860≦Bo≦3.000.
次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.
ここで上記第1の実施例と大きく異なる点は、分掻測定
及び浸漬試験を、腐食性溶液として硫酸溶液の代わりに
塩f11f8液を用いて行った点である。The major difference from the first example is that the scratching measurement and immersion test were conducted using salt f11f8 solution instead of the sulfuric acid solution as the corrosive solution.
この結果から本発明の合金成分設定方法によるT1合金
は塩素に対する耐食性にも優れていることが判る。This result shows that the T1 alloy prepared by the alloy composition setting method of the present invention also has excellent corrosion resistance against chlorine.
(第2の実施例の具体例1)
まず上述のα合金のうちa、b、f、Hについて塩酸溶
液を用いた分権測定を行った。この結果を第1O図に示
す、また第11図は該塩酸溶液での活性゛熔解ピークの
電流密度と結合次数Boとの関係を上述のα合金1 M
−g全てについて示している。これらの図から明らかな
ように合金系に関係な(、結合次数Boと活性溶解ピー
クの電流密度には、定量的関係が認められ、結合次数B
oが大きい合金系はど、活性熔解ピークの電流密度が低
いことがわかった。このことは、BOがhcp−Ti合
金の耐食性を評価するのに重要なパラメータであること
を示唆している。そして同図からBO≧3.513以上
で純Tiに比べ塩素に対する耐食性も改善されることが
判る。(Specific Example 1 of Second Example) First, a decentralized measurement was performed using a hydrochloric acid solution for a, b, f, and H of the above-mentioned α alloys. The results are shown in Figure 1O, and Figure 11 shows the relationship between the current density of the active melting peak in the hydrochloric acid solution and the bond order Bo for the α alloy 1M described above.
-g are all shown. As is clear from these figures, there is a quantitative relationship between the bond order Bo and the current density of the active dissolution peak, which is related to the alloy system.
It was found that the current density at the active melting peak was low in alloy systems with a large o. This suggests that BO is an important parameter for evaluating the corrosion resistance of hcp-Ti alloys. From the same figure, it can be seen that when BO≧3.513 or more, the corrosion resistance against chlorine is also improved compared to pure Ti.
この結果Ti合金がhcp構造である場合、上述のよう
に13oが4.000以上では熱間においても加工困難
となる点を考慮に入れると、結合次数百0を3.513
≦Bo≦4.000の範囲に設定することができる。As a result, when the Ti alloy has an hcp structure, taking into account that it is difficult to process even in hot conditions when 13o is 4.000 or more as mentioned above, the bond order of several hundred is 3.513
It can be set within the range of ≦Bo≦4.000.
さらに塩!!2溶液中への浸漬試験をα合金a、 b
f、gの他に、T i −2Z rについても行った。More salt! ! α alloys a and b were immersed in two solutions.
In addition to f and g, the test was also conducted for T i -2Z r.
この結果を第12図に示す、同図からBoが大きい合金
系はど耐食性良好となっていることが判り、第11図の
結果に対応している。The results are shown in FIG. 12. From the same figure, it can be seen that the alloy system with a large Bo content has good corrosion resistance, which corresponds to the results shown in FIG. 11.
次に2元素系bcc−Ti合金(β合金)、具体的にこ
こではTi−8Co、Ti−12Cr。Next, two-element BCC-Ti alloy (β alloy), specifically Ti-8Co and Ti-12Cr.
純Ti、Ti−22V、Ti−8Mo、Tl−8Niに
ついてアノード分極測定を、Tl−8Co。Anodic polarization measurements were performed on pure Ti, Ti-22V, Ti-8Mo, Tl-8Ni, and Tl-8Co.
Ti−12Fe、Ti、Ti−12Cr、Ti −8N
i、TiTi−1lについてカソード分Bii測定を塩
酸t8液を用いて行った。この結果をそれぞれ第13図
(11)及び(′b)に示す、また第14図はこれら2
元β元素相合金の結合次数Boと活性熔解ピークのif
f密度との関係を示している。これらの図から、合金系
の種類との関連はなく、かつB。Ti-12Fe, Ti, Ti-12Cr, Ti-8N
i, TiTi-1l was subjected to cathode content Bii measurement using hydrochloric acid t8 solution. The results are shown in Figure 13 (11) and ('b), respectively, and Figure 14 shows these two results.
Bond order Bo of original β element phase alloy and if of active melting peak
It shows the relationship with f density. From these figures, there is no relationship with the type of alloy system, and B.
が大きい合金系はど、活性溶解ピークの電vX密度が低
いという関係が認められる。このことからBOがbcc
−Ti合金についても耐食性を評価するのに重要なパラ
メータであることを示唆している。そしてBO≧2.7
90以上で純Tiに比べ塩素に対する耐食性も改善でき
ることが判る。A relationship is observed in which the electric vX density of the active dissolution peak is low for alloy systems with a large value. From this, BO is bcc
It is suggested that -Ti alloy is also an important parameter for evaluating corrosion resistance. and BO≧2.7
It can be seen that when it is 90 or higher, the corrosion resistance against chlorine can also be improved compared to pure Ti.
この結果Ti合金がbcc構造である場合、上記加工性
、つまりπ0が3.000以上では熱間でも加工困難と
なる点を考慮すると、結合次数百0を2.790≦百〇
≦3.000の範囲に設定することができる。As a result, when the Ti alloy has a bcc structure, considering the above-mentioned workability, that is, the fact that it is difficult to work even in hot conditions when π0 is 3.000 or more, the bond order 100 is set to 2.790≦100≦3. It can be set in the range of 000.
またこの第2の実施例でも、Fe、Co、Mo。Also in this second embodiment, Fe, Co, and Mo are used.
Niは腐食電位(カソード反応)をノープル側にシフト
させる元素であり(第13図(bl参照)、特にMoは
第6図に示すように腐食電位を大きくシフトさせ、自然
浸漬状態で不動態を示した。これら腐食電位をシフトさ
せる元素は、第2図の百0−1d図上でTiの位置から
ldを左方に変化させる。このことから、Mdレベルは
腐食電位と関係があり、Toとともに耐食性の評価に役
立つパラメータであることがわかる。Ni is an element that shifts the corrosion potential (cathode reaction) toward the no-pull side (see Figure 13 (bl)), and Mo in particular causes a large shift in the corrosion potential as shown in Figure 6, making it passive in the natural immersion state. These elements that shift the corrosion potential change ld to the left from the position of Ti on the 100-1d diagram in Figure 2. From this, the Md level is related to the corrosion potential, and the To It can be seen that this is a useful parameter for evaluating corrosion resistance.
さらに塩el Fe液を用いた浸漬試験をβ合金につい
てFe、V、Cr、Co、Moを11〜22at%の範
囲で添加したβ合金について行った(第15図参照)、
同図からBOが大きいほど耐食性良好となっており、第
14図の結果に対応している。Further, an immersion test using a salt el Fe solution was conducted on a β alloy containing Fe, V, Cr, Co, and Mo in a range of 11 to 22 at% (see Figure 15).
As shown in the figure, the larger the BO, the better the corrosion resistance, which corresponds to the results shown in FIG.
(′l!、2の実施例の具体例2)
表2は、40九HCZ沸m熔液中でbcc−Ti合金の
腐食率を測定した結果を示しており、この場合bcc構
造ををし、かつ百〇≧2.8600T1合金は、塩素に
封しても超耐食性を有することが判る。(Specific Example 2 of Examples of 'l!, 2) Table 2 shows the results of measuring the corrosion rate of a BCC-Ti alloy in a 409 HCZ boiling solution. , and 100≧2.8600T1 alloy is found to have super corrosion resistance even when sealed in chlorine.
第 1 表
第2表
〔発明の効果〕
以上のようにこの発明に係る耐食性に優れたT1合金の
合金成分設定方法によれば、純Tiに対する合金用i元
素の結合次数(Bo)と該i元素の原子分率χiとから
求めた平均結合次数Boが所定範囲内の値になるように
合金用元素をiI類及び添加量を定めたので、耐食性の
改善効果を予測でき、限定された範囲の合金について実
験を行うだけでよく、従来方法に比較して大幅に費用、
労力及び時間を軽減することができ、かつTi合金の耐
食性を改善できる効果がある。Table 1 Table 2 [Effects of the Invention] As described above, according to the method for setting the alloy composition of the T1 alloy with excellent corrosion resistance according to the present invention, the bond order (Bo) of the i element for alloying with respect to pure Ti and the i Since the alloying element class iI and the amount added are determined so that the average bond order Bo determined from the atomic fraction χi of the element is a value within a predetermined range, the effect of improving corrosion resistance can be predicted and It is only necessary to conduct experiments on alloys of
This has the effect of reducing labor and time and improving the corrosion resistance of the Ti alloy.
第1図ないし第9図は本発明の第1の実施例による合金
成分設定方法を説明するための図であり、第1図はhc
p−Ti合金における合金元素の耐食性への効果を示す
線図、第2図はbcc−Ti合金における合金元素の耐
食性への効果を示す線図、第3図はTl 10Zr合
金の分極曲線図、第4図はhcp−Ti合金の活性溶解
ピーク電流を示す耐食性指標図、第5図はhcp−Ti
合金の腐食減量を示す耐食性指標図、第6図はT i
−11Mo合金の分極曲線図、第7図はbcc−Ti合
金の活性溶解ピーク電流を示す耐食性指標図、第8図は
bcc−Ti合金の腐食減量を示す耐食性指標図、第9
図fal、 (blはそれぞれhCp−”l”i。
bcc−Tiクラスター模型の斜視図である。
また第10図ないし第15図は本発明の第2の実施例に
よる合金成分設定方法でのデータを示す図であり、第1
0図はhap−Ti合金のアノード分権曲線図、男11
図はhcp−Ti合金の活性溶解ピーク電流を示す耐食
性指標図、第12図はhcp−Ti合金の腐食減量を示
す耐食性指標図、第13図(4)はbcc−Ti合金の
アノード分極曲線図、第13図fblはbcc−Ti合
金ツカ7−F分極曲線図、第14図はbcc−Ti合金
の活性溶解ピーク電流を示す耐食性指標図、第15図は
bcc−Ti合金の腐食減量を示す耐食性指標図である
。1 to 9 are diagrams for explaining the alloy composition setting method according to the first embodiment of the present invention, and FIG.
A diagram showing the effect of alloying elements on corrosion resistance in p-Ti alloy, Figure 2 is a diagram showing the effect of alloying element on corrosion resistance in bcc-Ti alloy, Figure 3 is a polarization curve diagram of Tl 10Zr alloy, Figure 4 is a corrosion resistance index diagram showing the active dissolution peak current of hcp-Ti alloy.
Corrosion resistance index diagram showing corrosion loss of alloy, Figure 6 is T i
-11Mo alloy polarization curve diagram; Figure 7 is a corrosion resistance index diagram showing active dissolution peak current of BCC-Ti alloy; Figure 8 is a corrosion resistance index diagram showing corrosion loss of BCC-Ti alloy;
Figures fal and (bl are hCp-"l"i, respectively. Figs. is a diagram showing the first
Figure 0 is an anode decentralization curve diagram of hap-Ti alloy, male 11
The figure is a corrosion resistance index diagram showing the active dissolution peak current of hcp-Ti alloy, Figure 12 is a corrosion resistance index diagram showing corrosion loss of hcp-Ti alloy, and Figure 13 (4) is an anode polarization curve diagram of bcc-Ti alloy. , Fig. 13 fbl is a 7-F polarization curve diagram of the bcc-Ti alloy, Fig. 14 is a corrosion resistance index diagram showing the active dissolution peak current of the bcc-Ti alloy, and Fig. 15 is a diagram showing the corrosion weight loss of the bcc-Ti alloy. It is a corrosion resistance index diagram.
Claims (1)
i及び該i元素の原子分率χiより、次式@B@o=Σ
χi(Bo)i に従って合金の平均結合次数@B@oを求めるとともに
、該平均結合次数@B@oが各合金用元素を含むTi合
金の結晶構造(hcp又はbcc)に応じて、下記範囲 3.513≦@B@o≦4.000(hcpの場合)2
.790≦@B@o≦3.000(bccの場合)とな
るように合金用元素の種類及び添加量を定めたことを特
徴とする耐食性に優れたTi合金の合金成分設定方法。 (2)各合金用元素を含むTi合金の結晶構造がbcc
の場合は、上記平均結合次数@B@oが2.860@B
@o≦3.000 となるように合金用元素の種類及び添加量を定めたこと
を特徴とする特許請求の範囲第1項記載の耐食性に優れ
たTi合金の合金成分設定方法。[Claims] (1) Bond order (Bo) between pure Ti and i-element for alloying
From i and the atomic fraction χi of element i, the following formula @B@o=Σ
The average bond order @B@o of the alloy is determined according to χi(Bo)i, and the average bond order @B@o is determined in the following range depending on the crystal structure (hcp or bcc) of the Ti alloy containing each alloying element. 3.513≦@B@o≦4.000 (for hcp)2
.. A method for setting alloy components of a Ti alloy with excellent corrosion resistance, characterized in that the types and amounts of alloying elements are determined so that 790≦@B@o≦3.000 (in the case of bcc). (2) The crystal structure of the Ti alloy containing each alloying element is bcc
In the case of , the above average bond order @B@o is 2.860@B
2. A method for setting alloy components of a Ti alloy with excellent corrosion resistance as claimed in claim 1, wherein the types and amounts of alloying elements are determined so that @o≦3.000.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP23938889A JP2887871B2 (en) | 1989-03-16 | 1989-09-14 | Method for setting alloy components of Ti alloy with excellent corrosion resistance |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1-65751 | 1989-03-16 | ||
| JP6575189 | 1989-03-16 | ||
| JP23938889A JP2887871B2 (en) | 1989-03-16 | 1989-09-14 | Method for setting alloy components of Ti alloy with excellent corrosion resistance |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0310038A true JPH0310038A (en) | 1991-01-17 |
| JP2887871B2 JP2887871B2 (en) | 1999-05-10 |
Family
ID=26406897
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP23938889A Expired - Lifetime JP2887871B2 (en) | 1989-03-16 | 1989-09-14 | Method for setting alloy components of Ti alloy with excellent corrosion resistance |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2887871B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1225237A4 (en) * | 2000-05-02 | 2003-05-14 | Toyoda Chuo Kenkyusho Kk | TITATNIUM ALLOY PART |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3166586B2 (en) | 1995-10-24 | 2001-05-14 | 核燃料サイクル開発機構 | Super heat-resistant Mo-based alloy and method for producing the same |
| JP3166585B2 (en) | 1995-10-24 | 2001-05-14 | 核燃料サイクル開発機構 | Nb-based alloy excellent in heat resistance and corrosion resistance and method for producing the same |
-
1989
- 1989-09-14 JP JP23938889A patent/JP2887871B2/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1225237A4 (en) * | 2000-05-02 | 2003-05-14 | Toyoda Chuo Kenkyusho Kk | TITATNIUM ALLOY PART |
| US6979375B2 (en) | 2000-05-02 | 2005-12-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy member |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2887871B2 (en) | 1999-05-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Swann | Dislocation substructure vs transgranular stress corrosion susceptibility of single phase alloys | |
| Shi et al. | Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg (OH) 2 | |
| Qafsaoui et al. | Effect of 1-pyrrolidine dithiocarbamate on the galvanic coupling resistance of intermetallics–aluminum matrix during corrosion of AA 2024-T3 in a dilute NaCl | |
| Greene et al. | Effect of plastic deformation on the corrosion of iron and steel | |
| Mishra et al. | Materials selection for use in concentrated hydrochloric acid | |
| Briant et al. | The effect of microstructure on the corrosion and stress corrosion cracking of alloy 600 in acidic and neutral environments | |
| Dai et al. | Insights into the mechanism of Mo protecting CoCrFeNi HEA from pitting corrosion—A quantitative modelling study on passivation and repassivation processes | |
| Shoesmith | Kinetics of aqueous corrosion | |
| Mulford et al. | Crevice corrosion of nickel-based alloys in neutral chloride and thiosulfate solutions | |
| Wieser et al. | The monoclinic lattice distortion of η′-Cu6Sn5 | |
| Yau | SCC of Zirconium and its Alloys in Nitric Acid | |
| Mukai et al. | Prediction of the densities of liquid Ni-based superalloys | |
| JPH0310038A (en) | Method for setting alloy components in ti alloy having excellent corrosion resistance | |
| Hornus et al. | Crevice corrosion repassivation of Ni-Cr-Mo alloys by cooling | |
| Veys et al. | Electrochemical behavior of approximant phases in the Al–(Cu)–Fe–Cr system | |
| Ahn et al. | Analysis of repassivation kinetics of Ti based on the point defect model | |
| Bertocci et al. | Passivity and passivity breakdown in nickel aluminide | |
| Haudet et al. | Effect of alloy composition on the crevice corrosion resistance of nickel alloys | |
| Nakasa et al. | The effect of hydrogen-charging on the fatigue crack propagation behavior of β-titanium alloys | |
| RU2293308C2 (en) | Method for evaluating practical conditions for using orderly alloy in radiation environments (variants) | |
| AL-Refai et al. | Passivation characterization of nickel-based glassy alloys in artificial sea water | |
| Becerra Araneda et al. | Low potential pitting corrosion of Ni-Cr-Fe alloys in chloride plus thiosulfate solutions: determination of potential and concentration boundaries | |
| Socorro-Perdomo et al. | Comparative EIS Study of AlxCoCrFeNi Alloys in Ringer’s Solution for Medical Instruments. Metals 2021, 11, 928 | |
| Fujiwara | Designing high-strength copper alloys based on the crystallographic structure of precipitates | |
| Zhang et al. | Corrosion Behavior of CoCrNi Medium-Entropy Alloy in NH4Cl Solution with Different pH |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090219 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |