[go: up one dir, main page]

JPH0310256A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0310256A
JPH0310256A JP14600889A JP14600889A JPH0310256A JP H0310256 A JPH0310256 A JP H0310256A JP 14600889 A JP14600889 A JP 14600889A JP 14600889 A JP14600889 A JP 14600889A JP H0310256 A JPH0310256 A JP H0310256A
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
carrier
group
titanyl
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14600889A
Other languages
Japanese (ja)
Inventor
Akira Kinoshita
木下 昭
Hisahiro Hirose
尚弘 廣瀬
Kazumasa Watanabe
一雅 渡邉
Akihiko Itami
明彦 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP14600889A priority Critical patent/JPH0310256A/en
Publication of JPH0310256A publication Critical patent/JPH0310256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the excellent photosensitive body which has a high sensitivity and small residual potential and stable potentialcharacteristics by incorporating titanyl phthalocyanine having <=0.2wt.% chloride content in the specific amorphous crystal state. CONSTITUTION:The titanyl phthalocyanine contd. <=0.2wt.% chlorine in the amorphous crystal state with which the X-ray diffraction spectra to Cu-Kalpha-rays exhibits a peak at 6.5 deg.+ or -7.5 Bragg angle 2theta. While the titanyl phthalocyanine is used as a carrier generating material, the combination use of other carrier generating materials is equally satisfactory. The ratio of a carrier generating material to a binder is preferably specified to 10 to 600wt.% and the ratio of a carrier transfer material to the binder is preferably specified to 10 to 500wt.%. The photosensitive body having the excellent electrostatic characteristics, sensitivity characteristics and repetitive characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関するものであり、特にプリ
ンタ、複写機等に有効に用いることができ、半導体レー
ザ光及LEDに対して高感度を示す電子写真感光体に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, which can be effectively used in printers, copiers, etc., and has high sensitivity to semiconductor laser light and LEDs. The present invention relates to an electrophotographic photoreceptor exhibiting the following characteristics.

〔従来技術〕[Prior art]

電子写真感光体としては、古くからセレン、酸化亜鉛、
硫化カドミウム等の無機光導電物質を主成分とする感光
層を設けた無機感光体か広く使用されてきたが、このよ
うな無機感光体は例えば、セレンは熱や指紋の汚れ等に
よって結晶化するために特性が劣化しやすく、硫化カド
ミウムは耐湿性、耐久性に劣り、酸化亜鉛も又耐久性に
劣る等の問題があって、近年は種々の利点を有する有機
光導電性物質が広く電子写真感光体に用いられるように
なってきた。なかでもフタロシアニン化合物は光電変換
の量子効率か高く、又近赤外線領域まで高い分光感度を
示すため、特に半導体レーザ光源に適応する電子写真感
光体用として注目されてきた。
Electrophotographic photoreceptors have traditionally been made of selenium, zinc oxide,
Inorganic photoreceptors with a photosensitive layer mainly composed of an inorganic photoconductive substance such as cadmium sulfide have been widely used; Cadmium sulfide has poor moisture resistance and durability, and zinc oxide also has poor durability.In recent years, organic photoconductive materials with various advantages have been widely used in electrophotography. It has come to be used for photoreceptors. Among them, phthalocyanine compounds have high photoelectric conversion quantum efficiency and exhibit high spectral sensitivity up to the near-infrared region, and have therefore attracted attention as a material for electrophotographic photoreceptors that are particularly suitable for semiconductor laser light sources.

そのような目的に対して、銅フタロシアニン、無金属フ
タロシアニン、クロルインジウムフタロシアニン、クロ
ルガリウムフタロシアニンなとを用いた電子写真感光体
が報告されているが、近年特にチタニルフタロシアニン
が注目されるようになり、例えば特開昭61−2392
48号、同62−670943号、同62−27227
2号、同63−116158号のようにチタニルフタロ
シアニンを用いた電子写真感光体か多く技術開示されて
いる。
For such purposes, electrophotographic photoreceptors using copper phthalocyanine, metal-free phthalocyanine, chlorindium phthalocyanine, chlorgallium phthalocyanine, etc. have been reported, but titanyl phthalocyanine has attracted particular attention in recent years. For example, JP-A-61-2392
No. 48, No. 62-670943, No. 62-27227
There are many technical disclosures regarding electrophotographic photoreceptors using titanyl phthalocyanine, such as No. 2 and No. 63-116158.

一般に、フタロシアニン化合物は、フタロジニトリルや
1.3〜ジイミノイソインドリンなとと金属化合物を反
応させて製造されるが、電子写真感光体用のチタニルフ
タロンアニンの製造においては、反応性の点で専ら四塩
化チタンか原料として用いられてきた。例えは、チタニ
ルフタロシアニンに構造の類似したバナジル7タロシア
ニンの’ll1l 造においては塩化バナジルや、バナ
ジルアセチルアセト不イトなどが原料として使用可能で
あるが、チタニルフタロシアニンの製造においてはチタ
ニルアセチルアセ1〜不イトを原料として用いると収率
が著しく低下し、純度もまた低下する。このため、電子
写真感光体用のチタニルフタロシアニンの製造法として
は、上述の特開昭61−239248号、同62670
943号、同62−272272号、同63−1161
58号の他にも、特開昭61−171771号、同61
−109056号、同59166959号、同62−2
56868号、同62−256866号、同62256
867号、同63−80263号、同62−28605
9号、同63366号、同63−37163号、同62
−134651号に開示されているかこれらの全ての場
合において四塩化チタンを用いた方法がとられている。
Generally, phthalocyanine compounds are produced by reacting phthalodinitrile or 1.3-diiminoisoindoline with a metal compound, but in the production of titanyl phthalonanine for electrophotographic photoreceptors, reactive Titanium tetrachloride has been used exclusively as a raw material. For example, in the production of vanadyl 7-thalocyanine, which has a similar structure to titanyl phthalocyanine, vanadyl chloride and vanadyl acetylacetoite can be used as raw materials, but in the production of titanyl phthalocyanine, titanyl acetylaceto The use of nitride as a raw material significantly reduces the yield and also reduces the purity. For this reason, as a method for producing titanyl phthalocyanine for electrophotographic photoreceptors, there are
No. 943, No. 62-272272, No. 63-1161
In addition to No. 58, JP-A-61-171771 and JP-A-61-171771
-109056, 59166959, 62-2
No. 56868, No. 62-256866, No. 62256
No. 867, No. 63-80263, No. 62-28605
No. 9, No. 63366, No. 63-37163, No. 62
In all of these cases, a method using titanium tetrachloride is used.

〔発明か解決しよとする問題点〕[Problem to be solved by invention]

前記のようなチタン塩化物を原料に用いた場合1 には、フタロシアニン核の塩素反応が伴われる。 When using titanium chloride as the raw material 1 involves a chlorine reaction of the phthalocyanine nucleus.

その上従来の製造法においては180°C以上の高温度
条件を必要とするために塩素化の副反応を促進する原因
ともなっている。このため従来のチタニルフタロシアニ
ンには、かなりの量の塩素化チタニル70シアニンの含
有は避けられず、又−旦混入した塩素化チタニルフタロ
シアニンは無置換のチタニルフタロシアニンと物理的、
化学的な特性が類似しているため、再結晶や昇華精製に
よってさえ殆ど除去不能であり、従来、電子写真感光体
に用いられていたチタニルフタロシアニンは塩素化合物
を含んだものであった。例えば上述の公開公報に開示さ
れたチタニルフタロシアニンの製造例における塩素含有
量の実測値を挙げると表1の(注)M”=610は一塩
素化チタニルフタロシアニンに対応スる。
Furthermore, the conventional production method requires high temperature conditions of 180° C. or higher, which is a cause of promoting side reactions of chlorination. For this reason, conventional titanyl phthalocyanine inevitably contains a considerable amount of chlorinated titanyl 70 cyanine, and the chlorinated titanyl phthalocyanine that has been mixed in is physically separated from unsubstituted titanyl phthalocyanine.
Since they have similar chemical properties, they are almost impossible to remove even by recrystallization or sublimation purification, and the titanyl phthalocyanine conventionally used in electrophotographic photoreceptors contained chlorine compounds. For example, the actual value of the chlorine content in the production example of titanyl phthalocyanine disclosed in the above-mentioned publication is listed. In Table 1, (note) M'' = 610 corresponds to monochlorinated titanyl phthalocyanine.

このように従来のチタニルフタロシアニンにおいては3
.4wt%程度の塩素の含有は避けられないものてあっ
た。塩素原子としてのQ、4wt%という値は、塩素化
チタニルフタロンアニン濃度に換算すると7.0wt%
(6,6モル%)の含有量に相当するものであり、不純
物濃度としては非常に高い値である。
In this way, conventional titanyl phthalocyanine has 3
.. The inclusion of about 4 wt% chlorine was unavoidable. The value of Q as a chlorine atom, 4 wt%, is 7.0 wt% when converted to the concentration of chlorinated titanyl phthalonanine.
(6.6 mol%), which is a very high value as an impurity concentration.

方、フタロンアニン化合物の電子写真特性は、その結晶
状態によって著しく異なり、チタニルフタロシアニンに
おいても特定の結晶型を有するときに優れた特性が得ら
れることが知られている。
On the other hand, the electrophotographic properties of phthalonanine compounds vary significantly depending on their crystalline state, and it is known that even titanyl phthalocyanine has excellent properties when it has a specific crystalline form.

このうよに構造敏感な性質を持つ電子写真特性において
、不純物の存在は構造的な欠陥部位を導入することにな
り、特定の結晶型の持つ優れた電子写真特性を損わせる
原因となるものである。
In electrophotographic properties that are structurally sensitive, the presence of impurities introduces structural defect sites that impair the excellent electrophotographic properties of a specific crystal type. It is.

そのような点に関して、我々は高純度のチタニルフタロ
シアニンを得るべく鋭意検討を行った結果、塩素化反応
を伴わない製造法を適用することに成功し、そうして得
られた塩素含有量の少ないチタニルフタロンアニンを特
定の結晶構造にすることによって、優れた電子写真感光
体を作成することができたものである。
Regarding this point, we conducted intensive studies to obtain high-purity titanyl phthalocyanine, and as a result, we succeeded in applying a manufacturing method that does not involve a chlorination reaction. By forming titanyl phthalonanine into a specific crystal structure, it was possible to create an excellent electrophotographic photoreceptor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高感度にしてかつ残留電位が小さく、
電位特性が安定している優れた電子写真感光体を提供す
ることにある。
The purpose of the present invention is to achieve high sensitivity and low residual potential.
An object of the present invention is to provide an excellent electrophotographic photoreceptor having stable potential characteristics.

本発明の他の目的は、特に電位保持能に優れ、帯電電位
の安定した電子写真感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with particularly excellent potential holding ability and stable charging potential.

〔発明の構成及び作用効果〕[Structure and effects of the invention]

本発明の上記の目的は、Cu −Kα線に対するX線回
折スペクトルがブラッグ角2θの6.5゜±7.5にピ
ークを示すアモルファス状の結晶状態であって、かつ塩
素の含有量か0.2wt%以下、好ましくは0.1wt
%以下のチタニルフタロンアニンを感光層中に含有させ
ることによって達成することができる。
The above-mentioned object of the present invention is to provide an amorphous crystalline state in which the X-ray diffraction spectrum for Cu-Kα rays shows a peak at Bragg angle 2θ of 6.5°±7.5, and the chlorine content is 0. .2wt% or less, preferably 0.1wt
% or less of titanyl phthalonanine in the photosensitive layer.

X線回折スペクトルは次の条件で測定され、前記ピーク
とは、ノイズと明瞭に異なった鋭角の突出部のことであ
る。
The X-ray diffraction spectrum is measured under the following conditions, and the peak is an acute-angled protrusion that is clearly different from noise.

X線管球     Cu 電  圧          4(10KV電  流 
        100            mA
8 スタート角度   6.Odeg。
X-ray tube Cu Voltage 4 (10KV current
100mA
8 Starting angle 6. Odeg.

ストップ角度   35.Odeg。Stop angle 35. Odeg.

ステップ角度    0.02     6eg。Step angle 0.02 6eg.

測定時間     0.50      sec。Measurement time 0.50 sec.

塩素含有量は通常の元素分析測定によっても決定される
が、三菱化成社製塩素・硫黄分析装置rTSX−10J
を用いた元素分析によって決定することもできる。
The chlorine content can also be determined by ordinary elemental analysis measurements, but the chlorine and sulfur analyzer rTSX-10J manufactured by Mitsubishi Chemical Corporation
It can also be determined by elemental analysis using

本発明において最も望ましい塩素含有量としては、これ
らの測定方法において、検出限界以下となるものである
In the present invention, the most desirable chlorine content is one below the detection limit in these measurement methods.

本発明のチタニルフタロシアニンは下記−形式〔I〕で
表されるチタン化合物を用いることによって、塩素化を
伴わすに、高純度で製造することが形式〔I〕 1 Xx  Ti  Xz・(Y)+1 3 式中、xl、X2、X3、X4は−OR,、−3R2、
−0SOJi1 肘OR,を表ず。
The titanyl phthalocyanine of the present invention can be produced with high purity by using a titanium compound represented by the following format [I] and accompanied by chlorination. 3 In the formula, xl, X2, X3, X4 are -OR,, -3R2,
-0SOJi1 Elbow OR, not expressed.

R5 ここで、RI−R5は水素原子、アルキル基、アルケニ
ル基、アリール基、アラルキル基、アリール基、アリロ
イル基、複素環基を表し、これらの基は任意の置換基を
有してもよい。又X1〜X4は任意の組合せによって結
合し、環を形成してもよい。
R5 Here, RI-R5 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, an aryl group, an aryloyl group, or a heterocyclic group, and these groups may have any substituent. Moreover, X1 to X4 may be combined in any combination to form a ring.

Yは、配位子を表し、nは0、■、2を表す。なかでも
特にX1〜x4か−OR,であるものは、反応性や、取
扱い易さ、価格なとの点で、望ましいものとして挙げる
こと゛ができる。
Y represents a ligand, and n represents 0, ■, or 2. Among these, those having X1 to x4 or -OR can be cited as desirable in terms of reactivity, ease of handling, and price.

製造方法としては種々の反応形式が可能であるが、代表
的な方法として、次の反応式で表される方法が用いられ
る。
Although various reaction formats are possible as a production method, a method represented by the following reaction formula is typically used.

式中R1〜R16は、水素原子もしくは置換基を表す。In the formula, R1 to R16 represent a hydrogen atom or a substituent.

本発明におけるこのような製造方法においては活性な塩
素の攻撃を受けることがないので、フタロシアニン核の
塩素化を完全に回避することができる。又従来の四塩化
チタンを用いる方法に比べて反応性が高く、より穏やか
な環境下で反応を進行させることがでるため製造条件に
とって有利であるばかりでなく、副反応を防止し不純物
を最小に抑えることができるもである。
In such a production method according to the present invention, there is no attack by active chlorine, so chlorination of the phthalocyanine nucleus can be completely avoided. In addition, compared to the conventional method using titanium tetrachloride, it has higher reactivity and allows the reaction to proceed in a milder environment, which is not only advantageous for manufacturing conditions, but also prevents side reactions and minimizes impurities. It is something that can be suppressed.

本反応において有用なチタン化合物の具体例を次に示す
Specific examples of titanium compounds useful in this reaction are shown below.

(1)   (C4t(so)aT+ (2)   (i−C3t(to)tTi(3)(C2
H5o)4T1 (4)   (+  C+t(to)tT+(5)  
 (C+8H3yO)4Ti(6)   (C3H70
)ITI (7)   (i−CJ70)2Ti(CH3COCH
COCH3)2(8:) (HOCOCHO)2Ti(
OH)2OH3 (10) (Call+rの、Ti [P(OC3H7
)zl tOH 6口う I 1 (12)  1−C3H,OTi [0−P−01 P(OC8H,□)213 Of( 2 (13)  1−C3H,0Ti(OC2H4NHC2
H,NH□)3(14)  (C,H1□O)J+[P
(OC+31by)21a■ OH (15)  [(CH2=CHCH20CH2)、CC
H20E1Tr [P(OC,Hzy)z]z2H50
H 1 (19)  +  CJ70Ti(OCC+ 7H35
)3反応の溶媒としては種々のものを用いることが可能
である。例えばジオキサン、シクロヘキサン、スルホラ
ン、ジメチルスルホキシド、ジメチルボルムアミド、ジ
メチルアセトアミド、メチルペンタノン等の脂肪族溶媒
、クロルベンゼン、ジクロルベンゼン、ブロムベンゼン
、ニトロベンゼン、クロルナフタレン、テトラリン、ピ
リジン、キノリン等の芳香族溶媒などが代表的なものと
して挙げられるが、高純度の生成物を得るためには、チ
タニルフタロシアニンに対しである程度の溶解性を持つ
ものか望ましい。
(1) (C4t(so)aT+ (2) (i-C3t(to)tTi(3)(C2
H5o)4T1 (4) (+ C+t(to)tT+(5)
(C+8H3yO)4Ti(6) (C3H70
)ITI (7) (i-CJ70)2Ti(CH3COCH
COCH3)2(8:) (HOCOCHO)2Ti(
OH)2OH3 (10) (Call+r, Ti [P(OC3H7
)zl tOH 6 mouth I 1 (12) 1-C3H,OTi [0-P-01 P(OC8H,□)213 Of( 2 (13) 1-C3H,0Ti(OC2H4NHC2
H,NH□)3(14) (C,H1□O)J+[P
(OC+31by)21a■ OH (15) [(CH2=CHCH20CH2), CC
H20E1Tr [P(OC,Hzy)z]z2H50
H 1 (19) + CJ70Ti (OCC+ 7H35
)3 It is possible to use various solvents as the reaction solvent. For example, aliphatic solvents such as dioxane, cyclohexane, sulfolane, dimethyl sulfoxide, dimethylbormamide, dimethylacetamide, methylpentanone, aromatic solvents such as chlorobenzene, dichlorobenzene, bromobenzene, nitrobenzene, chlornaphthalene, tetralin, pyridine, quinoline, etc. Typical examples include solvents, but in order to obtain a highly pure product, it is desirable to have a certain degree of solubility for titanyl phthalocyanine.

反応温度は、チタンカップリング剤の種類によって異な
るが、だいたい100〜180 ’Oで行うことができ
る。この点でも従来の反応が180〜240°Cという
3− 高温を必要としていたのに対して、副反応防止という観
点から有利である。
The reaction temperature varies depending on the type of titanium coupling agent, but it can be carried out at about 100 to 180'O. In this respect as well, the conventional reaction requires a high temperature of 180 to 240°C, whereas this method is advantageous from the viewpoint of preventing side reactions.

こうして得られた高純度のチタニルフタロシアニンは適
当な溶媒で処理することによって、目的の結晶型を得る
ことかできが、処理に用いられる装置としては一般的な
撹拌装置の他に、ホモミキザー、ディスバイザ、アジタ
ー、或いはボールミル、サンドミル、アトライタ等を用
いることができる。
The highly purified titanyl phthalocyanine obtained in this way can be treated with an appropriate solvent to obtain the desired crystal form. However, in addition to a general stirring device, the equipment used for the treatment is a homomixer, a divider, An agitator, ball mill, sand mill, attritor, etc. can be used.

本発明の電子写真感光体において、上記のチタニル7タ
ロシアニンはキャリア発生物質として用いられるが、そ
の他に、他のキャリア発生物質を併用してもよい。その
ようなキャリア発生物質としては本発明とは結晶型にお
いて異なるチタニルフタロシアニンをはじめ、他のフタ
ロシアニン顔料、アゾ顔料、アントラキノン顔料、ペリ
レン顔料、多環キノン顔料、スクェアリウム顔料等が挙
げられる。
In the electrophotographic photoreceptor of the present invention, the titanyl-7-thalocyanine described above is used as a carrier-generating substance, but other carrier-generating substances may also be used in combination. Such carrier-generating substances include titanyl phthalocyanine which differs in crystal form from that of the present invention, other phthalocyanine pigments, azo pigments, anthraquinone pigments, perylene pigments, polycyclic quinone pigments, squareium pigments, and the like.

本発明の感光体におけるキャリア輸送物質としては、種
々のものが使用できるが、代表的なものとしては例えば
、オキサゾール、オキザジアゾル、チタノール、チアジ
アゾール、イミダゾール等に代表される含窒素複素環核
及びその縮合環核を有する化合物、ポリアリールアルカ
ン系の化合物、ピラソリン系化合物、ヒドラゾン系化合
物、トリアリールアミン系化合物、スチリル系化合物、
スチリルトリフェニルアミン系化合物、β−フェニルス
チリルトリフェニルアミン系化合物、ブタジェン系化合
物、ヘキサトリエン系化合物、カルバゾール系化合物、
縮合多環系化合物等が挙げられる。これらのキャリア輸
送物質の具体例としては、例えば特開昭61−1073
56号に記載のキャリア輸送物質を挙げることができる
が、特に代表的なものの構造を次に示す。
Various carrier transport substances can be used as the carrier transport substance in the photoreceptor of the present invention, but representative examples include nitrogen-containing heterocyclic nuclei represented by oxazole, oxadiazole, titanol, thiadiazole, imidazole, etc., and their condensations. Compounds having a ring nucleus, polyarylalkane compounds, pyrazoline compounds, hydrazone compounds, triarylamine compounds, styryl compounds,
styryltriphenylamine compounds, β-phenylstyryltriphenylamine compounds, butadiene compounds, hexatriene compounds, carbazole compounds,
Examples include fused polycyclic compounds. Specific examples of these carrier transport substances include, for example, Japanese Patent Application Laid-Open No. 61-1073.
The carrier transport substances described in No. 56 can be mentioned, and the structures of particularly typical ones are shown below.

−1 5 6− −6− −7− −8 −5 −9 T−10 T−14 −11 −15 −12 −16 −13 T −1,7 2H6 9 0 T〜18 −19 感光体の構成は種々の形態が知られている。本発明の感
光体はそれらのいずれの形態をもとりうるが、積層型も
しくは分散型の機能分離型感光体とするのか望ましい。
-1 5 6- -6- -7- -8 -5 -9 T-10 T-14 -11 -15 -12 -16 -13 T -1,7 2H6 9 0 T~18 -19 Structure of photoreceptor is known in various forms. Although the photoreceptor of the present invention can take any of these forms, it is preferable to use a laminated type or a dispersed type of functionally separated type photoreceptor.

この場合、通常は第1図から第6図のような構成となる
。第1図に示す層構成は、導電性支持体1上にキャリア
発生層2を形成し、これにキャリア輸送層3を積層して
感光層4を形成したものであり、第2図はこれらのキャ
リア発生層2とギヤリア輸送層3を逆にした感光層4′
を形成したものである。第3図は第1図の層構成の感光
層4と導電性支持体1の間に中間層5を設け、第4図は
第2図の層構成の感光層4′と導電性支持体1との間に
中間層5を設けたものである。第5図の層構成はキャリ
ア発生物質6とキャリア輸送物質7を含有する感光層4
″を形成したものであり、第6図はこのような感光層4
″と導電性支持体lとの間に中間層5を設けたものであ
る。
In this case, the configuration is usually as shown in FIGS. 1 to 6. The layer structure shown in FIG. 1 is such that a carrier generation layer 2 is formed on a conductive support 1, and a carrier transport layer 3 is laminated thereon to form a photosensitive layer 4. A photosensitive layer 4' in which the carrier generation layer 2 and the gear transport layer 3 are reversed.
was formed. 3, an intermediate layer 5 is provided between the photosensitive layer 4 and the conductive support 1 having the layer structure shown in FIG. 1, and FIG. 4 shows the photosensitive layer 4' and the conductive support 1 having the layer structure shown in FIG. An intermediate layer 5 is provided between the two. The layer structure shown in FIG. 5 is a photosensitive layer 4 containing a carrier-generating substance 6 and a carrier-transporting substance 7.
'', and FIG. 6 shows such a photosensitive layer 4.
An intermediate layer 5 is provided between the conductive support l and the conductive support l.

第1図〜第6図の構成において、最表層には、更に、保
護層を設ける′ことができる。
In the configurations shown in FIGS. 1 to 6, a protective layer can be further provided on the outermost layer.

感光層の形成においては、キャリア発生物質或はキャリ
ア輸送物質を単独で、もしくはバインダや添加剤ととも
に溶解させた溶液を塗布する方法か有効である。しかし
又、一般にキャリア発生物質の溶解度は低いため、その
ような場合キャリア発生物質を超音波分散機、ボールミ
ル、サンドミル、ホモミキザー等の分散装置を用いて適
当な分散媒中に微粒子分散させた液を塗布する方法が有
効となる。この場合、バインダや添加剤は分散液中に添
加して用いられるのか通常である。
In forming the photosensitive layer, it is effective to apply a solution in which a carrier-generating substance or a carrier-transporting substance is dissolved alone or together with a binder or an additive. However, since the solubility of carrier-generating substances is generally low, in such cases, a liquid in which the carrier-generating substance is dispersed into fine particles in an appropriate dispersion medium using a dispersion device such as an ultrasonic dispersion machine, a ball mill, a sand mill, or a homomixer is prepared. The coating method is effective. In this case, binders and additives are usually added to the dispersion.

感光層の形成に使用される溶剤或は分散媒としては広く
任意のものを用いることかできる。例えば、ブチルアミ
ン、エチレンジアミン、N、N−ジメチルホルムアミド
、アセトン、メチルエチルケトン、シクロヘキザノン、
テトラヒドロフラン、ジオキサン、酢酸エチル、酢酸ブ
チル、メチルセルソルブ、エチルセルソルブ、エチレン
グリコールジメチルエーテル、トルエン、キシレン、ア
セトフェノン、クロロホルム、ジクロルメタン、ジクロ
ルエタン、1ヘリクロルエタン、メタノール、エタノー
ル、70パノール、ブタノール等カ挙けられる。
A wide variety of solvents or dispersion media can be used to form the photosensitive layer. For example, butylamine, ethylenediamine, N,N-dimethylformamide, acetone, methyl ethyl ketone, cyclohexanone,
Tetrahydrofuran, dioxane, ethyl acetate, butyl acetate, methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether, toluene, xylene, acetophenone, chloroform, dichloromethane, dichloroethane, 1-helichloroethane, methanol, ethanol, 70 panol, butanol, etc. I get kicked.

キャリア発生層もしくはギヤリア輸送層の形成にバイン
ダを用いる場合に、バインダとして任意のものを選ぶこ
とができるが、特に疎水性でかつフィルム形成能を有す
る高分子重合体が望ましい。
When a binder is used to form the carrier generation layer or the gear transport layer, any binder can be selected as the binder, but a hydrophobic polymer having film-forming ability is particularly desirable.

このような重合体としては例えば次のものを挙けること
ができるが、これらに限定されるものではない。
Examples of such polymers include, but are not limited to, the following:

ポリカーボ不−1・  ポリカーボネートZ樹脂アクリ
ル樹脂    メタクリル樹脂 ポリ塩化上ニル   ポリ塩化ビニリデンポリスチレン
 スチレン−ブタジェン共重合体ポリ酢酸ビニル   
ポリビニルホルマールポリビニルブチラール ポリビニ
ルアセタールポリビニルカルバゾール スチレン−アル
キッド樹脂 シリコーン樹脂 シリコーン−アルキッド樹脂ポリエス
テル    フェノール樹脂 ポリウレタン   エポキシ樹脂 塩化ビニリデン−アクリロニトリル共重合体塩化ビニル
−酢酸ビニル共重合体 塩化ビニル−酢酸ヒニルー無水マレイン酸共重合体バイ
ンダに対するキャリア発生物質の割合は10〜600w
t%が望ましく、更には50〜400yt%が好ましい
。バインダに対するキャリア輸送物質の割合は10〜5
00wt%とするのが望ましい。キャリア発生層の厚さ
は、0.01〜20μmとされるが、更には3 4 0.05〜5μmが好ましい。キャリア輸送層の厚みは
1〜100μmであるが、更には5〜30μmが好まし
い。
Polycarbonate resin, polycarbonate Z resin, acrylic resin, methacrylic resin, polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene-butadiene copolymer, polyvinyl acetate
Polyvinyl formal polyvinyl butyral polyvinyl acetal polyvinyl carbazole styrene-alkyd resin silicone resin silicone-alkyd resin polyester phenolic resin polyurethane epoxy resin vinylidene chloride-acrylonitrile copolymer vinyl chloride-vinyl acetate copolymer vinyl chloride-hinyl acetate-maleic anhydride copolymer The ratio of carrier generating substance to binder is 10 to 600w
The content is preferably t%, more preferably 50 to 400yt%. The ratio of carrier transport substance to binder is 10-5
It is desirable to set it to 00wt%. The carrier generation layer has a thickness of 0.01 to 20 μm, more preferably 0.05 to 5 μm. The thickness of the carrier transport layer is 1 to 100 μm, more preferably 5 to 30 μm.

上記感光層には感度の向上や残留電位の減少、或いは反
復使用時の疲労の低減を目的として、電子受容性物質を
含有させることができる。このような電子受容性物質と
しては例えば、無水琥珀酸、無水マレイン酸、ジブロム
無水琥珀酸、無水フタル酸、テトラクロル無水フタル酸
、テトラブロム無水フタル酸、3−ニトロ無水フタル酸
、4−二1・ロ無水フタル酸、無水ピロメリット酸、無
水メリット酸、テトラシアノエチレン、テ1〜ラシアノ
キノジメタン、o−ジニトロベンゼン、m−ジニトロベ
ンゼン、1,3.5−1−ジニトロベンゼン、p−ニト
ロベンゾニトリル、ピクリルクロライド、キノンクロル
イミド、クロラニル、クロラニル、ジクロルジシアノ−
p−ベンゾキノン、アントラキノン、ジニトロアントラ
キノン、9−フルオレニリデンマロノジ二トリル、ポリ
ニトロ−9−フルオレニリデンマロノジニトリル、ピク
リン酸、0−ニトロ安息香酸、p−二1・口安息香酸、
3,5−ジニトロ安息香酸、ペンタフルオロ安息香酸、
5−ニトロサリチル酸、3,5ジニトロサリチル酸、フ
タル酸、メリット酸、その他の電子親和力の大きい化合
物を挙げることができる。電子受容性物質の添加割合は
キャリア発生物質の重量100に対して0.01−20
0wt/wtが望ましく、更には0.1〜100wt/
wtが好ましい。
The photosensitive layer may contain an electron-accepting substance for the purpose of improving sensitivity, reducing residual potential, or reducing fatigue during repeated use. Examples of such electron-accepting substances include succinic anhydride, maleic anhydride, dibromo succinic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride, 3-nitro phthalic anhydride, 4-21. Phthalic anhydride, pyromellitic anhydride, mellitic anhydride, tetracyanoethylene, 1-lacyanoquinodimethane, o-dinitrobenzene, m-dinitrobenzene, 1,3.5-1-dinitrobenzene, p-nitro Benzonitrile, picryl chloride, quinone chlorimide, chloranil, chloranil, dichlorodicyano-
p-benzoquinone, anthraquinone, dinitroanthraquinone, 9-fluorenylidenemalonodinitrile, polynitro-9-fluorenylidenemalonodinitrile, picric acid, 0-nitrobenzoic acid, p-21-mouthbenzoic acid,
3,5-dinitrobenzoic acid, pentafluorobenzoic acid,
Examples include 5-nitrosalicylic acid, 3,5 dinitrosalicylic acid, phthalic acid, mellitic acid, and other compounds with high electron affinity. The addition ratio of the electron-accepting substance is 0.01-20 per 100 weight of the carrier-generating substance.
0wt/wt is desirable, and more preferably 0.1 to 100wt/
wt is preferred.

又、上記感光層中には保存性、耐久性、耐環境依存性を
向上させる目的で酸化防止剤や光安定剤等の劣化防止剤
を含有させることかできる。そのような目的に用いられ
る化合物としては例えば、トコロフエロール等のクロマ
ノール誘4体及びそのエーテル化化合物もしくはエステ
ル化化合物、ボリアリールアルカン化合物、ハイドロキ
ノン誘導体及びそのモノ及びジエーテル化化合物、ベン
ツフェノン誘導体、ベンゾトリアソール誘導体、チオエ
ーテル化合物、ポスホン酸エステル、亜燐酸エステル、
フェニレンジアミン誘導体、フエノル化合物、ヒンダー
ドフェノール化合物、直鎖アミン化合物、環状アミン化
合物、ヒンダードアミン化合物、なとが有効である。特
に有効な化合物の具体例としては、rl[GANOX 
l0IOJ、r[GANOX565J (チパ・ガイギ
ー社製)、[スミライザーB HT J「スミライザー
MDPJ (細大化学工業社製)等のヒンダードフェノ
ール化合物、[サノールLS−2626J 、 rザノ
ールLS−622LDJ (三共社製)等のヒンダード
アミン化合物が挙げられる。
Further, the photosensitive layer may contain deterioration inhibitors such as antioxidants and light stabilizers for the purpose of improving storage stability, durability, and resistance to environmental dependence. Compounds used for such purposes include, for example, chromanol derivatives such as tocopherols and their etherified or esterified compounds, polyarylalkane compounds, hydroquinone derivatives and their mono- and dietherized compounds, benzphenone derivatives, benzotriazole derivatives, thioether compounds, phosphonic acid esters, phosphorous acid esters,
Effective are phenylenediamine derivatives, phenol compounds, hindered phenol compounds, linear amine compounds, cyclic amine compounds, and hindered amine compounds. Specific examples of particularly effective compounds include rl[GANOX
l0IOJ, r [GANOX565J (manufactured by Chipa Geigy), [Sumilizer B HT J] Hindered phenol compounds such as Sumilizer MDPJ (manufactured by Hosodai Kagaku Kogyo Co., Ltd.), [Sanol LS-2626J, r Zanol LS-622LDJ (Sankyosha) Examples include hindered amine compounds such as

中間層、保護層等に用いられるバインダとしては、上記
のキャリア発生層及びキャリア輸送層用に挙げたものを
用いることができるが、その他にポリアミド樹脂、エチ
レン−酢酸ビニル共重合体、エチレン−酢酸ビニル−無
水マレイン酸共重合体、エチレン−酢酸ヒニルーメタク
リル酸共重合体等のエチレン系樹脂、ボリヒニルアルコ
ール、セルロス誘導体等か有効である。又、メラミン、
ユボキシ、イソシアネート等の熱硬化或いは化学的硬化
を利用した硬化壓のバインダを用いることかできる。
As the binder used for the intermediate layer, protective layer, etc., those listed above for the carrier generation layer and carrier transport layer can be used, but in addition, polyamide resin, ethylene-vinyl acetate copolymer, ethylene-acetic acid Ethylene resins such as vinyl-maleic anhydride copolymer, ethylene-hinyl acetate-methacrylic acid copolymer, polyhinyl alcohol, cellulose derivatives, etc. are effective. Also, melamine,
A hardened binder using thermosetting or chemical curing such as uboxy, isocyanate, etc. can be used.

導電性支持体としては、金属板、金属ドラムが用いられ
る他、導電性ポリマーや酸化インジウム等の導電性化合
物、もしくはアルミニウム、パラジウム等の金属の薄層
を塗布、蒸着、ラミネート等の手段により紙やプラスチ
ックフィルムなどの基体の上に設けたものを用いること
ができる。
As the conductive support, a metal plate or a metal drum is used, or a thin layer of a conductive polymer, a conductive compound such as indium oxide, or a metal such as aluminum or palladium is coated on paper by means such as coating, vapor deposition, or lamination. It is possible to use a substrate provided on a substrate such as or a plastic film.

本発明の感光体は以上のような構成であって、以下の実
施例からも明らかなように、帯電特性、感度特性、繰返
し特性に優れたものである。
The photoreceptor of the present invention has the above-described structure, and as is clear from the following examples, it has excellent charging characteristics, sensitivity characteristics, and repeatability characteristics.

〔実施例〕〔Example〕

次に本発明における具体的な実施例を示す。 Next, specific examples of the present invention will be shown.

合成例1 1.3−ジイミノイソインドリン;29.2gとスルホ
ラン;200m+2を混合し、チタニウムトライソプロ
ポキシド;17.0gを加え、窒素雰囲気下に140°
Cで2時間反応させた。放冷した後析出物を濾取し、ク
ロロホルムで洗浄、2%−塩酸水溶液で洗浄、水洗、メ
タノール洗浄して、乾燥の後25.5g(88,8%)
のチタニル7タロシアニンを得た。元素分析法において
塩素は検出限界以下であった。
Synthesis Example 1 Mix 29.2 g of 1.3-diiminoisoindoline and 200 m+2 of sulfolane, add 17.0 g of titanium triisopropoxide, and heat at 140° under a nitrogen atmosphere.
The reaction was carried out at C for 2 hours. After cooling, the precipitate was collected by filtration, washed with chloroform, washed with a 2% aqueous hydrochloric acid solution, washed with water, washed with methanol, and dried. 25.5 g (88.8%)
of titanyl-7 talocyanine was obtained. Chlorine was below the detection limit in elemental analysis.

生成物は20倍量の濃硫酸に溶解し、100倍量の水に
あけて析出させて、濾取した後に乾燥して、7 8 第7図に示すX線回折スペクトルをもつ結晶型とし /
こ 。
The product was dissolved in 20 times the amount of concentrated sulfuric acid, poured into 100 times the amount of water, precipitated, collected by filtration, and dried to obtain a crystal form with the X-ray diffraction spectrum shown in Figure 7.
child .

合成例2 1.3−ジイミノイソインドリン;29.2gとα−ク
ロルナフタレン;200mffを混合し、チタニウムテ
トラブトキシド;20.4gを加えて窒素雰囲気下に1
40〜150°Cで2時間加熱し、続いて180°Cで
3時間反応させた。放冷した後析出物を濾取し、スルホ
ランで洗浄、次いでクロロホルムで洗浄し、更に2%−
塩酸水溶液で洗浄、水洗、最後にメタノール洗浄して、
乾燥の後26.2g(91,0%)のチタニルフタロシ
アニンを得た。元素分析における塩素含有量の値は0.
08wt%であった。
Synthesis Example 2 29.2 g of 1.3-diiminoisoindoline and 200 mff of α-chlornaphthalene were mixed, 20.4 g of titanium tetrabutoxide was added, and the mixture was heated under a nitrogen atmosphere for 1
The mixture was heated at 40-150°C for 2 hours, and then reacted at 180°C for 3 hours. After cooling, the precipitate was collected by filtration, washed with sulfolane, then washed with chloroform, and further washed with 2%
Wash with aqueous hydrochloric acid solution, wash with water, and finally wash with methanol.
After drying, 26.2 g (91.0%) of titanyl phthalocyanine were obtained. The value of chlorine content in elemental analysis is 0.
It was 0.08 wt%.

生成物は20倍量の濃硫酸に溶解し、100倍量の水に
あけて析出させて、濾取した後に乾燥して、第8図に示
すX線回折スペクトルをもつ結晶型としlこ。
The product was dissolved in 20 times the amount of concentrated sulfuric acid, poured into 100 times the amount of water, precipitated, filtered, and dried to give a crystal form with the X-ray diffraction spectrum shown in Figure 8.

合成例3 合成例1で得たチタニルフタロシアニン;1.2gと後
述の比較合成例1で得たチタニルフタロシアニン;0.
8gを40gの濃硫酸に溶かし、400gの水にあ1、
けて析出させて濾取し、乾燥して、塩素含有量0.19
wt%の本発明のチタニルフタロシアニンを得た。
Synthesis Example 3 Titanyl phthalocyanine obtained in Synthesis Example 1; 1.2 g and titanyl phthalocyanine obtained in Comparative Synthesis Example 1 described below; 0.
Dissolve 8g in 40g of concentrated sulfuric acid, add 1 in 400g of water,
The chlorine content is 0.19.
wt% titanyl phthalocyanine of the present invention was obtained.

比較合成例(1) フタロジニトリル;25.6gとα−クロルナフタレン
Comparative Synthesis Example (1) Phthalodinitrile; 25.6 g and α-chlornaphthalene.

150mffの混合物中に窒素気流下で6.5m12の
四塩化チタンを滴下し、200〜2つ0°Cの温度で5
時間反応させた。析出物を濾取し、a−クロルナフタレ
ンで洗浄した後、クロロホルムで洗浄し、続いてメタノ
ールで洗浄した。次いでアンモニア水中で還流して加水
分解を完結させた後、水洗、メタノール洗浄し乾燥の後
、チタニル7タロシアニン;21.8g(75,6%)
を得た。元素分析による塩素の含有量は0.46wt%
であった。
6.5 m12 of titanium tetrachloride was dropped into the 150 mff mixture under a nitrogen stream,
Allowed time to react. The precipitate was collected by filtration, washed with a-chloronaphthalene, then with chloroform, and then with methanol. Next, after refluxing in ammonia water to complete hydrolysis, washing with water, washing with methanol, and drying, titanyl 7 talocyanine; 21.8 g (75.6%)
I got it. Chlorine content according to elemental analysis is 0.46wt%
Met.

生成物はlfl量の濃硫酸に溶解し、100倍量の水に
あけて析出させて、濾取した後に乾燥して、第9図に示
すX線回折スペクトルをもつ結晶型とし jこ 。
The product was dissolved in 1 fl volume of concentrated sulfuric acid, poured into 100 times the volume of water, precipitated, collected by filtration, and dried to form a crystal form having the X-ray diffraction spectrum shown in Figure 9.

比較合成例(2) 合成例1で得たチタニルフタロシアニン;0.6gと比
較合成例(1)で得たチタニルフタロンアニン;1.4
gを40gの濃硫酸に溶かし、400gの水にあけて析
出させて濾取し、乾燥して、第10図に示すX線回折ス
ペクトルをもつ結晶型とした。この場合の元素分析によ
る塩素含有量は0.31wt%であった。
Comparative Synthesis Example (2) Titanyl phthalocyanine obtained in Synthesis Example 1; 0.6 g and titanyl phthalonanine obtained in Comparative Synthesis Example (1); 1.4
g was dissolved in 40 g of concentrated sulfuric acid, poured into 400 g of water, precipitated, collected by filtration, and dried to obtain a crystal form having the X-ray diffraction spectrum shown in FIG. In this case, the chlorine content according to elemental analysis was 0.31 wt%.

比較合成例(3) フタロジニトリル;25.6gに代えて、フタロジニト
リルi24.7gと4−クロルフタロジニトリル;1.
Ogの混合物を用いた他は比較合成例1と同様にして、
塩素含有量1.14wt%の比較用のチタニル7タロシ
アニンを得た。
Comparative Synthesis Example (3) 24.7 g of phthalodinitrile i and 4-chlorophthalodinitrile in place of 25.6 g of phthalodinitrile; 1.
In the same manner as Comparative Synthesis Example 1 except that a mixture of Og was used,
Comparative titanyl 7 talocyanine with a chlorine content of 1.14 wt% was obtained.

実施例I 合成例1において得られた第7図のX線回折パター’y
 ヲ有するチタニルフタロシアニン:1部、バインダ樹
脂としてシリコーン変性樹脂、rKR−5240J(信
越化学社製);0.5部、分散媒としてインプロパツー
ル;100部をサンドミルを用いて分散し、これをアル
ミニウムを蒸着したポリエステルベース上にワイヤバー
を用いて塗布して、膜厚0.4μmのキャリア発生層を
形成した、次いで、キャリア輸送物質T−3,1部とボ
リノノーボ不−1・樹脂「ニーピロンZ200j (三
菱瓦斯化学社製);1.3部、及び添加剤として、「サ
ノールLS−2626J(三共社製)0.03部、微量
のシリコーンオイルrKF−54J(信越化学社製)を
、1.2−ジクロルエタン;10部に溶解した液をブレ
ード塗布機を用いて塗布し乾燥した後、膜厚18μmの
キャリア輸送層を形成した。このようにして得られた感
光体をサンプル1とする。
Example I X-ray diffraction pattern 'y in FIG. 7 obtained in Synthesis Example 1
1 part of titanyl phthalocyanine, 0.5 parts of silicone modified resin rKR-5240J (manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder resin, and 100 parts of Improper Tool as a dispersion medium were dispersed using a sand mill, and this was dispersed in aluminum. A carrier-generating layer with a film thickness of 0.4 μm was formed by using a wire bar to form a carrier-generating layer on a polyester base on which 1 part of carrier transport material T-3 and borino-novo fu-1 resin were applied using a wire bar. (manufactured by Mitsubishi Gas Chemical Co., Ltd.); 1.3 parts, and as additives, 0.03 parts of Sanol LS-2626J (manufactured by Sankyo Co., Ltd.), a trace amount of silicone oil rKF-54J (manufactured by Shin-Etsu Chemical Co., Ltd.), 1.2 parts. - Dichloroethane: A solution dissolved in 10 parts was coated using a blade coater and dried to form a carrier transport layer with a film thickness of 18 μm.The thus obtained photoreceptor is referred to as Sample 1.

実施例2 合成例2で得た第8図のチタニル7タロシアニン;1部
、分散媒としてクロロホルム;100部を超音波分散装
置を用いて分散した。一方、アルミニウムを蒸着したポ
リエステルベース上にポリアミド樹脂rcM8000」
(東し社製)からなる厚さ0.2μmの中間層を設け、
その上に、先に得られた分散液を浸漬塗布法によって塗
布して、膜厚0.3μmのキャリア発生層を形成した。
Example 2 1 part of the titanyl 7-thalocyanine shown in FIG. 8 obtained in Synthesis Example 2 and 100 parts of chloroform as a dispersion medium were dispersed using an ultrasonic dispersion device. On the other hand, polyamide resin rcM8000 is made on a polyester base coated with aluminum.
(manufactured by Toshisha) with a thickness of 0.2 μm,
The previously obtained dispersion was applied thereon by dip coating to form a carrier generation layer with a thickness of 0.3 μm.

次いでキャリア輸送物質T−2;1部とポリカーボネー
ト樹脂[パンライト K1300J(音大化成社製);
1.3部及び微量のシリコーンオイルrKF−54)(
信越化学社製)を1.2−ジクロエj 2 タン:10部に溶解した液を浸漬塗布法によって塗布し
て、乾燥の後、膜厚23μmのキャリア輸送層を形成し
た。
Next, 1 part of carrier transport substance T-2 and polycarbonate resin [Panlite K1300J (manufactured by Ondai Kasei Co., Ltd.);
1.3 parts and a trace amount of silicone oil rKF-54) (
A solution obtained by dissolving 1,2-dichloroj2tan (manufactured by Shin-Etsu Chemical Co., Ltd.) in 10 parts of 1,2-dichloroj2thane was applied by dip coating, and after drying, a carrier transport layer having a thickness of 23 μm was formed.

このようにして得られた感光体をサンプル2とする。The photoreceptor thus obtained is designated as sample 2.

実施例3 実施例2における、第7図のチタニルフタロ/アニンを
合成例3で得たチタニルフタロシアニンに代えた他は実
施例2と同、様にして感光体を作成した。これをサンプ
ル3とする。
Example 3 A photoreceptor was prepared in the same manner as in Example 2, except that the titanyl phthalocyanine obtained in Synthesis Example 3 was used in place of the titanyl phthalo/anine shown in FIG. This is called sample 3.

比較例(1) 実施例2における、第7図のチタニル7タロンアニンを
比較合成例(1)で得た、第9図のX線回折パターンを
持つ比較のチタニルフタロシアニンに代えた他は実施例
1と同様にして比較用の感光体を得た。これを比較サン
プル(1)とする。
Comparative Example (1) Example 1 except that the titanyl 7-talonanine shown in Fig. 7 in Example 2 was replaced with the comparative titanyl phthalocyanine having the X-ray diffraction pattern shown in Fig. 9 obtained in Comparative Synthesis Example (1). A comparative photoreceptor was obtained in the same manner as described above. This will be referred to as comparative sample (1).

比較例(2) 実施例2における、第7図のチタニルフタロシアニンを
比較合成例(2)で得た、第10図のX線回に代えた他
は実施例2と同様にして比較用の感光体を得た。これを
比較サンプル(2)とする。
Comparative Example (2) Comparative photosensitization was carried out in the same manner as in Example 2 except that the titanyl phthalocyanine shown in Fig. 7 obtained in Comparative Synthesis Example (2) was replaced with the X-ray circuit shown in Fig. 10. I got a body. This will be referred to as comparative sample (2).

比較例(3) 実施例2における、第7図のチタニルフタロシアニンを
比較合成例(3)で得た、比較用のチタニルフタロシア
ニンに代えた他は実施例2と同様にして比較用の感光体
を得た。これを比較サンプル(3)とする。
Comparative Example (3) A comparative photoreceptor was prepared in the same manner as in Example 2, except that the titanyl phthalocyanine shown in FIG. 7 in Example 2 was replaced with the comparative titanyl phthalocyanine obtained in Comparative Synthesis Example (3). Obtained. This will be referred to as comparative sample (3).

(評価1) 以上のようにして得られたサンプルは、ペーパアナライ
ザEPA−8100(川口電気社製)を用いて、以下の
ような評価を行った。まず、−80μへの条件で5秒間
のコロナ帯電を行い、帯電直後の表面電位Va及び5秒
間放置後の表面電位Viを求め、続いて表面照度が2(
lux)となるような露光を行い、表面電位を1/2V
iとするのに必要な露光量E172を求めた。又D−1
00(Va−Vi)/ Va(%)の式より暗減衰率り
を求めた。結果は表1に示した。塩素含有量の低下によ
り、特に電位保持能に優れた特性か折ハターンを持つ比
較のチタニルフタロシアニン得られる。
(Evaluation 1) The sample obtained as described above was evaluated as follows using a paper analyzer EPA-8100 (manufactured by Kawaguchi Electric Co., Ltd.). First, corona charging was performed for 5 seconds under the condition of -80 μ, and the surface potential Va immediately after charging and the surface potential Vi after being left for 5 seconds were determined, and then the surface illuminance was set to 2 (
lux), and the surface potential was set to 1/2V.
The exposure amount E172 required to obtain i was determined. Also D-1
The dark decay rate was determined from the formula 00(Va-Vi)/Va(%). The results are shown in Table 1. By reducing the chlorine content, a comparative titanyl phthalocyanine having particularly excellent potential retention properties can be obtained.

表1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の感光体の層構成の具体例を示
した各断面である。 第7図及び第8図は本発明に係るチタニルフタロシアニ
ンのX線回折図、第9図及び第1O図比較合成例におい
て得られるチタニルフタロシアニンのX線回折図である
。 ■・・・導電性支持体  2・・・キャリア発生層3・
・キャリア輸送層 4.4’4″・・感光層5・・・中
間層
1 to 6 are cross sections showing specific examples of the layer structure of the photoreceptor of the present invention. FIGS. 7 and 8 are X-ray diffraction diagrams of titanyl phthalocyanine according to the present invention, and FIGS. 9 and 10 are X-ray diffraction diagrams of titanyl phthalocyanine obtained in comparative synthesis examples. ■... Conductive support 2... Carrier generation layer 3.
-Carrier transport layer 4.4'4''...Photosensitive layer 5...Intermediate layer

Claims (3)

【特許請求の範囲】[Claims] (1)Cu−Kα線に対するX線回折スペクトルが、ブ
ラッグ角2θの6.5゜±7.5゜の領域にブロードな
ピークを示すアモルファス状の結晶状態において、塩素
含有量が0.2重量%以下のチタニルフタロシアニンを
含有してなる電子写真感光体。
(1) In an amorphous crystalline state in which the X-ray diffraction spectrum for Cu-Kα rays shows a broad peak in the region of 6.5° ± 7.5° of the Bragg angle 2θ, the chlorine content is 0.2 wt. % or less of titanyl phthalocyanine.
(2)前記チタニルフタロシアニンが、下記一般式〔
I 〕で表されるチタン化合物を用いる方法によって製造
された請求項1に記載の電子写真感光体。 一般式〔 I 〕 ▲数式、化学式、表等があります▼ 〔式中、X_1、X_2、X_3、X_4は−OR_1
、−SR_2、−OSO_2R_3▲数式、化学式、表
等があります▼を表す。 ここでR_1〜R_5は、水素原子、アルキル基、アル
ケニル基、アリール基、アラキル基、アシール基、アリ
ロイル基、複素環基を表し、これらの基は任意の置換基
を有していてもよい。又、X_1〜X_4は任意の組合
わせによって結合し、環を結成してもよい。Yは配位子
を表し、nは0、1、2を表す。〕
(2) The titanyl phthalocyanine has the following general formula [
2. The electrophotographic photoreceptor according to claim 1, which is manufactured by a method using a titanium compound represented by [I]. General formula [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [In the formula, X_1, X_2, X_3, and X_4 are -OR_1
, -SR_2, -OSO_2R_3▲There are mathematical formulas, chemical formulas, tables, etc.▼Represents. Here, R_1 to R_5 represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aracyl group, an acyl group, an aryloyl group, or a heterocyclic group, and these groups may have any substituent. Further, X_1 to X_4 may be combined in any combination to form a ring. Y represents a ligand, and n represents 0, 1, or 2. ]
(3)前記チタニルフタロシアニンがキャリア発生物質
として用いられる請求項1又は2のいづれかに記載の電
子写真感光体。
(3) The electrophotographic photoreceptor according to claim 1 or 2, wherein the titanyl phthalocyanine is used as a carrier generating substance.
JP14600889A 1989-06-07 1989-06-07 Electrophotographic sensitive body Pending JPH0310256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14600889A JPH0310256A (en) 1989-06-07 1989-06-07 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14600889A JPH0310256A (en) 1989-06-07 1989-06-07 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0310256A true JPH0310256A (en) 1991-01-17

Family

ID=15398007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14600889A Pending JPH0310256A (en) 1989-06-07 1989-06-07 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0310256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1426418A1 (en) * 2002-12-04 2004-06-09 NexPress Solutions LLC Cocrystals containing high concentration of chlorine titanyl phthalocyanine and low concentration of titanyl fluorophthalocyanine, and electrophotographic element containing same
US7026084B2 (en) 2002-12-02 2006-04-11 Eastman Kodak Company Cocrystals containing high-chlorine titanyl phthalocyanine and low concentration of titanyl fluorophthalocyanine, and electrophotographic element containing same
US7135261B2 (en) * 2002-08-26 2006-11-14 Fuji Electric Imaging Device Co., Ltd. Multi-layered organic electrophotographic photoconductor
JP2008174753A (en) * 2008-02-14 2008-07-31 Mitsubishi Chemicals Corp Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142659A (en) * 1987-11-30 1989-06-05 Mita Ind Co Ltd Electrophotographic sensitive body
JPH01142658A (en) * 1987-11-30 1989-06-05 Mita Ind Co Ltd Electrophotographic sensitive body
JPH01221461A (en) * 1987-10-26 1989-09-04 Mita Ind Co Ltd Alpha-type titanyl phthalocyanine composition, its production and electrophotographic photoreceptor containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221461A (en) * 1987-10-26 1989-09-04 Mita Ind Co Ltd Alpha-type titanyl phthalocyanine composition, its production and electrophotographic photoreceptor containing same
JPH01142659A (en) * 1987-11-30 1989-06-05 Mita Ind Co Ltd Electrophotographic sensitive body
JPH01142658A (en) * 1987-11-30 1989-06-05 Mita Ind Co Ltd Electrophotographic sensitive body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135261B2 (en) * 2002-08-26 2006-11-14 Fuji Electric Imaging Device Co., Ltd. Multi-layered organic electrophotographic photoconductor
US7026084B2 (en) 2002-12-02 2006-04-11 Eastman Kodak Company Cocrystals containing high-chlorine titanyl phthalocyanine and low concentration of titanyl fluorophthalocyanine, and electrophotographic element containing same
EP1426418A1 (en) * 2002-12-04 2004-06-09 NexPress Solutions LLC Cocrystals containing high concentration of chlorine titanyl phthalocyanine and low concentration of titanyl fluorophthalocyanine, and electrophotographic element containing same
JP2008174753A (en) * 2008-02-14 2008-07-31 Mitsubishi Chemicals Corp Titanyl phthalocyanine compound and electrophotographic photoreceptor using the same

Similar Documents

Publication Publication Date Title
JP2727121B2 (en) Electrophotographic photoreceptor
US5472816A (en) Process for producing hydroxygallium phthalocyanine
JPH04323270A (en) Oxytitanium phthalocyanine, its manufacturing method, and electrophotographic photoreceptor using the same
US5495011A (en) Process for preparing hydroxygallium phthalocyanine crystal, product thereof and electrophotographic photoreceptor using the same
JPH03200790A (en) Titanylphthalocyanine
JPH0310256A (en) Electrophotographic sensitive body
JPH05249716A (en) Electrophotographic sensitive body
JPH0426855A (en) Electrophotographic sensitive body
JPH07128888A (en) Electrophotographic photoreceptor
JP3379020B2 (en) Novel pyrene-based compound, method for producing the same, and electrophotographic photoreceptor containing the compound
JP3780544B2 (en) Novel phthalocyanine compound and electrophotographic photoreceptor using the same
JP2821765B2 (en) Electrophotographic photoreceptor
JPH0310258A (en) Electrophotographic sensitive body
JP2861220B2 (en) Electrophotographic photoreceptor
JP3601616B2 (en) Electrophotographic photoreceptor
JPH0310257A (en) Electrophotographic sensitive body
JP2961573B2 (en) Electrophotographic photoreceptor
JP2707303B2 (en) Electrophotographic photoreceptor
JPH02183262A (en) Electrophotographic sensitive body
JPH02178358A (en) Novel phthalocyanine compound and sensitive material for electrophotography using the compound
JP2990757B2 (en) Electrophotographic photoreceptor
JPH04184448A (en) Coating liquid
JP3464937B2 (en) Electrophotographic photoreceptor
JP2861165B2 (en) Electrophotographic photoreceptor
JP2990758B2 (en) Electrophotographic photoreceptor