JPH03111741A - Optical sensor - Google Patents
Optical sensorInfo
- Publication number
- JPH03111741A JPH03111741A JP25089189A JP25089189A JPH03111741A JP H03111741 A JPH03111741 A JP H03111741A JP 25089189 A JP25089189 A JP 25089189A JP 25089189 A JP25089189 A JP 25089189A JP H03111741 A JPH03111741 A JP H03111741A
- Authority
- JP
- Japan
- Prior art keywords
- light
- lightguide
- light guide
- transparent
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 11
- 230000001902 propagating effect Effects 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 abstract description 16
- 238000002834 transmittance Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 239000007769 metal material Substances 0.000 abstract description 2
- 230000000644 propagated effect Effects 0.000 abstract 5
- 238000000034 method Methods 0.000 abstract 1
- 238000007740 vapor deposition Methods 0.000 abstract 1
- 239000010705 motor oil Substances 0.000 description 28
- 239000003921 oil Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000005297 pyrex Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、光学式センナに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical sensor.
[従来技術]
従来、特開昭60−111945号公報には、液体の有
無と液体の汚れを同時に検出できる光学式センサが示さ
れている。これは、第11図及び第12図に示すように
、光ファイバ1,2の端部とミラ一部3との間の空隙4
に液体が満たされると出力が変化する特性を利用したセ
ン勺である。[Prior Art] Conventionally, Japanese Patent Application Laid-Open No. 111945/1983 discloses an optical sensor that can simultaneously detect the presence or absence of liquid and the contamination of the liquid. This is due to the air gap 4 between the ends of the optical fibers 1 and 2 and the mirror part 3, as shown in FIGS. 11 and 12.
This sensor utilizes the characteristic that the output changes when the tank is filled with liquid.
[発明が解決しようとする課題]
ところが、このセンサは液体の透過率に基因する特性を
利用するものであるから、透過率の減少が若しい汚れ(
エンジンオイルの場合、10−5程度にまで低下)を検
出するためには空隙4を極めて小さく(少なくとも、0
.1mm以下)する必要がある。しかし、45°に傾い
たミラ一部3があるので不可能である。又、小さな空隙
を実現できたとしても、液体がその間に溜りやすいため
液面の検出(液体の有無の検出)ができなくなる。[Problems to be Solved by the Invention] However, since this sensor utilizes the characteristics based on the permeability of liquid, a decrease in the transmittance may cause small stains (
In the case of engine oil, the gap 4 must be extremely small (at least 0
.. 1mm or less). However, this is not possible because the mirror part 3 is tilted at 45°. Furthermore, even if a small gap can be realized, liquid tends to accumulate between them, making it impossible to detect the liquid level (detect the presence or absence of liquid).
この発明の目的は、透過率低下の著しい媒質も検出でき
る光学式センサを提供することにある。An object of the present invention is to provide an optical sensor that can detect even a medium with a significant decrease in transmittance.
[課題を解決するための手段]
この発明は、棒状の充実体からなり、被検出媒質の屈折
率より大きな屈折率を有する透明導光体と、前記透明導
光体の一端に接続された発光・受光部と、前記透明導光
体の他端に設【プられ、当該透明導光体中を伝搬する光
を反射させるミラーとを備え、前記発光・受光部による
発光強度に対する受光強度を検出することにより前記透
明導光体の周囲の被検出媒質の状態を検出するようにし
だをその要旨とするものである。[Means for Solving the Problems] The present invention includes a transparent light guide made of a rod-shaped solid body and having a refractive index larger than a refractive index of a medium to be detected, and a light emitting device connected to one end of the transparent light guide.・Equipped with a light receiving section and a mirror that is installed at the other end of the transparent light guide and reflects the light propagating in the transparent light guide, and detects the intensity of the received light relative to the intensity of light emitted by the light emitting/light receiving section. The gist thereof is to detect the state of the medium to be detected around the transparent light guide.
[作用コ
発光部から透明導光体中に光が発せられ、ミラーにて透
明導光体中を伝搬する光が反射され、受光部にてその光
が受光される。この光の伝搬において透明導光体とその
周囲の被検出媒質との界面における光の全反射条件の変
化及びしみ出し光の吸収により、被検出媒質の状態に応
じて透明導光体中を伝搬する光の減衰率が異なり、これ
により媒質の状態が検出される。[Operation] Light is emitted from the light emitting section into the transparent light guide, the light propagating through the transparent light guide is reflected by the mirror, and the light is received by the light receiving section. In this light propagation, the light propagates through the transparent light guide depending on the state of the detection medium due to changes in the total reflection conditions of the light at the interface between the transparent light guide and the surrounding detection medium and absorption of seeping light. The attenuation rate of the light emitted is different, and the state of the medium is detected based on this.
[実施例]
以下、この発明をエンジンオイルの有無及び汚れを検出
するセンサに具体化した一実施例を図面に従って説明す
る。[Example] Hereinafter, an example in which the present invention is embodied in a sensor for detecting the presence or absence of engine oil and dirt will be described with reference to the drawings.
第1図及び第2図に示すように、棒状の透明導光体11
はBK7ガラスの充実体よりなる。この透明導光体11
は光ファイバ12の一端面に光学接着剤を用いて接続さ
れている。透明導光体11は光ファイバ12との接続に
おいて光の授受が低損失で行われるように径を光ファイ
バ12のコア部と同程度としている。As shown in FIGS. 1 and 2, a rod-shaped transparent light guide 11
is made of solid BK7 glass. This transparent light guide 11
is connected to one end surface of the optical fiber 12 using an optical adhesive. The diameter of the transparent light guide 11 is approximately the same as that of the core of the optical fiber 12 so that light can be transmitted and received with low loss when connected to the optical fiber 12.
透明導光体11の他端面は鏡面研磨され、この面にアル
ミ(A、Q>、銅(C0)等の金屈材利の真空蒸着法に
てミラー13が形成されている。このミラー13は透明
導光体11の軸線方向りに直交した面に形成されている
。又、光ファイバ12の他端は2つに分岐され、発光ダ
イオードや半導体レーザ等による発光部14と、フォ1
〜ダイオードやフォトトランジスタ等による受光部15
がそれぞれ接続されている。The other end surface of the transparent light guide 11 is mirror-polished, and a mirror 13 is formed on this surface by vacuum evaporation of a metallic material such as aluminum (A, Q>, copper (C0)). is formed on a surface perpendicular to the axial direction of the transparent light guide 11.The other end of the optical fiber 12 is branched into two, and includes a light emitting section 14 made of a light emitting diode, a semiconductor laser, etc.
- Light receiving section 15 using a diode, phototransistor, etc.
are connected to each other.
尚、発光部14と受光部15とは本実施例では部分岐形
光ファイバを用いて分離したが、他にもビームスプリッ
タやハーフミラ−等の使用による分離用光回路を用いて
分離してもよい。又、透明導光体11の断面形状は円形
でも正方形でもよい。Although the light emitting section 14 and the light receiving section 15 are separated using a partially branched optical fiber in this embodiment, they may also be separated using a separating optical circuit using a beam splitter, a half mirror, etc. good. Further, the cross-sectional shape of the transparent light guide 11 may be circular or square.
ざらに、ミラー13はガラスに形成されたミラーを光学
接着剤により透明導光体11の端面に接着してもよい。Generally speaking, the mirror 13 may be formed of glass and adhered to the end surface of the transparent light guide 11 using an optical adhesive.
そして、発光部14にて発光された光は、光ファイバ1
2に入射して伝搬し透明導光体11へ至る。透明導光体
11は光ファイバ12のコア径と同程度の太さとなって
いるため光ファイバ12より出射される光は低損失で透
明導光体11に入射し、伝搬する。透明導光体11内を
伝搬する光は、透明導光体11の側面で反射されるため
にこの中に閉じ込められることになり、ミラー13に至
る。The light emitted by the light emitting unit 14 is transmitted through the optical fiber 1
2 and propagates to the transparent light guide 11. Since the transparent light guide 11 has a thickness comparable to the core diameter of the optical fiber 12, the light emitted from the optical fiber 12 enters the transparent light guide 11 and propagates with low loss. The light propagating within the transparent light guide 11 is reflected by the side surfaces of the transparent light guide 11 and is therefore confined therein, reaching the mirror 13.
ミラー13で反射された光は同様に再び透明導光体11
内を伝搬し、光ファイバ12に入射する。Similarly, the light reflected by the mirror 13 returns to the transparent light guide 11.
and enters the optical fiber 12.
入射した光は光ファイバ12を伝搬し、受光部15へ至
り検出される。このとき、透明導光体11内を伝搬でき
る光は、透明導光体11の屈折率n1と、透明導光体1
1の周囲媒質の屈折率n2とによって決まる。即ち、透
明導光体11の側−面(周囲媒質との界面)に角度θC
θC=CO5(n2 /n1 >
より大きな角度で入射する光は透明導光体11内を伝搬
することができず、周囲媒質中へ漏洩する。The incident light propagates through the optical fiber 12, reaches the light receiving section 15, and is detected. At this time, the light that can propagate within the transparent light guide 11 is determined by the refractive index n1 of the transparent light guide 11 and the light that can propagate within the transparent light guide 11.
1 and the refractive index n2 of the surrounding medium. In other words, light that is incident on the side surface (interface with the surrounding medium) of the transparent light guide 11 at an angle greater than θC θC = CO5 (n2 / n1 >) cannot propagate within the transparent light guide 11. , leaking into the surrounding medium.
第3図に示すように周囲媒質が空気であるときn2=1
、あるいは、第4図に示すように油などではn2=1.
4〜1.6であるから、透明導光体11が空気中にある
場合と油中にある場合とで伝搬できる臨界角θCの差異
に起因して受光部15で検出できる光強度が異なるので
、油などの流体の有無が検出できる。As shown in Figure 3, when the surrounding medium is air, n2=1
Or, as shown in FIG. 4, n2=1.
4 to 1.6, the light intensity that can be detected by the light receiving unit 15 differs due to the difference in the critical angle θC that can propagate when the transparent light guide 11 is in air and in oil. , the presence or absence of fluids such as oil can be detected.
又、第5図に示すように、透明導光体11内を伝搬する
光の電磁界分布が界面のわずか外側(周囲媒質中)にし
み出す、いわゆるエバネツセン1〜波に注目し、この電
磁界が周囲媒質の汚れによって吸収される性質を利用し
て液体(エンジンオイル)の汚れ具合が検出される。つ
まり、受光部15の出力を図示しない処理系(例えば、
マイコン)が受けて、第6図に示すように、受光部15
での相対出力値を検出することによりエンジンオイル有
無の検出とエンジンオイルの汚れ度合を検出することが
できる。In addition, as shown in FIG. 5, the electromagnetic field distribution of light propagating within the transparent light guide 11 leaks out just outside the interface (into the surrounding medium), and this electromagnetic field is The degree of contamination of the fluid (engine oil) is detected by utilizing the property that oil is absorbed by contamination in the surrounding medium. In other words, the output of the light receiving section 15 is processed by a processing system (not shown) (for example,
microcomputer), the light receiving section 15 as shown in FIG.
By detecting the relative output value at , it is possible to detect the presence or absence of engine oil and the degree of contamination of the engine oil.
次に、このような検出を行なうための透明導光体11の
材料の選択について説明すると、第7図には、ディーゼ
ルエンジン用のエンジンオイル(新油のときの屈折率1
.480>を使用し、透明導光体11の材質を変えて受
光部15の出力を測定した結果を示す。ここで、劣化油
とは走行5000km後のエンジンオイルである。Next, to explain the selection of the material for the transparent light guide 11 for performing such detection, FIG.
.. 480>, the output of the light receiving section 15 was measured while changing the material of the transparent light guide 11. Here, the deteriorated oil is engine oil after traveling 5000 km.
第7図から明らかなように、屈折率がエンジンオイルよ
り小さな石英ガラス(屈折率1.458>及びパイレッ
クスガラス(屈折率1.47>を用いた場合には、エン
ジンオイルの有無が検出できるがエンジンオイルの劣化
が検出できない。つまり、屈折率がエンジンオイルより
小ざな材料を使用すると、光が全てエンジンオイル中に
漏洩してしまうためエンジンオイルの劣化が測定できな
い。As is clear from Fig. 7, the presence or absence of engine oil can be detected when using silica glass (refractive index 1.458> and Pyrex glass (refractive index 1.47>) whose refractive index is smaller than that of engine oil. Deterioration of the engine oil cannot be detected.In other words, if a material with a refractive index smaller than that of the engine oil is used, all of the light will leak into the engine oil, making it impossible to measure the deterioration of the engine oil.
又、屈折率がエンジンオイルより大きなりK7ガラス(
屈折率1.516>を用いた場合には、エンジンオイル
の有無と劣化が両方検出できることが分る。この場合、
屈折率がエンジンオイルより大きな材料を使用すると、
光の閉じ込め効果が強いために石英ガラスやパイレック
スガラスを使用した場合に比ベエンジンオイルの有無の
検出感度が低下する。Also, the refractive index is larger than that of engine oil, so K7 glass (
It can be seen that when a refractive index of 1.516> is used, both the presence or absence of engine oil and its deterioration can be detected. in this case,
If you use a material with a refractive index higher than that of engine oil,
Due to the strong light confinement effect, the sensitivity for detecting the presence or absence of engine oil decreases compared to when quartz glass or Pyrex glass is used.
つまり、エンジンオイルの劣化を検出するためにはオイ
ルより屈折率の大きな材料で透明導光体11を作製する
必要がおり、このことは光の閉じ込めを強くするのでエ
ンジンオイルの有無の検出感度が低下する。このため、
光の閉じ込めをできるだけ弱くするために、エンジンオ
イルの屈折率より僅かに大きなりK7ガラスを用いてい
る。In other words, in order to detect the deterioration of engine oil, it is necessary to make the transparent light guide 11 from a material with a higher refractive index than that of the oil, which strengthens the confinement of light and reduces the sensitivity of detecting the presence or absence of engine oil. descend. For this reason,
In order to make light confinement as weak as possible, K7 glass, which has a refractive index slightly higher than that of engine oil, is used.
これをさらに詳細に説明すると、第8図には横軸に透明
導光体11の屈折率n1をとり、縦軸に受光部15での
相対出力をとった場合における、周囲媒質の透過率α−
1及びα=10’の特性を示す。又、第9図には横軸に
透明導光体11の屈折率n1をとり、縦軸に残量検出感
度(オイルの有無の感度)とオイル劣化検出感度をとっ
た場合における、周囲媒質の透過率α=1及びα=10
−5の特性を示す。この第9図から明らかなように、石
英ガラスやパイレックスガラスでは、オイル劣化が検出
できないが、BK7ガラスでは残厘検出とオイル劣化検
出を行なうことができることが分る。To explain this in more detail, FIG. 8 shows the transmittance α of the surrounding medium when the horizontal axis represents the refractive index n1 of the transparent light guide 11 and the vertical axis represents the relative output at the light receiving section 15. −
1 and α=10'. In addition, in FIG. 9, the refractive index n1 of the transparent light guide 11 is plotted on the horizontal axis, and the residual amount detection sensitivity (sensitivity to detect the presence or absence of oil) and oil deterioration detection sensitivity are plotted on the vertical axis. Transmittance α=1 and α=10
-5 characteristics. As is clear from FIG. 9, oil deterioration cannot be detected with quartz glass or Pyrex glass, but it is possible to detect residue and oil deterioration with BK7 glass.
このように本実施例では、棒状の充実体からなり、被検
出媒質(エンジンオイル)の屈折率より大きな屈折率を
有する透明導光体11と、透明導光体11の一端に接続
された発光・受光部14゜15と、透明導光体11の他
端に設けられ、透明導光体11中を伝搬する光を反射さ
せるミラー13とを備える。そして、発光部14から透
明導光体11中に光が発せられ、ミラー13にて透明導
光体11中を伝搬する光が反射され、受光部15にてそ
の光が受光されるが、この光の伝搬において透明導光体
11とその周囲の被検出媒質(エンジンオイル)との界
面における光の全反射条件の変化及びしみ出し光の吸収
により、被検出媒質(エンジンオイル)の状態に応じて
透明導光体11中を伝搬する光の減衰率が異なり、これ
により媒質の状態、つまり、エンジンオイルの有無及び
汚れ具合を検出することができる。As described above, in this embodiment, the transparent light guide 11 is made of a rod-shaped solid body and has a refractive index larger than the refractive index of the medium to be detected (engine oil), and the light emitting member connected to one end of the transparent light guide 11 - It includes a light receiving section 14 and 15, and a mirror 13 that is provided at the other end of the transparent light guide 11 and reflects the light propagating through the transparent light guide 11. Then, light is emitted from the light emitting section 14 into the transparent light guide 11, the light propagating through the transparent light guide 11 is reflected by the mirror 13, and the light is received by the light receiving section 15. During light propagation, changes in the conditions for total reflection of light at the interface between the transparent light guide 11 and the surrounding medium to be detected (engine oil) and absorption of seeping light change depending on the state of the medium to be detected (engine oil). The attenuation rate of the light propagating through the transparent light guide 11 is different, and this makes it possible to detect the state of the medium, that is, the presence or absence of engine oil and the degree of dirt.
よって、従来のセンサは液体の透過率に基因する特性を
利用するものであるから、透過率の減少が著しい汚れ(
エンジンオイルの場合、10−5程度にまで低下)を検
出するためには空隙4を極めて小さくする必要があるが
、45°に傾いたミラ一部3があるので不可能であると
ともに小さな空隙を実現できたとしても液体がその間に
溜りやすいため液面の検出ができなくなるが、本実施例
では空隙は必要ないので、このようなことがなく、透過
率低下の著しい媒質(汚れが著しいエンジンオイル)も
検出できることとなる。Therefore, since conventional sensors utilize characteristics based on the permeability of liquids, it is difficult to detect dirt (where the permeability decreases significantly).
In the case of engine oil, it is necessary to make the air gap 4 extremely small in order to detect the temperature (down to about 10-5), but since the mirror part 3 is tilted at an angle of 45 degrees, it is impossible to make the air gap 4 extremely small. Even if this could be achieved, the liquid level would not be able to be detected because the liquid would easily accumulate between them, but this example does not require any gaps, so this does not occur and the medium with a significant drop in transmittance (very dirty engine oil) ) can also be detected.
尚、この発明は上記実施例に限定されるものではなく、
第10図のように実施してもよい。即ち、ミラー13を
透明導光体11の端面に角度をつけて形成するものであ
る。これは、本発明のセンサは透明導光体11と周囲媒
質との界面における光の全反射条件の変化及びしみ出し
光の吸収を利用するものであることから、透明導光体1
1内の伝搬光を界面に向けて反射させることにより有効
に界面での作用を行なわせるものである。尚、BK7ガ
ラスを用いた透明導光体11の軸線方向L(光の伝搬方
向)とミラー13の法線とでなす角度θを変えて実験し
たところ、θ=6°ではオイルの有無、劣化共に検出感
度40%以上が得られた。Note that this invention is not limited to the above embodiments,
It may also be implemented as shown in FIG. That is, the mirror 13 is formed on the end face of the transparent light guide 11 at an angle. This is because the sensor of the present invention utilizes changes in the total reflection conditions of light at the interface between the transparent light guide 11 and the surrounding medium and the absorption of seeping light.
By reflecting the light propagating within 1 toward the interface, it is possible to effectively perform an action at the interface. In addition, when we experimented by changing the angle θ between the axial direction L (light propagation direction) of the transparent light guide 11 made of BK7 glass and the normal line of the mirror 13, we found that when θ=6°, there was no oil or no deterioration. In both cases, a detection sensitivity of 40% or more was obtained.
又、同様の効果を発揮させるために、透明導光体11を
円弧状に曲げてもよい。Moreover, in order to exhibit the same effect, the transparent light guide 11 may be bent into an arc shape.
さらに、他の応用例としては、上記実施例では光ファイ
バ12を介して透明導光体11と発光部14及び受光部
15を接続したが、光ファイバを使用せずに直接、発光
部14及び受光部15を透明導光体11の端部に配置し
てもよい。Furthermore, as another application example, in the above embodiment, the transparent light guide 11 is connected to the light emitting part 14 and the light receiving part 15 via the optical fiber 12, but the light emitting part 14 and the light receiving part 15 can be connected directly without using an optical fiber. The light receiving section 15 may be arranged at the end of the transparent light guide 11.
さらには、透明導光体11は単一の材料ではなくてもよ
く、例えば、石英ガラスとBK7ガラスを適当な寸法の
組み合わせで直列に接続してもよい。Furthermore, the transparent light guide 11 does not need to be made of a single material; for example, quartz glass and BK7 glass may be connected in series in a suitable combination of dimensions.
[発明の効果]
以上詳述したようにこの発明によれば、透過率低下の著
しい媒質も検出できる優れた効果を発揮する。[Effects of the Invention] As detailed above, according to the present invention, an excellent effect is achieved in which even a medium with a significant decrease in transmittance can be detected.
第1図は実施例の光学式センサの要部を示す図、第2図
は光学式センナを示す図、第3図は空気中での透明導光
体中の光の伝搬を説明するための図、第4図は液体中で
の透明導光体中の光の伝搬を説明するための図、第5図
は汚れた液体中での透明導光体中の光の伝搬を説明する
ための図、第6図は受光部での相対出力値とエンジンオ
イル有無及びエンジンオイルの汚れ度合の関係を示す図
、第7図は空気中、新油、劣化油での受光部での出力値
を示す図、第8図は透明導光体の屈折率と受光部での相
対出力との関係を示す図、第9図は透明導光体の屈折率
と残量検出感度及びオイル劣化検出感度を示す図、第1
0図は別例の光学式センサの要部を示す図、第11図は
従来技術を説明するための図、第12図は従来技術を説
明するための図である。
11は透明導光体、13はミラー 14は発光部、15
は受光部。
1′3ミラー
14発光部
第9図
エンジンオイルの)#r率Fig. 1 is a diagram showing the main parts of the optical sensor of the example, Fig. 2 is a diagram showing the optical sensor, and Fig. 3 is a diagram showing the propagation of light in the transparent light guide in the air. Figure 4 is a diagram for explaining the propagation of light in a transparent light guide in a liquid, and Figure 5 is a diagram for explaining the propagation of light in a transparent light guide in a dirty liquid. Figure 6 shows the relationship between the relative output value at the light receiver, the presence or absence of engine oil, and the degree of contamination of the engine oil, and Figure 7 shows the output value at the light receiver in air, new oil, and degraded oil. Figure 8 shows the relationship between the refractive index of the transparent light guide and the relative output at the light receiving part, and Figure 9 shows the relationship between the refractive index of the transparent light guide and the remaining amount detection sensitivity and oil deterioration detection sensitivity. Figure shown, 1st
FIG. 0 is a diagram showing the main parts of another example of an optical sensor, FIG. 11 is a diagram for explaining the prior art, and FIG. 12 is a diagram for explaining the prior art. 11 is a transparent light guide, 13 is a mirror, 14 is a light emitting part, 15
is the light receiving section. 1'3 mirror 14 light emitting part Figure 9) #r ratio of engine oil
Claims (1)
きな屈折率を有する透明導光体と、 前記透明導光体の一端に接続された発光・受光部と、 前記透明導光体の他端に設けられ、当該透明導光体中を
伝搬する光を反射させるミラーとを備え、 前記発光・受光部による発光強度に対する受光強度を検
出することにより前記透明導光体の周囲の被検出媒質の
状態を検出するようにしたことを特徴とする光学式セン
サ。[Scope of Claims] 1. A transparent light guide made of a rod-shaped solid body and having a refractive index greater than the refractive index of a medium to be detected; a light emitting/light receiving part connected to one end of the transparent light guide; a mirror provided at the other end of the transparent light guide to reflect the light propagating in the transparent light guide; An optical sensor characterized by detecting the state of a medium to be detected around a body.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25089189A JPH03111741A (en) | 1989-09-27 | 1989-09-27 | Optical sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25089189A JPH03111741A (en) | 1989-09-27 | 1989-09-27 | Optical sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH03111741A true JPH03111741A (en) | 1991-05-13 |
Family
ID=17214562
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25089189A Pending JPH03111741A (en) | 1989-09-27 | 1989-09-27 | Optical sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH03111741A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5548393A (en) * | 1993-07-05 | 1996-08-20 | Nippondenso Co., Ltd. | Oil deterioration detection apparatus and apparatus for detecting particles in liquid |
| US7339657B2 (en) | 2001-10-11 | 2008-03-04 | Sentelligence, Inc. | Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids |
| US7459713B2 (en) | 2003-08-14 | 2008-12-02 | Microptix Technologies, Llc | Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus |
| KR101068463B1 (en) * | 2009-05-13 | 2011-09-28 | 한국과학기술원 | Fiber Optic Sensors Using Reflective Gratings |
-
1989
- 1989-09-27 JP JP25089189A patent/JPH03111741A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5548393A (en) * | 1993-07-05 | 1996-08-20 | Nippondenso Co., Ltd. | Oil deterioration detection apparatus and apparatus for detecting particles in liquid |
| US7339657B2 (en) | 2001-10-11 | 2008-03-04 | Sentelligence, Inc. | Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids |
| US7459713B2 (en) | 2003-08-14 | 2008-12-02 | Microptix Technologies, Llc | Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus |
| US7907282B2 (en) | 2003-08-14 | 2011-03-15 | Microptix Technologies, Llc | Integrated sensing module for handheld spectral measurements |
| KR101068463B1 (en) * | 2009-05-13 | 2011-09-28 | 한국과학기술원 | Fiber Optic Sensors Using Reflective Gratings |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100682800B1 (en) | Optical sensor | |
| US4994682A (en) | Fiber optic continuous liquid level sensor | |
| US7356207B2 (en) | Method and system for adjusting the sensitivity of optical sensors | |
| US6172377B1 (en) | Fluorescent optical liquid level sensor | |
| US6018165A (en) | Optoelectronic sensor device | |
| US20040021100A1 (en) | Fiber-optic sensor for measuring level of fluid | |
| US20080068587A1 (en) | Surface defect detection method and surface defect inspection apparatus | |
| GB2217834A (en) | Evanescent sensor | |
| CN110260947A (en) | A kind of fibre optic liquid level sensor and method for sensing | |
| CA2424820A1 (en) | Prismatic reflection optical waveguide device | |
| US4624570A (en) | Fiber optic displacement sensor | |
| EP0355134B1 (en) | Optical fluid level sensor | |
| JP2008170327A (en) | Refractive index detection device and liquid level detection device | |
| JP5054931B2 (en) | Optical sensor | |
| JPH03111741A (en) | Optical sensor | |
| JPS63273042A (en) | optical measuring device | |
| JP2650998B2 (en) | Optical fiber for detecting liquid, gas, etc. | |
| JP5904578B2 (en) | Optical liquid leak detection apparatus and method | |
| CN116679390A (en) | An optical transceiver integrated device for suppressing interference | |
| JP3709313B2 (en) | Bi-directional communication optical module element and inspection method thereof | |
| JP2000089042A (en) | Optical fiber sensor and information detection method using it | |
| JP2002181695A (en) | Leak sensor | |
| US5224188A (en) | Eccentric core optical fiber | |
| JPH08261925A (en) | Material information detection system by optical method | |
| EP0453233A2 (en) | Eccentric core optical fiber |