[go: up one dir, main page]

JPH03149521A - Reflection type projector - Google Patents

Reflection type projector

Info

Publication number
JPH03149521A
JPH03149521A JP1289218A JP28921889A JPH03149521A JP H03149521 A JPH03149521 A JP H03149521A JP 1289218 A JP1289218 A JP 1289218A JP 28921889 A JP28921889 A JP 28921889A JP H03149521 A JPH03149521 A JP H03149521A
Authority
JP
Japan
Prior art keywords
plate member
lcd
thermal conductivity
plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1289218A
Other languages
Japanese (ja)
Other versions
JP2834798B2 (en
Inventor
Kenichi Kitai
北井 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17740312&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03149521(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28921889A priority Critical patent/JP2834798B2/en
Publication of JPH03149521A publication Critical patent/JPH03149521A/en
Application granted granted Critical
Publication of JP2834798B2 publication Critical patent/JP2834798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form the projector to a smaller size and lighter weight and to obtain a projected image which is higher in grade and is uniform by providing a plate member which is adhered or press-welded to the rear surface of an active matrix substrate and has the thermal conductivity higher than the thermal conductivity of the active matrix and a mechanism for cooling the plate member by the forced air flow of the machine body. CONSTITUTION:The plate member 5 having the thermal conductivity higher than the thermal conductivity of the semiconductor substrate 3 is press-welded to an LCD 1 having the semiconductor substrate 3 as one substrate. The plate member 5 is formed by forming a heat sink on the side face of a thick film plate consisting of beryllia (BeO), silicon carbide (SiC), copper (Cu), molybdenum (Mo), etc., then thinly cutting the part to be press-welded with the LCD 1 by a milling machine, etc. The forced air flow 8 from an axial fan 7 deprives the plate member 5, which is formed thin in order to reduce the thermal resistance of the conduction part, of heat and thereafter the air flow absorbs the further larger heat quantity by the large area and velocity of flow in the heat sink part. The small-sized and lightweight reflection type projector having the high luminance and grade is formed in this way.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアクティブマトリクス基板を一方の基板とする
液晶パネル(以下LCD)によって構成された反射型投
影装置に関し、特に小型で高譚度な画面を実現しうる反
射型投影装置に関する。  (ロ)従来の技術 従来、自然光を利用した直視型LCDとして、単結晶シ
リコン(以下c−Si)上のスイッチングトランジスタ
の周辺に凹部を設けて、スイッチングトランジスタの誤
動作を防止した方式(特公昭61−38472号公報)
や、スイッチングトランジスタを他面に形成したc−S
iの一方の面に機械的強度補強のため、保護板を密着さ
せた構造があった。 しかし、C−Siでは結晶成長できる単結晶の大きさな
どに制限があるため、−直視型LCDにかわって拡大画
像が表示できる反射型投影装置が考え出された。 例えば、輝度の高い内部光源からの光を偏光ビームスプ
リッタやダイクロイックミラーで3原色に分けて3枚以
上のLCDに入射及び反射させ、接材レンズで画像を表
示する反射型投影装置(特開昭61−13885号公報
)が提案されている。 第7図に従来の反射型投影装置を示す。 第7図において、(IR)、(IG)、(IB)は透明
なガラス基板(2)と、不透明なC−Siよりなる半導
体基板(3)と、ガラス製の補強板(4)からなってお
り、それぞれ赤、緑及び青原色信号に基ずき、各画素部
分毎に偏光面の回転を行うLCDである。 光源(34)は高輝度のキセノンランプまたはメタルハ
ライドランプから構成される装置光源(34)からの光
をだ円面鏡(35)は集光する。 集光された光は赤外線吸収型の凹レンズ(3G)によっ
て平行光に変換される。 平行光は遮光板(37)の開口(3 フ a)によって
、一定断面積に制限された後、可視光だけを通すバンド
バスフィルター(38)で発熱源となる赤外線などを除
去されて分光系に入射する。 分光系は偏光ビームスプリッタ(30)と、青反射ダイ
クロイックミラー(31)と、赤反射ダイクロイックミ
ラー(32)と、光路マッチングガラス(33)とから
なっている。 光学系により青色光はそれぞれLCD (IB)、赤色
光はLCD (I R) 、緑色光はLCD(IG)に
入射し、特定のパターンを持つ画像として反射される。 LCD(IR、IG,IB)からの3色の反射光はズー
ム投射レンズ(39)に集光された後、スクリーン(4
0)に投影されて、直視型LCDに比べて格段に大きな
画像として知覚される。 両面の高精細化と投射画面の高輝度化のために発熱の要
因となる光量がc−Si上の半導体素子1個に対して増
大する傾向がある。 発熱を伴う反射型投影装置においては投影装置の冷却が
必要である。     半導体が正常に動作するトランジスタの接合温度は12
0〜150℃までであり、第1にはこの温度以下に冷却
する。 シリコン半導体は温度がlO℃上昇するごとに故障の頻
度が約2倍になるといわれている。 FETは温度が高くなると、ON、OFFi流が共に大
きくなるが、この内、OFF電流が増大するとしCDに
おいてリーク電流の増加につながり、スクリーン上の投
射画像のコントラストが減少する。 アクティブマトリクス型LCDは温度が高くなると、集
積したFET間のしきい値電圧vthの差が大きくなり
、スクリーン上の投射画像の均一性が失われることがあ
った。 また、LCDの冷却手段として、液体による放熱構造を
用いた反射型投影装置は投影装置が大きく重くなる傾向
があった。 (ハ)発明が解決しようとする課題 このようにc−Siを用をまた反射型投影装置の高精細
化をはかるためにしCDの冷却に注意を払う必要がでて
きた。 そこで、本発明は反射型投影装置を小型軽量に形成し、
より高品位で均一な投射画像を得ることを目的とするも
のである。 (二)課題を解決するための手段 すなわち、この発明はLCDのc−Si板の裏面に粘着
または圧着!れたc−Siより熱伝導率が高い板状部材
と、熱伝導率の高い板状部材を気体の強制対流により冷
却する冷却機構とから構成したものである。 (ホ)作用 放熱のしくみは3種類のモード(伝導、対流、輻射)が
ある。 投射型表示装置において輻射はあまり期待できないので
、主に伝導と対流によりLCDは冷却される。 伝導部の熱抵抗Rcdは(1)式により求められる。 Rcd =j/(λ・S)、        (1)R
cd:液晶一板状部材の熱抵抗[K/W]It:熱流路
の長さ[ml λ:熱流路の部材の熱伝導率[W/ (K−m)]S:
熱流路の面積[m3] LCDを用いた反射型投影装置おいてしCDの全面を熱
伝導率の良い不透明な金属で覆うことは不可能なので板
状部材として薄くて熱伝導率λの大きな材料を選択して
熱抵抗を小さくする必要がある。 次に対流部の熱抵抗Rcyは(2)式により求められる
。 Re v= t/ (a @ S)         
  (2)Rcv:板状部材−気体の熱抵抗[K/Wl
α:熱伝達率[W/ (K−m”)] S:気体が板状部材と接する面積[m3]熱伝達率aは
自然対流の空気において6〜30W/ (K−m”) 
 、流速3〜15m/sの強制対流の空気におし1てl
 G 〜200W/ (K−m”)である。 遠心ファンや軸流ファンを用いた強制対流の方が自然対
流の方より熱抵抗が小さく優れている。 一方面積は−敏にヒニトシンクと呼ばれる放熱器にて大
きくすることができる。 したがって本発明は板状部材に従来のc−Si板の補強
の他に伝導放熱器として働かせると共に強制対流を接触
させて対流放熱器としても作用させたものである。 (へ)実施例 第1図は本発明の実施例における反射型投影装置の放熱
系を示す概要図である。 (1)はLCDであり、熱伝導率の低いガラス基板(2
)と熱伝導率の比較的高い半導体基板(3)からなって
いる。 半導体基板(3)側に半導体基板より熱伝導率の高い板
状部材(5)が付着している。 板状部材(5)の側面にヒートシンク(6)が設けられ
、軸流ファン(7)からの強制気流にさらされている。 分光系を含む本発明の反射型投影装置の部分断面図をj
Iz図に示す。 半導体基板(3)を一方の基板として待つLCD (1
)に半導体基板(3)より熱伝導率が高い板状部材(5
)が圧着されている。 板状部材(5)はべりリア(Bed)、炭化ケイ素(S
iC)、銅(Cu)、銅一タングステン(Cu−W)、
アルミニウム(At)、モリブデン(M o )などの
厚膜板の側面にヒートシンクを形成した後、LCD (
1)が圧着される部分をフライス盤などで薄く切削加工
したものである。 他の材料として表面を酸化した窒化アルミニウムAn!
N (特開平1−220462号公報)や窒化アルミニ
ウム表面表面に積層体としてチタン(Ti)、ニッケル
(N i ) 、金(Au)からなる層を形成したAj
N (特開平1−223737号公報)などを板状部材
として用いても良い。 表1に代表的な材料の熱伝導率(λ)を示す。 表  1 材 料  c−Si  BeOSiC 熱伝導率 125  240  270Cu   Cu
=W  ガラス  A1400 2400.65 23
6 軸流ファーン(7)からの強制気流(8)は伝導部の熱
抵抗削減のため薄く形成された板状部材(5)から熱を
奪った後、ヒートシンク部で太きな面積と流速によりさ
らに多くの熱量を吸収する。 LCD(1)のガラス基板から離れて赤反射ダイクロイ
ックミラー(32)が配置されている。 赤反射ダイクロイックミラー(32)からの赤色の入射
光(9)はLCD (1)により特定形状の反射光(1
0)として変換される。 また、113図に示すように板状部材(5)はヒートシ
ンク(6)と分離して形成しても良い。 HIPなどの焼結方法における簡単な形状への限定や焼
結体の切削加工の制限を考えれば、セラミック系の板状
部材(5)を単純な直方体に成形することは有用である
。 セラミック系の板状部材(5)の材料として、ベリリア
(Bed)、炭化ケイ素(SiC)、窒化アルミニウム
(AIN)などがあげられる。 第3図で板状部材(5)の端部には2個または4個の金
属製のヒートシンク(6)が嵌合されている。 114図に遠心ファン(11)を利用し、複数の板状部
材(5)と半導体基板(3)を接着させた構造の断面図
を示す。 複数の板状部材(5)は金属製の容器(12)にロウ材
(13)でロウ付けされており、一方、半導体基板(3
)にシリコーン樹脂製の接着材(14)で後着されてい
る。 金属製の容器の側面にはヒートシンク(6)が同様に2
個または4個嵌合されて塾4る。 複数の板状部材(5)で半導体基板(3)と接着するこ
とにより、温度変化による板状部材(5)と半導体基板
(3)との剥離を抑制することができる。 第5図に本発明のc−Siを用いたLCDの平面図を示
す。 II!il素に対応する表示電極の横及び縦の外形線の
長さと、1画素に対応するゲートライン(15)及びド
レインライン(16)の中心線(17)の長さとのそれ
ぞれの商が0.9以上なら、有効画素の百分率は81%
以上になる。 c−Si中にドレイン(1g)、ソース(19)及び補
助容量(20)は拡散層として設けられて(1る。 ゲートライン(15)及びゲート(21)は不純物をド
ーブした多結晶シリコンで形成され、ソース(19)と
表示電極(22)はコンタクトホール(23)で接続さ
れている。 LCDの断面図を第6図に示す。 板状部材(5)はロウ材(13)または接着材(14)
によって半導体基板(3)と結合し、通常の半導体基板
(3)の機械強度の補強のためのみならず、放熱材とし
て働く。 第6図において半導体基板(3)の表面に不純物が導入
され、ドレイン(18)、ソース(19)及び補助容量
(20)が形成されている。 熱酸化Sins(24)が半導体基板(3)上に形成さ
れている。 熱酸化330 m  (24)はソース(19)上に穴
、ドレイン(18)とソース(19) 111及び補助
容量(20)上に凹みが作成されている。 熱酸化Stow(24)の凹みにはドープした多結晶シ
リコンが充填され、ドレイン(18)とソース(19)
間にゲート(21)、補助容量(20)上に導電膜(2
5)が形成されている。 CVDS i Ox  (26) bケ) (21)及
び導電膜(25)のある熱酸化Sins(24)上に積
層されている。 CVDS ion  (26)にお11て/−,X(1
9)及び導電膜(25)上にコンタクトホール(23)
が形成されている。 −CVDS ion  (26)上を:: A j カ
らなる表示電極が島状に形成され、コンタクトホール(
23)によりソース(19)及び導電膜(25)に接続
されている。 反射膜として働く表示電極上にポリイミドの配向膜(2
7)が形成されている。 半導体基板(3)と対向するガラス基板(2)上には一
面にITOからなる透明電極(28)が被着され、さら
にその上にポリイミドの配向膜(27)が形成され、前
記配向膜(27)は液晶(29)に接している。 表示を極(22)は複数のドレインライン(16)また
はゲートライン(15)間にまたが″らない方が望まし
い。 なぜなら、隣接するラインの信号により表示のコントラ
ストが低下することがあるからである。 第5図のようにAtの表示電極でトランジスタが形成さ
れた側のドレインライン及びゲートラインを覆い、有効
画素率を81%以上とすることでc−Si上のトランジ
スタのチャネルの遮光がなされる。 本実施例の構造によれば、電子の移動度μの大きなc−
Siを用いているのでアクティブマトリクス基板の周辺
部に高遠のシフトレジスタ、ラッチ、ドライバからなる
駆動回路を形成できるばかりでなく、アクティブマトリ
クス基板内の画素の駆動用トランジスタの大きさを小さ
くすることが可能になるため、有効画素率の向上が容易
にできる。 本発明の実施例においては、c−Siについて述べたが
、LCDのアクティブマトリクス基板がガラスで形成さ
れたとしても本発明の構成を実現することができる。 (ト)発明の効果 LCDの裏面を板状部材によ−9効率良く冷却できるの
で、発熱が問題となる反射型投影装置において優れた効
果がある。 以上に述べたように本発明によれば、LCDの補強板に
高熱伝導率の材料を用い、強制気流により各I、CDを
冷却したことにより、薄皮及び品位の高い小型軽量の反
射型投影装置を作成することができる。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a reflective projection device constituted by a liquid crystal panel (hereinafter referred to as LCD) having an active matrix substrate as one of the substrates, and particularly relates to a small-sized and high-performance reflective projection device. The present invention relates to a reflective projection device that can realize a screen. (b) Conventional technology Conventionally, for direct-view LCDs that utilize natural light, a method (Japanese Patent Publication Publication No. 61 Sho. -38472 publication)
or c-S with a switching transistor formed on the other side.
There was a structure in which a protective plate was tightly attached to one side of the i for mechanical strength reinforcement. However, since C--Si has limitations on the size of a single crystal that can be grown, a reflective projection device capable of displaying an enlarged image has been devised in place of the direct-view LCD. For example, a reflective projection device (Japanese Unexamined Patent Publication No. 2003-111003) that divides light from a high-brightness internal light source into three primary colors using a polarizing beam splitter or dichroic mirror, and then makes the light incident on and reflected on three or more LCDs, and displays an image using a contact lens. 61-13885) has been proposed. FIG. 7 shows a conventional reflection type projection device. In Fig. 7, (IR), (IG), and (IB) are composed of a transparent glass substrate (2), an opaque semiconductor substrate (3) made of C-Si, and a glass reinforcing plate (4). This is an LCD that rotates the plane of polarization for each pixel based on red, green, and blue primary color signals. The ellipsoidal mirror (35) condenses light from a device light source (34) consisting of a high-intensity xenon lamp or metal halide lamp. The focused light is converted into parallel light by an infrared absorption type concave lens (3G). The parallel light is restricted to a certain cross-sectional area by the aperture (3 a) of the light-shielding plate (37), and then the bandpass filter (38), which passes only visible light, removes infrared rays, which are heat sources, and enters the spectroscopic system. incident on . The spectroscopic system consists of a polarizing beam splitter (30), a blue reflective dichroic mirror (31), a red reflective dichroic mirror (32), and an optical path matching glass (33). Through the optical system, the blue light enters the LCD (IB), the red light enters the LCD (I R), and the green light enters the LCD (IG), and is reflected as an image with a specific pattern. The three-color reflected light from the LCD (IR, IG, IB) is focused on the zoom projection lens (39) and then projected onto the screen (4).
0) and is perceived as a much larger image than that of a direct-view LCD. Due to the high definition of both sides and the high brightness of the projection screen, the amount of light that causes heat generation tends to increase per semiconductor element on c-Si. In a reflective projection device that generates heat, it is necessary to cool the projection device. The junction temperature of a transistor at which the semiconductor operates normally is 12
0 to 150° C., and the first step is cooling below this temperature. It is said that the frequency of failures of silicon semiconductors approximately doubles every time the temperature rises by 10°C. As the temperature of the FET increases, both the ON and OFF currents increase, but of these, the OFF current increases, leading to an increase in leakage current in the CD, and the contrast of the projected image on the screen decreases. When the temperature of an active matrix LCD increases, the difference in threshold voltage vth between integrated FETs increases, and the uniformity of the projected image on the screen may be lost. Furthermore, reflective projection apparatuses that use a liquid-based heat dissipation structure as a cooling means for the LCD tend to be large and heavy. (c) Problems to be Solved by the Invention As described above, when using c-Si, it has become necessary to pay attention to the cooling of CDs in order to achieve higher definition in reflective projection apparatuses. Therefore, the present invention provides a reflective projection device that is small and lightweight.
The purpose is to obtain a higher quality and more uniform projection image. (2) Means for Solving the Problems That is, this invention is adhesive or pressure bonded to the back surface of the c-Si plate of the LCD! It is composed of a plate-like member having higher thermal conductivity than c-Si, and a cooling mechanism that cools the plate-like member having high thermal conductivity by forced convection of gas. (e) Action There are three modes of heat radiation (conduction, convection, and radiation). Since radiation cannot be expected much in a projection display device, the LCD is mainly cooled by conduction and convection. The thermal resistance Rcd of the conductive portion is determined by equation (1). Rcd =j/(λ・S), (1)R
cd: Thermal resistance of the liquid crystal plate member [K/W] It: Length of the heat flow path [ml λ: Thermal conductivity of the member of the heat flow path [W/ (K-m)] S:
Area of heat flow path [m3] In a reflective projection device using an LCD, it is impossible to cover the entire surface of the CD with an opaque metal with good thermal conductivity, so a thin plate material with high thermal conductivity λ is used as a plate member. It is necessary to reduce the thermal resistance by selecting Next, the thermal resistance Rcy of the convection section is determined by equation (2). Rev= t/ (a @ S)
(2) Rcv: Plate member-gas thermal resistance [K/Wl
α: Heat transfer coefficient [W/ (K-m”)] S: Area where gas contacts the plate member [m3] Heat transfer coefficient a is 6 to 30 W/ (K-m”) in natural convection air
, 1 l in forced convection air with a flow rate of 3 to 15 m/s.
G ~200W/ (K-m"). Forced convection using a centrifugal fan or axial fan has a lower thermal resistance than natural convection. On the other hand, the area is - heat dissipation called a heat sink. Therefore, in the present invention, in addition to reinforcing the conventional c-Si plate, the plate-like member is made to function as a conduction heat radiator, and also acts as a convection heat radiator by bringing forced convection into contact with it. (f) Embodiment FIG. 1 is a schematic diagram showing a heat dissipation system of a reflective projection apparatus in an embodiment of the present invention. (1) is an LCD, and a glass substrate with low thermal conductivity (2
) and a semiconductor substrate (3) with relatively high thermal conductivity. A plate-shaped member (5) having higher thermal conductivity than the semiconductor substrate is attached to the semiconductor substrate (3) side. A heat sink (6) is provided on the side surface of the plate member (5) and is exposed to forced airflow from an axial fan (7). A partial cross-sectional view of the reflective projection apparatus of the present invention including a spectroscopic system is shown in j.
It is shown in the Iz diagram. LCD (1) waiting with semiconductor substrate (3) as one substrate
) has a plate member (5) with higher thermal conductivity than the semiconductor substrate (3).
) is crimped. Plate member (5) has a rear (Bed), silicon carbide (S
iC), copper (Cu), copper-tungsten (Cu-W),
After forming a heat sink on the side surface of a thick film plate made of aluminum (At), molybdenum (Mo), etc., the LCD (
1) The part to be crimped is cut into a thin piece using a milling machine or the like. Another material is aluminum nitride with oxidized surface!
Aj in which a layer consisting of titanium (Ti), nickel (N i ), and gold (Au) is formed as a laminate on the surface of N (Japanese Unexamined Patent Publication No. 1-220462) or aluminum nitride.
N (Japanese Unexamined Patent Publication No. 1-223737) or the like may be used as the plate member. Table 1 shows the thermal conductivity (λ) of typical materials. Table 1 Material c-Si BeOSiC Thermal conductivity 125 240 270Cu Cu
=W Glass A1400 2400.65 23
6 The forced airflow (8) from the axial fan (7) removes heat from the thin plate-shaped member (5) to reduce the thermal resistance of the conductive part, and then transfers heat at the heat sink part due to its large area and flow velocity. Absorbs more heat. A red reflective dichroic mirror (32) is placed apart from the glass substrate of the LCD (1). The red incident light (9) from the red reflective dichroic mirror (32) is reflected into a specific shape by the LCD (1).
0). Further, as shown in FIG. 113, the plate member (5) may be formed separately from the heat sink (6). Considering the limitations on simple shapes in sintering methods such as HIP and limitations on cutting of sintered bodies, it is useful to form the ceramic plate member (5) into a simple rectangular parallelepiped. Examples of the material for the ceramic plate member (5) include beryllia (Bed), silicon carbide (SiC), and aluminum nitride (AIN). In FIG. 3, two or four metal heat sinks (6) are fitted to the ends of the plate-like member (5). FIG. 114 shows a cross-sectional view of a structure in which a plurality of plate members (5) and a semiconductor substrate (3) are bonded together using a centrifugal fan (11). A plurality of plate-like members (5) are brazed to a metal container (12) with a brazing material (13), while a semiconductor substrate (3)
) with a silicone resin adhesive (14). There are also two heat sinks (6) on the side of the metal container.
One or four pieces are fitted together to form a cram school. By bonding the semiconductor substrate (3) with a plurality of plate-like members (5), it is possible to suppress separation between the plate-like member (5) and the semiconductor substrate (3) due to temperature changes. FIG. 5 shows a plan view of an LCD using c-Si of the present invention. II! The quotient of the length of the horizontal and vertical outline lines of the display electrode corresponding to the il element and the length of the center line (17) of the gate line (15) and drain line (16) corresponding to one pixel is 0. If it is 9 or more, the percentage of effective pixels is 81%.
That's all. The drain (1g), source (19), and auxiliary capacitor (20) are provided as diffusion layers in c-Si (1).The gate line (15) and gate (21) are made of polycrystalline silicon doped with impurities. The source (19) and display electrode (22) are connected through a contact hole (23). A cross-sectional view of the LCD is shown in Figure 6. The plate-like member (5) is made of brazing material (13) or adhesive. Material (14)
It is bonded to the semiconductor substrate (3) by the wafer, and serves not only to reinforce the mechanical strength of the ordinary semiconductor substrate (3) but also to act as a heat dissipation material. In FIG. 6, impurities are introduced into the surface of a semiconductor substrate (3) to form a drain (18), a source (19), and an auxiliary capacitor (20). A thermally oxidized Sins (24) is formed on the semiconductor substrate (3). Thermal oxidation 330 m (24) creates a hole on the source (19), a depression on the drain (18) and source (19) 111 and the auxiliary capacitor (20). The recesses of the thermally oxidized Stow (24) are filled with doped polycrystalline silicon, and the drain (18) and source (19)
A conductive film (2) is placed between the gate (21) and the auxiliary capacitor (20).
5) is formed. It is laminated on thermally oxidized Sins (24) with CVDS i Ox (26) b) (21) and a conductive film (25). CVDS ion (26) has 11te/-,X(1
9) and a contact hole (23) on the conductive film (25).
is formed. - On the CVDS ion (26), a display electrode consisting of :: A j is formed in an island shape, and a contact hole (
23) is connected to the source (19) and the conductive film (25). A polyimide alignment film (2
7) is formed. A transparent electrode (28) made of ITO is coated on one surface of the glass substrate (2) facing the semiconductor substrate (3), and a polyimide alignment film (27) is further formed on the transparent electrode (28). 27) is in contact with the liquid crystal (29). It is preferable that the display pole (22) does not straddle multiple drain lines (16) or gate lines (15), since the contrast of the display may deteriorate due to signals from adjacent lines. As shown in Figure 5, by covering the drain line and gate line on the side where the transistor is formed with an At display electrode and increasing the effective pixel ratio to 81% or more, the channel of the transistor on c-Si can be shielded from light. According to the structure of this embodiment, c-
Since Si is used, it is not only possible to form a drive circuit consisting of a high-distance shift register, latch, and driver around the periphery of the active matrix substrate, but also to reduce the size of the pixel drive transistors within the active matrix substrate. Therefore, the effective pixel ratio can be easily improved. Although c-Si has been described in the embodiments of the present invention, the structure of the present invention can be realized even if the active matrix substrate of the LCD is made of glass. (G) Effects of the Invention Since the back surface of the LCD can be efficiently cooled by the plate-like member, this invention has excellent effects in reflective projection devices where heat generation is a problem. As described above, according to the present invention, a material with high thermal conductivity is used for the reinforcing plate of the LCD, and each I and CD are cooled by forced airflow, so that a small and lightweight reflective projection device with a thin skin and high quality can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による反射型投影装置のLCDの冷却機
構を示す分解見取図。 第2図は本発明の第1の実施例のLCDの冷却機構の断
面図。 第3図は本発明の第2の実施例のLCDの冷却機構の断
面図。 第4図は本発明の第3の実施例のLCDの冷却機構の断
面図。 第5図は本発明の反射型投影装置に用いられるLCDの
平面図。 186図は本発明の反射型投影装置に用いられるLCD
の断面図。 第7FMは従来例の反射型投影装置の概要図である。 (1)・・・LCD、(2)・・・ガラス基板、(3)
・・・半導体基板、(4)・・・補強板、(5)・・一
板状部材、(6)・・・ヒートシンク、(7)・・・軸
流ファン、(8)・・・強制気流、(9)・・・入射光
、(lO)・・・反射光、(11)・・・遠心ファン、
(12)・・・金属製の容器、(13)・・・ロウ材、
(14)・・・接着材、(1,5)・・・ゲートライン
、(16)・・・ドレインライン、(17)・・・中心
線、(18)・・・ドレイン、(19)・・ツース、(
20)・・・補助容量、(21)・・・ゲート、(22
)・・・表示電極、(23)・・・コンタクトホール、
(24)・・・熱酸化S s O*、(25)−・・導
電膜、(26)−CVDSiO*、(27)・・・配向
膜、(28)・・・透明電極、(29)・・・液晶、(
30)・・・偏光ビームスプリッタ、(31)・・・青
反射ダイクロイックミラー、(32)・・・赤反射グイ
クロイックミラー、(33)・・・光路マツチングガラ
ス、(34)・・・光源、(35)・・・だ円面鏡、(
36)・・・凹レンズ、(37)・・−遮光板、(37
a)・・・開口、(38)・・・バンドパスフィルター
、(39)・・・ズーム投射レンズ、(40)・・・ス
クリーン。
FIG. 1 is an exploded diagram showing the cooling mechanism of the LCD of the reflective projection device according to the present invention. FIG. 2 is a sectional view of the LCD cooling mechanism according to the first embodiment of the present invention. FIG. 3 is a sectional view of an LCD cooling mechanism according to a second embodiment of the present invention. FIG. 4 is a sectional view of an LCD cooling mechanism according to a third embodiment of the present invention. FIG. 5 is a plan view of an LCD used in the reflective projection device of the present invention. Figure 186 shows the LCD used in the reflective projection device of the present invention.
Cross-sectional view. 7th FM is a schematic diagram of a conventional reflection type projection device. (1)...LCD, (2)...Glass substrate, (3)
... Semiconductor board, (4) ... Reinforcement plate, (5) ... Single plate member, (6) ... Heat sink, (7) ... Axial flow fan, (8) ... Force Airflow, (9)...Incoming light, (lO)...Reflected light, (11)...Centrifugal fan,
(12)...metal container, (13)...brazing material,
(14)...adhesive material, (1,5)...gate line, (16)...drain line, (17)...center line, (18)...drain, (19)...・Tooth, (
20)... Auxiliary capacity, (21)... Gate, (22
)...display electrode, (23)...contact hole,
(24)...Thermal oxidation SsO*, (25)--Conductive film, (26)-CVDSiO*, (27)...Alignment film, (28)...Transparent electrode, (29) ···liquid crystal,(
30)... Polarizing beam splitter, (31)... Blue reflective dichroic mirror, (32)... Red reflective dichroic mirror, (33)... Optical path matching glass, (34)... Light source, (35)...Ellipsoid mirror, (
36)...Concave lens, (37)...-shading plate, (37
a)...Aperture, (38)...Band pass filter, (39)...Zoom projection lens, (40)...Screen.

Claims (1)

【特許請求の範囲】[Claims] (1)液晶スイッチング用トランジスタアレイを基板上
に形成したところのアクティブマトリクス基板のある液
晶パネルを用いた反射型投影装置において、アクティブ
マトリクス基板の裏面に粘着または圧着されたアクティ
ブマトリクス基板より熱伝導率が高い板状部材と、該板
状部材を気体の強制気流により冷却する機構とを具えた
ことを特徴とする反射型投影装置。
(1) In a reflective projection device using a liquid crystal panel with an active matrix substrate on which a transistor array for liquid crystal switching is formed, thermal conductivity is higher than that of an active matrix substrate that is adhesively or press-bonded to the back side of the active matrix substrate. What is claimed is: 1. A reflection type projection device comprising: a plate-like member having a high temperature; and a mechanism for cooling the plate-like member by a forced air flow of gas.
JP28921889A 1989-11-07 1989-11-07 Reflection type projection device Expired - Fee Related JP2834798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28921889A JP2834798B2 (en) 1989-11-07 1989-11-07 Reflection type projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28921889A JP2834798B2 (en) 1989-11-07 1989-11-07 Reflection type projection device

Publications (2)

Publication Number Publication Date
JPH03149521A true JPH03149521A (en) 1991-06-26
JP2834798B2 JP2834798B2 (en) 1998-12-14

Family

ID=17740312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28921889A Expired - Fee Related JP2834798B2 (en) 1989-11-07 1989-11-07 Reflection type projection device

Country Status (1)

Country Link
JP (1) JP2834798B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647922U (en) * 1992-12-02 1994-06-28 日本マランツ株式会社 LCD projector
US6950308B2 (en) 2002-12-20 2005-09-27 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case
US7018054B2 (en) 2002-12-20 2006-03-28 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case
US7023504B2 (en) 2002-12-20 2006-04-04 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case
US7218373B2 (en) 2003-04-22 2007-05-15 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647922U (en) * 1992-12-02 1994-06-28 日本マランツ株式会社 LCD projector
US6950308B2 (en) 2002-12-20 2005-09-27 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case
US7018054B2 (en) 2002-12-20 2006-03-28 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case
US7023504B2 (en) 2002-12-20 2006-04-04 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case
US7218373B2 (en) 2003-04-22 2007-05-15 Seiko Epson Corporation Electro-optical device encased in mounting case, projection display apparatus, and mounting case

Also Published As

Publication number Publication date
JP2834798B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US6642989B2 (en) Liquid crystal display device having particular constructed sapphire substrate
US6317175B1 (en) Single crystal silicon arrayed devices with optical shield between transistor and substrate
US6304243B1 (en) Light valve device
JP3091183B2 (en) LCD projector
US6043800A (en) Head mounted liquid crystal display system
KR100311340B1 (en) light valve device, method of manufacturing the device, and image projection system using the device
US6005649A (en) Tiled, flat-panel microdisplay array having visually imperceptible seams
US5317436A (en) A slide assembly for projector with active matrix moveably mounted to housing
US8680572B2 (en) Microdisplay packaging system
CA2126446C (en) Single crystal silicon arrayed devices for projection displays
CN110515234A (en) display panel
JP3443549B2 (en) Polarizer
JPH03149521A (en) Reflection type projector
TWI753894B (en) Illumination system and projection apparatus
JP3434193B2 (en) Transmissive display
JP2003015156A (en) Liquid crystal display device and liquid crystal projector device using the same
JP2003058065A (en) Display device
JP3598009B2 (en) Liquid crystal display device and liquid crystal projector display device using the same
JP3744888B2 (en) Liquid crystal panel for liquid crystal projector
CN222850832U (en) Diamond panel heat radiation module for LCOS chip
JP2001125200A (en) projector
JP2002131541A (en) Polarizing plate and liquid crystal projector using the same
JP2005283969A (en) Liquid crystal display device and liquid crystal projector using the same
JPWO2018055919A1 (en) Display device, projection type display device and electronic device
KR100292974B1 (en) Semiconductor device and manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees