JPH03159043A - Manufacture of x-ray target containing small amount of gas - Google Patents
Manufacture of x-ray target containing small amount of gasInfo
- Publication number
- JPH03159043A JPH03159043A JP29735489A JP29735489A JPH03159043A JP H03159043 A JPH03159043 A JP H03159043A JP 29735489 A JP29735489 A JP 29735489A JP 29735489 A JP29735489 A JP 29735489A JP H03159043 A JPH03159043 A JP H03159043A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- heat treatment
- graphite
- ray target
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はX線発生装置のX線ターゲットの製造方法とそ
の構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an X-ray target for an X-ray generator and its structure.
従来のX線ターゲットは、その材質がモリブデンとタン
グステン等の金属を粉末冶金法で焼結した金゛属製のも
のであったり、金属基板と軽い黒鉛をろう付することに
より軽量化を図った販合せ構造のものが一般的である。Conventional X-ray targets are made of metal, such as molybdenum and tungsten, sintered using powder metallurgy, or are made lighter by brazing a metal substrate with light graphite. A combined sales structure is common.
最近1回転ベアリングのより長寿命化が市場で強く要求
されており、ターゲットをより軽量化することによりこ
の要求に対処するため黒鉛にCVD法でタングステン等
の金属薄膜をコーティングしたターゲット(以下CVD
ターゲットと記す)の開発が進められている。Recently, there has been a strong demand in the market for longer life of single-rotation bearings, and in order to meet this demand by making the target lighter, targets are made by coating graphite with a thin film of metal such as tungsten using the CVD method (hereinafter referred to as CVD).
The development of targets (hereinafter referred to as targets) is progressing.
これまでのCVDターゲットは特許第60996号の様
にその膜の構造やターゲットの形状に関する発明が主で
ある。Conventional CVD targets mainly involve inventions related to the structure of the film and the shape of the target, as in Patent No. 60996.
CVDターゲットは空孔を多数内在する黒鉛を基体とす
るためCVDガスがこの空孔に込り込んでしまう。この
現象は特にノズルから噴出されるガスが直接当る黒鉛の
被CVD面で著しく、かつCVD反応により形成された
金属膜により空孔に内在するガスは封止込まれる。CV
Dターゲットを真空管に組込だ後、このガスは小量ずつ
放出されそれに伴い真空度は下るため、真空管寿命が短
くなる問題がある。Since the CVD target is made of graphite containing many pores, the CVD gas gets trapped in these pores. This phenomenon is particularly noticeable on the CVD surface of graphite which is directly hit by the gas ejected from the nozzle, and the gas existing in the pores is sealed by the metal film formed by the CVD reaction. CV
After the D target is installed in the vacuum tube, this gas is released little by little and the degree of vacuum decreases accordingly, resulting in a problem that the life of the vacuum tube is shortened.
本発明の目的は、CVDターゲットから放出される内在
ガスを低減することにより、管球寿命の長いX線ターゲ
ットを提供することにある。An object of the present invention is to provide an X-ray target with a long tube life by reducing the internal gas released from the CVD target.
上記目的を達成するために、本発明は内在ガスを取り除
く方法として真空加熱処理及び水素加熱処理により黒鉛
空孔内のガスを放出させるものである。この方法は金属
層の被覆を完了した時点で実施しても効果はあるが、金
属中間層を被覆し、金属層を被覆する前に実施する方が
より効果が大きく望ましい。また金属中間層は被覆面に
対し鉛直方向に成長した柱状晶とすることにより黒鉛内
ガスは金属中間層を通り抜けやすくなりガス抜きに効果
がある。In order to achieve the above-mentioned object, the present invention releases gas in graphite pores by vacuum heat treatment and hydrogen heat treatment as a method for removing internal gas. Although this method is effective even if it is carried out once the metal layer has been coated, it is more effective and more desirable to carry it out before the metal intermediate layer is coated and the metal layer is coated. Furthermore, by forming the metal intermediate layer into columnar crystals grown in a direction perpendicular to the coating surface, the gas within the graphite can easily pass through the metal intermediate layer, which is effective in degassing.
第1図に示すように、中間層2は一般に金属層3に比較
し薄いため、中間層2を被覆後真空加熱処理を実施する
ことにより黒鉛内のガスは中間層2を抜は放出される。As shown in Fig. 1, the intermediate layer 2 is generally thinner than the metal layer 3, so by performing vacuum heat treatment after coating the intermediate layer 2, the gas in the graphite is released through the intermediate layer 2. .
その後金属層3を被覆するが、この時、金属層3を被覆
させるガスは中間層2の存在により黒鉛内へ入り込むこ
とがなく、黒鉛中にガス内在の少ないX線ターゲットが
得られる。真空加熱処理の替りに水素加熱処理を実施し
ても同様の効果がある。しかし、メカニズムは異なる。Thereafter, the metal layer 3 is coated, but at this time, the gas that coats the metal layer 3 does not enter into the graphite due to the presence of the intermediate layer 2, and an X-ray target with less gas contained in the graphite is obtained. Similar effects can be obtained by performing hydrogen heat treatment instead of vacuum heat treatment. However, the mechanism is different.
すなわち、真空加熱処理はガスが黒鉛内を拡散して外部
へ放出させるのに対し水素処理は水素ガスが黒鉛内へ侵
入しCVDガスと還元反応が生じCVDガスは固体化す
ることにより黒鉛中の内在ガスの低減が図られる。いず
れの方法でもポイントは、膜厚の薄い中間層2を形成し
た時点、すなわち、黒鉛中に内在されたガスが抜は易い
状態、もしくは、水素ガスが侵入しやすい状態で真空処
理や水素処理を実施することにある6〔実施例〕
以下、本発明の一実施例を表1により説明する。In other words, in vacuum heat treatment, the gas diffuses within the graphite and is released to the outside, whereas in hydrogen treatment, hydrogen gas enters the graphite and causes a reduction reaction with the CVD gas, solidifying the CVD gas, thereby reducing the amount of gas in the graphite. The amount of internal gas is reduced. In either method, the key point is to perform vacuum treatment or hydrogen treatment at the point when the thin intermediate layer 2 is formed, i.e., when the gas contained in the graphite is easily released or when hydrogen gas is easily penetrated. 6 [Example] to be carried out An example of the present invention will be described below with reference to Table 1.
表1 処理方法と残留フッ素イオン量
黒鉛基板はサイズφ100m、t25m+aで、密度1
.8g/a7のものを用いた。CVDした膜の構成は中
間層2を膜の密着性確保するためRe(レニウム)とし
、金属層3はW(タングステン)とReの合金膜とした
。次にこの製法を記す。黒鉛基板は純水中で超音波洗浄
しその後、1500℃で1時間、 l X 10−”T
orr以下の圧力にて真空脱ガス処理を行なった。CV
Dの原料ガスはReFe。Table 1 Treatment method and amount of residual fluorine ions The graphite substrate has a size of φ100m, t25m+a, and a density of 1
.. 8 g/a7 was used. The structure of the CVD film was such that the intermediate layer 2 was made of Re (rhenium) to ensure film adhesion, and the metal layer 3 was made of an alloy film of W (tungsten) and Re. This manufacturing method is described next. The graphite substrate was ultrasonically cleaned in pure water, and then heated at 1500°C for 1 hour at 1×10-”T.
Vacuum degassing treatment was performed at a pressure of orr or less. CV
The source gas of D is ReFe.
WFeガスとし、還元反応させる水素ガスをキャリヤガ
スとして用いる。中間層2であるReは、黒鉛基板を3
00℃に加熱し、ReFsガス100cc/分と、水素
ガス5Q/分を黒鉛の被CVD面へノズルにより吹きか
けReを黒鉛へ堆積させた圧力は常圧とした。堆積時間
は10分でRe5108mの膜が得られた。Re形成後
、真空加熱処理と水素加熱処理をそれぞれ異なる試料で
実施した。真空加熱処理は温度700〜800’Cの範
囲で圧力I X 10−’丁orrにて1時間保持した
。水素加熱処理は700’C〜800℃にて水素流量5
ρ/分とし処理した。それぞれの加熱処理後、金属層3
を形成する、その条件は、常圧下で黒鉛温度600℃と
し、WFeガス1000cc/分。WFe gas is used, and hydrogen gas for reduction reaction is used as carrier gas. Intermediate layer 2, Re, is a graphite substrate of 3
The pressure at which ReFs gas was heated to 00° C. and ReFs gas was sprayed at 100 cc/min and hydrogen gas was sprayed at 5 Q/min onto the CVD surface of the graphite through a nozzle to deposit Re onto the graphite was set to normal pressure. The deposition time was 10 minutes, and a film of Re5108m was obtained. After forming Re, vacuum heat treatment and hydrogen heat treatment were performed on different samples. The vacuum heat treatment was maintained at a temperature in the range of 700 to 800'C and a pressure of I x 10-' orr for 1 hour. Hydrogen heat treatment at 700'C to 800°C with a hydrogen flow rate of 5
Processed at ρ/min. After each heat treatment, metal layer 3
The conditions for forming are: normal pressure, graphite temperature of 600° C., and WFe gas of 1000 cc/min.
ReFsガス3cc/分、水素ガス5Q/分流し30分
で500μmのWとReの合金層を形成させた。表1は
、中間層2を形成後何ら処理せずに金属層3を形成した
ターゲットと真空加熱処理及び水素加熱処理を実施した
それぞれのターゲットに含有するCVDガスの分析した
結果をまとめたものである。分析はCVD原料ガスがフ
ッ化物系であるのでF(フッ素)イオンを分析した。手
法をターゲットの黒鉛中の原料ガスを分析するため、黒
鉛を口5I以下の乾式法で小片とし、定量100■の純
水中へ投入し、30分煮沸後、Fイオンを注出させた純
水をイオンクロマトグラフィーを残留フッ素イオン量と
して定量した。その結果は処理しないターゲットh1の
残留フッ素イオン量が80〜1200PP!lであるの
に対し真空加熱処理Nα及び水素処理Nαを実施したも
のは検出限界である1 pp+s以下であり、真空加熱
処理及び水素加熱処理により黒鉛に内在するCVDガス
は低減することが知られる。比較として金属層3形成前
に処理せず、金属層3形成後1llQ1と同様の条件で
真空処理したもので分析した結果(Na3)は、80〜
1000ppmで、フッ素イオン低減に著しい効果はな
く、このことから金属層3形成前に真空加熱処理もしく
は水素加熱処理を実施することが望ましいと言える。A 500 μm alloy layer of W and Re was formed by flowing ReFs gas at 3 cc/min and hydrogen gas at 5 Q/min for 30 minutes. Table 1 summarizes the results of analysis of the CVD gas contained in the target in which the metal layer 3 was formed without any treatment after forming the intermediate layer 2, and the target in which the vacuum heat treatment and hydrogen heat treatment were performed. be. Since the CVD raw material gas is fluoride-based, F (fluorine) ions were analyzed. In order to analyze the raw material gas in the target graphite, graphite was cut into small pieces using a dry method with a diameter of less than 5 I, poured into a fixed amount of 100 μm of pure water, boiled for 30 minutes, and then F ions were poured out. Water was determined by ion chromatography as the amount of residual fluorine ions. As a result, the amount of residual fluorine ions in untreated target h1 is 80-1200PP! 1, whereas those subjected to vacuum heat treatment Nα and hydrogen treatment Nα are below the detection limit of 1 pp+s, and it is known that CVD gas inherent in graphite is reduced by vacuum heat treatment and hydrogen heat treatment. . For comparison, an analysis result (Na3) of a sample that was not treated before the formation of the metal layer 3, but was vacuum treated under the same conditions as 1llQ1 after the formation of the metal layer 3, was 80~
At 1000 ppm, there is no significant effect in reducing fluorine ions, and from this it can be said that it is desirable to perform vacuum heat treatment or hydrogen heat treatment before forming the metal layer 3.
本発明によれば、金属層を形成する前に真空加熱処理も
しくは水素加熱処理を実施することにより黒鉛内のCV
Dガスを効率よく除去できるのでガス含有の少ないX線
ターゲットが得られ、そのターゲットを用いたX線管の
真空度は従来5×10−’Torrであったのに対し、
I X 10−I5Torr以下となりX線管の寿
命は、従来20,000 スキャンから40,000
スキャンへ向上した。According to the present invention, by performing vacuum heat treatment or hydrogen heat treatment before forming the metal layer, CV in graphite is reduced.
Since the D gas can be removed efficiently, an X-ray target containing less gas can be obtained, and the vacuum level of the X-ray tube using this target was conventionally 5 × 10-'Torr.
I
Improved scanning.
第1図は本発明の一実施例を示すX線管ターゲットの断
面図である。
1・・・黒鉛基板、2・・・金属中間層、4・・・X線
発生金属層。FIG. 1 is a sectional view of an X-ray tube target showing one embodiment of the present invention. 1... Graphite substrate, 2... Metal intermediate layer, 4... X-ray generating metal layer.
Claims (1)
X線発生金属層を化学気相めつき法により順次設けたX
線ターゲットにおいて、 前記金属中間層を被覆後、真空加熱処理を実施した後、
前記金属層を被覆することを特徴とするX線ターゲット
。 2、請求項1において、前記中間層を被覆後、真空加熱
処理の替りに水素加熱処理を実施した後、前記金属層を
被覆したX線ターゲット。 3、請求項1において、前記真空加熱処理は700℃と
するX線ターゲット。 4、請求項2において、 前記水素加熱処理は700℃とするX線ターゲット。[Scope of Claims] 1.
In the wire target, after coating the metal intermediate layer and performing vacuum heat treatment,
An X-ray target characterized by coating the metal layer. 2. The X-ray target according to claim 1, wherein after coating the intermediate layer, hydrogen heat treatment is performed instead of vacuum heat treatment, and then the metal layer is coated. 3. The X-ray target according to claim 1, wherein the vacuum heat treatment is performed at 700°C. 4. The X-ray target according to claim 2, wherein the hydrogen heat treatment is performed at 700°C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29735489A JPH03159043A (en) | 1989-11-17 | 1989-11-17 | Manufacture of x-ray target containing small amount of gas |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29735489A JPH03159043A (en) | 1989-11-17 | 1989-11-17 | Manufacture of x-ray target containing small amount of gas |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH03159043A true JPH03159043A (en) | 1991-07-09 |
Family
ID=17845425
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP29735489A Pending JPH03159043A (en) | 1989-11-17 | 1989-11-17 | Manufacture of x-ray target containing small amount of gas |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH03159043A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05217533A (en) * | 1991-11-04 | 1993-08-27 | General Electric Co <Ge> | Anode of x-ray tube provided with diffusion barrier layer in focus tracking region |
-
1989
- 1989-11-17 JP JP29735489A patent/JPH03159043A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05217533A (en) * | 1991-11-04 | 1993-08-27 | General Electric Co <Ge> | Anode of x-ray tube provided with diffusion barrier layer in focus tracking region |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2844304B2 (en) | Plasma facing material | |
| JPS599921A (en) | Film for x-ray mask and method of producing same | |
| US20080176005A1 (en) | Pre-plating surface treatments for enhanced galvanic-corrosion resistance | |
| US5403629A (en) | Formation of interlayers for application of aluminum diffusion coatings | |
| CA2282664C (en) | Arrangement and method for improving vacuum in a very high vacuum system | |
| EP0349044A2 (en) | Process for the production of a protective film on a magnesium-based substrate, application to the protection of magnesium alloys, substrates thus obtained | |
| JPH03159043A (en) | Manufacture of x-ray target containing small amount of gas | |
| Li et al. | Effect of WC content on microstructure and properties of CrFeMoNiTi (WC) x high‐entropy alloys composite coatings prepared by selective laser melting | |
| JP2895554B2 (en) | Vacuum container and component for vacuum equipment having multilayer coating | |
| JP2001170460A (en) | Hydrogen separation material and method for producing the same | |
| JPH05132754A (en) | Method for forming titanium carbide thin film | |
| Mattox | Interface Formation, Adhesion, and Ion Plating | |
| CA1128423A (en) | Boron cantilever and method of making the same | |
| JP2921853B2 (en) | Method for producing silver member having protective layer | |
| JPH06272019A (en) | White color plated personal ornament | |
| SU1446541A1 (en) | Method of testing metallic coatings for tendency towards forming filamentary crystals | |
| JPS6211685A (en) | Optical recording medium | |
| JPH0759751B2 (en) | Thin film manufacturing method | |
| CN117467975A (en) | Preparation method of quartz substrate surface metal film layer based on metal transition layer | |
| JPH0215161A (en) | Titanium carbide film formation method using ion beam sputtering method | |
| KR20210105670A (en) | Method for etching of galvannealed steel sheet for gamma phase alloy analysis thereof | |
| Guidoni et al. | Pulsed laser deposition of Pd on amorphous alumina substrate | |
| CN117248184A (en) | A diamond-like film chromatography column and its preparation method and use | |
| JPS59161023A (en) | Manufacture of element | |
| EP0015807A1 (en) | Process for manufacturing a radioactive source and radioactive source thus obtained |