JPH03150840A - Microwave plasma film deposition equipment - Google Patents
Microwave plasma film deposition equipmentInfo
- Publication number
- JPH03150840A JPH03150840A JP28885389A JP28885389A JPH03150840A JP H03150840 A JPH03150840 A JP H03150840A JP 28885389 A JP28885389 A JP 28885389A JP 28885389 A JP28885389 A JP 28885389A JP H03150840 A JPH03150840 A JP H03150840A
- Authority
- JP
- Japan
- Prior art keywords
- film
- vacuum chamber
- semiconductor film
- plasma
- microwave plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子サイクロトロン共鳴を利用する!イクμ
波グッズマ成膜装置および処理方法に関し、とくに、半
導体膜成膜装置および形成方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes electron cyclotron resonance! Iku μ
The present invention relates to a wave-magnetic film forming apparatus and processing method, and particularly to a semiconductor film forming apparatus and forming method.
電子サイクロトロン共鳴を利用する従来のマイクロ波プ
ラズマ成膜装置は、特開昭57−155656号公報に
開示されているように、導波管によって送られてきたマ
イクロ波を空洞共振構造のプラズマ生成室に導入し、マ
イクロ波O定在波を形成し、との定在波O電界極大位置
に電子サイクロトロン共鳴条件を満足させる磁場を一致
させ、プラズマにマイクロ波の吸収を起こさせ、活性度
の高いプラズiを得て、これを利用するものである。A conventional microwave plasma film forming apparatus using electron cyclotron resonance, as disclosed in Japanese Patent Application Laid-open No. 155656/1983, uses microwaves sent through a waveguide to generate plasma in a plasma generation chamber with a cavity resonant structure. The microwaves are introduced into the microwave O to form a standing wave, and the magnetic field that satisfies the electron cyclotron resonance condition is matched to the maximum position of the electric field of the standing wave O, causing the plasma to absorb the microwaves, resulting in high activity. This is to obtain Plas i and use it.
上記従来技術では、半導体膜成膜処理を繰シ返すと、所
望の半導体膜が安定して得られないという欠点があった
。従って、半導体膜成膜装置としては、再現性、信頼性
の低いものであった0との原因は、半導体膜成膜処理を
行う際に、良導体金属でつくられた、空洞共振構造のグ
ツズ育生成室内壁の一部または全部に%半導体膜が形成
され、該内壁の電気抵抗が大きくなるためマイクロ波の
損失が生じること、および、前記処理を繰シ返すと、真
空室内壁の金属表面が、半導体膜で徐々に被覆されてい
くため、マイクロ波の損失は経時変化し、このためプラ
ズマの性状も経時変化することにある。The above-mentioned conventional technology has a drawback that a desired semiconductor film cannot be stably obtained if the semiconductor film forming process is repeated. Therefore, the reason why the reproducibility and reliability of the semiconductor film deposition system was low is that when performing the semiconductor film deposition process, the hollow resonant structure made of a metal with good conductivity is grown. A semiconductor film is formed on a part or all of the inner wall of the vacuum chamber, and the electric resistance of the inner wall increases, causing microwave loss.If the above process is repeated, the metal surface of the inner wall of the vacuum chamber may be damaged. , as it is gradually covered with a semiconductor film, the loss of microwaves changes over time, and therefore the properties of the plasma also change over time.
本発明の目的は、マイクロ波プラズマ成膜装置を用いて
、基板上に薄膜とくに半導体膜を形成する際VC,真空
室内の内壁に薄膜が形成されても、咳真空!におけるマ
イクロ波の伝播に影響せず、基板表面に形成される薄膜
の再現性の高いマイクロ波プラズマ成膜装置を得るには
どのようにすればよいのかという点にある。An object of the present invention is to form a thin film, especially a semiconductor film, on a substrate using a microwave plasma film forming apparatus, even if a thin film is formed on the inner wall of a vacuum chamber. The problem is how to obtain a microwave plasma film forming apparatus that does not affect the propagation of microwaves in the process and can form a thin film on the surface of a substrate with high reproducibility.
以上のよりなり4題を解決するために1本発明に係るマ
イクロ波プラズマ成膜装置は、真空室の内壁表面を電気
的絶縁体膜で被覆した。In order to solve the above-mentioned four problems, the microwave plasma film forming apparatus according to the present invention coats the inner wall surface of the vacuum chamber with an electrical insulator film.
該内壁と電気的絶縁体膜の密着性はあまシ重要でなく、
前記装置を運転の際、はく離しない程度であればよい・
ま九、電気的絶縁膜は、真空室内の内壁全面に必ずしも
被覆する必要はないが、内壁のうち薄膜付着の可能性が
あシ、マイクロ波が伝播する場所には必ず被覆する必要
がある。The adhesion between the inner wall and the electrical insulator film is not very important;
It is sufficient that the electrical insulating film does not peel off during operation of the device.Although it is not necessary to cover the entire inner wall of the vacuum chamber with the electrically insulating film, there is a possibility that a thin film may adhere to the inner wall. Places where microwaves propagate must be covered.
さらに、電気的絶縁体膜の厚みは、成膜時に薄膜が真空
室の内壁の金属表面に直接付着しないようKできるもの
であればよい・
電気的絶縁材としては、石英、セラミック等があるが、
真空室内における絶縁性が良好であフ。Furthermore, the thickness of the electrically insulating film may be such that it can prevent the thin film from directly adhering to the metal surface of the inner wall of the vacuum chamber during film formation.The electrically insulating material may include quartz, ceramic, etc. ,
Good insulation in the vacuum chamber.
マイクロ波を透過できるものであシ、かつプラズマを遮
へいしうるものであることが必要である◎なお、真空室
容器を、金属と電気的絶縁体の複合材で作ってもよい。It must be able to transmit microwaves and shield plasma.The vacuum chamber container may also be made of a composite material of metal and electrical insulator.
成膜処理時に訃けゐ、真空室内壁のクリーニング容易化
のためには、真空室内に筒を入れ、内槽屋にする方法も
ある。In order to prevent damage during the film forming process and to make it easier to clean the walls of the vacuum chamber, there is a method of placing a cylinder inside the vacuum chamber and using it as an inner chamber.
ただし、真空室容器を電気的絶縁体だけで作ることは、
マイクロ波が漏れて、危険であシ、実用上採用できない
・
〔作用〕
半導体膜が付着する可能性のある、真空室の内壁表面上
尾電気的絶縁体膜を被覆すれば、半導体膜は直接金属表
面上には付着せず、絶縁体膜上に付着する。However, making a vacuum chamber container only with electrical insulators
Microwaves leak, which is dangerous, and cannot be used practically. [Function] If an electrical insulating film is coated on the inner wall surface of the vacuum chamber to which the semiconductor film may adhere, the semiconductor film can be directly attached to the metal. It does not adhere to the surface, but adheres to the insulator film.
従って、内壁の良導体金属と半導体膜との界面は形成さ
れず、形成される界面は、良導体金属と絶縁体膜との界
面と、絶縁体膜と半導体膜との界面の2つである〇
このように、良導体金属と半導体膜との界面が形成され
ないときは、マイクロ波進行時の電流は常に内壁の良導
体金属表面を流れるため、マイクロ波の損失は起こシに
くい。従りて、プラズマは安定し、被処理基板上に形成
される半導体薄膜の再現性はよい。Therefore, the interface between the good conductor metal on the inner wall and the semiconductor film is not formed, and the two interfaces that are formed are the interface between the good conductor metal and the insulator film, and the interface between the insulator film and the semiconductor film. As shown, when an interface between a good conductor metal and a semiconductor film is not formed, the current when the microwave propagates always flows on the good conductor metal surface of the inner wall, so microwave loss is unlikely to occur. Therefore, the plasma is stable and the reproducibility of the semiconductor thin film formed on the substrate to be processed is good.
一方、良導体金属と半導体膜の界面が形成されると、半
導体の方へマイクロ波の一部が流れ熱と壜って損失する
。従って、プラズマは不安定となシ、被処理基板上に形
成される半導体膜の再現性はよくない。On the other hand, when an interface between a good conductor metal and a semiconductor film is formed, a portion of the microwave flows toward the semiconductor and is lost as heat. Therefore, the plasma is unstable and the reproducibility of the semiconductor film formed on the substrate to be processed is poor.
次に1本発明の実施例について説明する〇第1図は、本
発明の半導体膜成膜装置の一実施例の構成を示す。Next, an embodiment of the present invention will be described.〇 Fig. 1 shows the configuration of an embodiment of a semiconductor film forming apparatus of the present invention.
本実施例による半導体膜成膜装置は、プラズマ発生部7
と、マイク四波導波管2と、マイクロ波の透過可能な石
英またはアルミナ製の窓3と、内部に試料台5を有する
試料室4と、放電用ガスまたは成膜用ガスをプラズマ生
成室1へ供給するガス供給管7と、処理後の排ガスを排
気するための排気口8と、電子サイクロトロン共鳴条件
を満足する磁界を発生させる磁気=イル9と、プラズマ
生成室1と試料室の内壁全面に被覆された絶縁体m10
とから構成される。The semiconductor film deposition apparatus according to this embodiment has a plasma generating section 7.
, a microphone four-wave waveguide 2, a window 3 made of quartz or alumina through which microwaves can pass, a sample chamber 4 having a sample stage 5 therein, and a plasma generation chamber 1 for discharging gas or film-forming gas. an exhaust port 8 for exhausting the exhaust gas after processing, a magnetic field 9 for generating a magnetic field that satisfies the electron cyclotron resonance conditions, and the entire inner wall of the plasma generation chamber 1 and sample chamber. Insulator m10 coated with
It consists of
なお、絶縁体膜10は、プラズマ生成室1から試料室4
までの内壁全面に被栓している◎これは、磁気コイル9
による磁場制御によ、9ECR点を移動した場合、磁場
条件によりては、マイクロ波は基板6付近までくる可能
性があるためだからである@
次に、本実施例の作用について説明する〇マグネトロン
(図示せず)で、周波数2.45GHzのマイクロ波を
発生させ、導波管2によってプラズマ生成部へ導く0該
プラズマ生成部は空洞共振構造となっておシ、マイクロ
波の定在波が形成される・
プラズマ生成部7の周囲に設置された磁気コイル9は、
電子サイクロトロン共鳴条件を満足する8 75 G(
D@界を発生する・該磁界によシミ子すイクロトロン共
鳴を起こす・
この場合、プラズマ生成室内壁に絶縁材を被覆している
ので、内壁に半導体膜が形成されても、良導体金属と半
導体との界面は形成されず、マイクロ波の損失は起こシ
にくい。従って、安定した、活性度の高いプラズマが得
られ、半導体膜の再現性は、絶縁材が被覆されていない
場合に比べ向上する。Note that the insulator film 10 is connected from the plasma generation chamber 1 to the sample chamber 4.
◎This is the magnetic coil 9
This is because if the 9ECR point is moved by the magnetic field control by (not shown) generates microwaves with a frequency of 2.45 GHz and guides them to the plasma generation section through the waveguide 2. The plasma generation section has a cavity resonant structure, and standing microwave waves are formed. The magnetic coil 9 installed around the plasma generation section 7 is
8 75 G (which satisfies the electron cyclotron resonance conditions)
Generates a D@ field - Causes microtron resonance due to the magnetic field No interface is formed between the two, and microwave loss is unlikely to occur. Therefore, a stable and highly active plasma can be obtained, and the reproducibility of the semiconductor film is improved compared to the case where the insulating material is not coated.
以下、本装置を用いてアモルファスシリコン膜を形成し
た実験例について説明する。An experimental example in which an amorphous silicon film was formed using this apparatus will be described below.
ガス供給管7からシランガスを40 secm流し、圧
力0.5〜2 mTorrの条件で水素化アモルファス
シリコン膜(a−81:H)を形成した。基板温度は1
80℃〜200℃、マイクロ波パワーハ50〜500W
とした。A hydrogenated amorphous silicon film (a-81:H) was formed by flowing 40 seconds of silane gas from the gas supply pipe 7 at a pressure of 0.5 to 2 mTorr. The substrate temperature is 1
80℃~200℃, microwave power 50~500W
And so.
実験条件を、真空室内壁に関する以外は、全て同じにし
、成膜処理を続けた時の各処理ごとに形成され九&−8
i:H膜の光導電度の変化を第2図に示す。The experimental conditions were all the same except for the walls of the vacuum chamber, and when the film formation process was continued, 9&-8 was formed for each process.
FIG. 2 shows the change in photoconductivity of the i:H film.
第2図において、縦軸は光導電度、横軸は成膜処理回数
をあられす。曲線■は、真空室内壁に電気的絶縁体膜を
被栓し、アモルファスシリコン膜が真空室内壁に、直接
、形成されないよりにしたときの光導電度の変化を示す
。曲線■は、真空室内m<、何も被覆することなく、ア
モルファスシリコン膜が、真空室内壁に1 直接、形成
されるときの光導電度の変化を示す〇
第2図の曲線■から明らかなように、真空室内壁に電気
的絶縁体膜を被覆した場合は、11回の連続処理を行な
っても、光導電度の低下は見られず、再現性はよい。In FIG. 2, the vertical axis represents the photoconductivity and the horizontal axis represents the number of times of film formation. Curve (2) shows the change in photoconductivity when the vacuum chamber wall is covered with an electrical insulating film so that the amorphous silicon film is not directly formed on the vacuum chamber wall. Curve ■ shows the change in photoconductivity when an amorphous silicon film is formed directly on the wall of the vacuum chamber without covering m < 1 in the vacuum chamber. This is clear from the curve ■ in Figure 2. As shown, when the inner wall of the vacuum chamber is coated with an electrical insulating film, no decrease in photoconductivity is observed even after 11 consecutive treatments, and the reproducibility is good.
一方、真空室内@IIC絶縁体膜を被栓していない場合
は、曲線■から明らかなように、連続処理を行なうと、
5回以降は、光導電度の低下が見られ、再現性はない。On the other hand, when the vacuum chamber is not plugged with an IIC insulator film, as is clear from the curve ■, when continuous processing is performed,
After 5 times, a decrease in photoconductivity was observed and there was no reproducibility.
本発明によれば、真空室の内壁に半導体膜が形成されて
も、マイクロ波の内壁表面での損失を少なくできる・
従って、被処理基板上に半導体膜を再現性よく効率的に
形成できる効果がある。According to the present invention, even if a semiconductor film is formed on the inner wall of a vacuum chamber, the loss of microwaves on the inner wall surface can be reduced. Therefore, the semiconductor film can be efficiently formed on the substrate to be processed with good reproducibility. There is.
第1図は本発明の一実施例の半導体膜成膜装置の基本構
成を示す断面図、第2図は実施例1で形成したアモルフ
ァスシリコン膜の光導電度(曲線■)および比較のため
形成したアモルファスシリコン膜の光導電度(曲線■)
の経時変化を示す図である◎
1・・・プラズマ生成部、2・・・マイクロ波導波管、
5・・・窓板、4・・・試料室、5・・・試料台、6・
・・基板、7・・・ガス供給管、8・・・排気口、9・
・・磁気コイル、10・・・電気的絶縁体膜。FIG. 1 is a cross-sectional view showing the basic configuration of a semiconductor film deposition apparatus according to an embodiment of the present invention, and FIG. 2 shows the photoconductivity (curve ■) of the amorphous silicon film formed in Example 1, and the photoconductivity formed for comparison. Photoconductivity of amorphous silicon film (curve ■)
◎ 1... Plasma generation part, 2... Microwave waveguide,
5... window plate, 4... sample chamber, 5... sample stand, 6...
... Board, 7... Gas supply pipe, 8... Exhaust port, 9...
... Magnetic coil, 10... Electrical insulator film.
Claims (1)
面に半導体膜を成膜するマイクロ波プラズマ半導体膜成
膜装置において、前記真空室内の内壁表面を電気的絶縁
体膜で被膜したことを特徴とするマイクロ波プラズマ半
導体膜成膜装置。 2、請求項1記載のマイクロ波プラズマ半導体膜成膜装
置を用いて、プラズマを生成し、基板表面に半導体膜を
形成することを特徴とする半導体膜成膜方法。 3、真空室内に生成する放電プラズマを利用して基板表
面に薄膜を形成するマイクロ波プラズマ成膜装置におい
て、前記真空室内の内壁表面を電気的絶縁体膜で被膜し
たことを特徴とするマイクロ波プラズマ成膜装置。 4、真空室内に生成する放電プラズマを利用して基板表
面に薄膜を形成するマイクロ波プラズマ成膜装置におい
て、前記真空室内に、絶縁体の筒を入れ、真空室内壁に
、直接、薄膜が形成されない構造としたことを特徴とす
るマイクロ波プラズマ成膜装置。[Scope of Claims] 1. In a microwave plasma semiconductor film forming apparatus for forming a semiconductor film on a substrate surface using discharge plasma generated in a vacuum chamber, the inner wall surface of the vacuum chamber is coated with an electrical insulator film. A microwave plasma semiconductor film forming apparatus characterized in that the film is coated with. 2. A method for forming a semiconductor film, comprising generating plasma and forming a semiconductor film on a surface of a substrate using the microwave plasma semiconductor film forming apparatus according to claim 1. 3. A microwave plasma film forming apparatus for forming a thin film on a substrate surface using discharge plasma generated in a vacuum chamber, characterized in that the inner wall surface of the vacuum chamber is coated with an electrical insulator film. Plasma film deposition equipment. 4. In a microwave plasma film forming apparatus that forms a thin film on the surface of a substrate using discharge plasma generated in a vacuum chamber, an insulating cylinder is placed in the vacuum chamber and a thin film is formed directly on the wall of the vacuum chamber. A microwave plasma film forming apparatus characterized by having a structure in which no
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28885389A JPH03150840A (en) | 1989-11-08 | 1989-11-08 | Microwave plasma film deposition equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28885389A JPH03150840A (en) | 1989-11-08 | 1989-11-08 | Microwave plasma film deposition equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH03150840A true JPH03150840A (en) | 1991-06-27 |
Family
ID=17735596
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28885389A Pending JPH03150840A (en) | 1989-11-08 | 1989-11-08 | Microwave plasma film deposition equipment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH03150840A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7602111B2 (en) | 2005-07-12 | 2009-10-13 | Samsung Electronics Co., Ltd. | Plasma accelerating apparatus and plasma processing system including secondary electron amplification coating layer formed at inner wall of channel |
| KR102251678B1 (en) * | 2020-10-26 | 2021-05-13 | 주식회사 한화 | Boat Apparatus with Insulated Structure |
| CN114203602A (en) * | 2020-09-17 | 2022-03-18 | 韩华株式会社 | Crystal boat device |
-
1989
- 1989-11-08 JP JP28885389A patent/JPH03150840A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7602111B2 (en) | 2005-07-12 | 2009-10-13 | Samsung Electronics Co., Ltd. | Plasma accelerating apparatus and plasma processing system including secondary electron amplification coating layer formed at inner wall of channel |
| CN114203602A (en) * | 2020-09-17 | 2022-03-18 | 韩华株式会社 | Crystal boat device |
| CN114203602B (en) * | 2020-09-17 | 2025-09-23 | 韩华思路信 | Wafer boat device |
| KR102251678B1 (en) * | 2020-10-26 | 2021-05-13 | 주식회사 한화 | Boat Apparatus with Insulated Structure |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR20000010643A (en) | Method and device for plasma treatment | |
| JPH11251303A (en) | Plasma processing equipment | |
| JP3080843B2 (en) | Thin film forming method and apparatus | |
| JPS6318323B2 (en) | ||
| JPH01184923A (en) | Plasma processor optimum for etching, ashing, film formation and the like | |
| JPH03150840A (en) | Microwave plasma film deposition equipment | |
| JP2000268994A (en) | Surface treatment method using high frequency glow discharge | |
| JP2001203189A (en) | Semiconductor manufacturing machine | |
| JPH07106319A (en) | Electromagnetic shielding method for heating device of CVD reactor | |
| JPH07142400A (en) | Plasma treating method and its apparatus | |
| JP2011146409A (en) | Plasma processing apparatus and plasma processing method | |
| JPH07135093A (en) | Plasma processing apparatus and processing method | |
| JPH02156088A (en) | Bias ECR device | |
| JPS62254419A (en) | Plasma deposition device | |
| JPH0281434A (en) | Plasma treatment apparatus | |
| JP3137532B2 (en) | Plasma CVD equipment | |
| JPH01205533A (en) | Plasma deposition apparatus | |
| KR100971370B1 (en) | High frequency power supply for uniform large area plasma generation | |
| JPH0237963A (en) | Electric heating member | |
| JPH11214383A (en) | Plasma film formation method | |
| JPH0331480A (en) | Plasma treating device by microwave | |
| JPH07122495A (en) | Plasma generator | |
| JP3391245B2 (en) | Thin film forming equipment | |
| JP2675000B2 (en) | Plasma processing equipment | |
| JPH11297676A (en) | Electronic component manufacturing equipment |