JPH03165146A - 4-phase demodulation circuit - Google Patents
4-phase demodulation circuitInfo
- Publication number
- JPH03165146A JPH03165146A JP30509389A JP30509389A JPH03165146A JP H03165146 A JPH03165146 A JP H03165146A JP 30509389 A JP30509389 A JP 30509389A JP 30509389 A JP30509389 A JP 30509389A JP H03165146 A JPH03165146 A JP H03165146A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- digital
- multiplier
- qpsk
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、衛星放送受信機において、音声信号を復調す
るための4位相復調回路に関し、特に乗算後のローパス
フィルタ(L P F)の改良に関するものである。Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a four-phase demodulation circuit for demodulating audio signals in a satellite broadcasting receiver, and in particular to an improvement of a low-pass filter (LPF) after multiplication. It is related to.
「従来の技術」
一般に、衛星放送受信機は第6図に示すように、放送衛
星(1)からの電波をパラボラアンテナ(2)で受信し
、BSコンバータ(3)でIGHz帯の中間周波数帯に
変換し、BSチューナ(4)に送られる。"Prior Art" Generally, as shown in Fig. 6, a satellite broadcasting receiver receives radio waves from a broadcasting satellite (1) with a parabolic antenna (2), and converts them into intermediate frequency bands in the IGHz band with a BS converter (3). and sent to the BS tuner (4).
このBSチューナ(4)では選局回路(5)により希望
するチャンネルを選択し、FM復調回路(6)でFM復
調をした後、映像−音声分離回路(7)で映像信号と音
声信号に分離する。このうち、映像信号はデエンファシ
ス回路(8)、エネルギー拡散信号除去回路(9)によ
ってもとの映像信号を再生し、テレビ受像機(10)の
映像入力端子(11)に加える。In this BS tuner (4), the desired channel is selected by the channel selection circuit (5), FM demodulated by the FM demodulation circuit (6), and then separated into a video signal and an audio signal by the video-audio separation circuit (7). do. Of these, the original video signal is reproduced by a de-emphasis circuit (8) and an energy diffusion signal removal circuit (9), and is applied to a video input terminal (11) of a television receiver (10).
他方、音声信号は4位相復調(以下QPSKという)回
路(12)、PCMtI調回路(13)によって復調し
、デエンファシス回路(14)によってもとの音声信号
に再生する。そして前記テレビ受像機(10)の音声入
力端子(15)に加える。このようにして衛星放送の受
信を可能とする。On the other hand, the audio signal is demodulated by a four-phase demodulation (hereinafter referred to as QPSK) circuit (12) and a PCMtI modulation circuit (13), and then reproduced into the original audio signal by a de-emphasis circuit (14). Then, it is applied to the audio input terminal (15) of the television receiver (10). In this way, satellite broadcasting can be received.
以上のような衛星放送受信機において、QPSK回路(
12)は第5図のように構成され、音声信号の復調をア
ナログ処理していた。この従来のQPSK回路(12)
において、QPSK信号は乗算器(17)(1B)、
L P F (19)(20)を通り、2値化器(21
)(22)と位相差検出器(23)に送られる。位相差
検出器(23)ではQPSK信号の発生側の搬送波の位
相と、V CO(24)から発生する再生搬送波の位相
差を比較し、その差がOとなるようにV CO(24)
に制御信号を加える。このV CO(24)からの発振
信号は、一方の乗算器(17)に−90°移相器(25
)を介して送られ。また他方の乗算器(18)にそのま
ま送られて入力したQPSK信号と乗算される。そして
位相差が次第にOになって、復rJR信号として2値化
器(21)(22)から出力する。なお、(26)はピ
ットクロック再生回路である。In the satellite broadcasting receiver as described above, the QPSK circuit (
12) was constructed as shown in FIG. 5, and demodulated the audio signal using analog processing. This conventional QPSK circuit (12)
, the QPSK signal is passed through a multiplier (17) (1B),
L P F (19) (20)
) (22) and a phase difference detector (23). The phase difference detector (23) compares the phase of the carrier wave on the generation side of the QPSK signal and the phase difference between the reproduced carrier wave generated from the V CO (24), and adjusts the phase of the V CO (24) so that the difference becomes O.
Add a control signal to The oscillation signal from this V CO (24) is sent to one multiplier (17) through a -90° phase shifter (25
) sent via. It is also sent as is to the other multiplier (18) and multiplied by the input QPSK signal. Then, the phase difference gradually becomes O, and the signal is output from the binarizers (21) and (22) as a reverse rJR signal. Note that (26) is a pit clock regeneration circuit.
以上のQPSK回路(12)には第3図に示すように、
QPSK信号の位相成分を検出するため、乗算器(17
)または(18)とL P F (19)または(20
)が従属して接続されている。ここで、QPSK信号を
cos(ωat÷φ)と表わし、再生搬送波をcosω
atと表わすと、乗算器(17)による乗算結果は+(
cos(2ωct+φ)+cosφ)となり、後続のL
P F (19)または(20)により、高周波成分
が除去されてcosφまたはsinφの成分だけが取り
出される。As shown in Figure 3, the above QPSK circuit (12) has
In order to detect the phase component of the QPSK signal, a multiplier (17
) or (18) and L P F (19) or (20
) are connected dependently. Here, the QPSK signal is expressed as cos(ωat÷φ), and the recovered carrier wave is cosω
When expressed as at, the multiplication result by the multiplier (17) is +(
cos(2ωct+φ)+cosφ), and the subsequent L
P F (19) or (20) removes the high frequency component and extracts only the cosφ or sinφ component.
「発明が解決しようとする課題」
しかるに、従来のQPSK回路(12)はすべてアナロ
グ信号で処理していたので1回路パラメータにばらつき
があること、動作がやや不安定であること、V CO(
24)からの出力は正弦波であるため一90°移相器(
25)での移相量に誤差が生じることなどの問題があっ
た。``Problem to be solved by the invention'' However, since the conventional QPSK circuit (12) processes all analog signals, there are variations in the circuit parameters, the operation is somewhat unstable, and the V CO (
Since the output from 24) is a sine wave, a 90° phase shifter (
25), there were problems such as an error occurring in the amount of phase shift.
本出願人は従来の問題点を解決するため第4図に示すよ
うに、QPSXの復調をディジタルで行う回路を提案し
た。In order to solve the conventional problems, the applicant has proposed a circuit for digitally demodulating QPSX, as shown in FIG.
この第4図の回路と第5図の従来回路と異なる点は、Q
PSK入力端子(16)とディジタル形乗算器(27)
(2g)の間に、A/D変換器(31)を挿入し、ま
た1乗算器(27) (28)とL P F (29)
(30)はそれぞれディジタル形を用い、さらに、位
相差検出器(23)とV CO(24)の間にD/A変
換器(32)を介在したことである。The difference between this circuit in Figure 4 and the conventional circuit in Figure 5 is that Q
PSK input terminal (16) and digital multiplier (27)
An A/D converter (31) is inserted between (2g), and 1 multiplier (27) (28) and L P F (29)
(30) uses a digital type, and furthermore, a D/A converter (32) is interposed between the phase difference detector (23) and the VCO (24).
このようなディジタル信号処理のQPSK回路(12)
において、QPSK入力信号をA/D変換器(31)で
A/D変換した後、乗算器(27) (28)で再生搬
送波と乗算し、その結果をL P F (29) (3
0)に通す。これらのL P F (29) (30)
はQPSK入力信号の周波数の2倍以上で動作すれば無
限の選択ができる。前述のように、QPSK信号波はC
o5(ωat÷φ)(φは伝送データにより変化する)
と表わすと、VC○(24)でこのQPSK信号波と同
位相の搬送波cos ωatと、これに直交したsin
ωCtを発生させて乗算器(27) (28)で乗算
する。乗算結果はそれぞれ+(cos(2(11ct+
φ)+cosφ)、+ (sin(2(13Ct+φ)
−sinφ)となる、これが第3図のスペクトル特性図
で、図中、ΔはQPSK信号波のφがデータ伝送により
変化したために広がったスペクトル量を示している。
L P F (29)(30)はこのスペクトルのうち
、高周波成分を除去せしめるものであり、このためL
P F (29) (30)のサンプリング周波数は2
(ωC+Δ)以上であればよい。QPSK circuit for such digital signal processing (12)
After the QPSK input signal is A/D converted by the A/D converter (31), it is multiplied by the recovered carrier wave by the multipliers (27) (28), and the result is L P F (29) (3
0). These L P F (29) (30)
operates at twice or more the frequency of the QPSK input signal, allowing infinite selection. As mentioned above, the QPSK signal wave is C
o5 (ωat÷φ) (φ changes depending on the transmitted data)
If expressed as
ωCt is generated and multiplied by multipliers (27) and (28). The multiplication results are +(cos(2(11ct+
φ) + cosφ), + (sin(2(13Ct+φ)
-sinφ), which is the spectral characteristic diagram shown in FIG. 3, where Δ indicates the amount of spectrum that has spread due to the change in φ of the QPSK signal wave due to data transmission.
L P F (29) (30) removes high frequency components from this spectrum, and therefore L
The sampling frequency of P F (29) (30) is 2
It is sufficient if it is equal to or greater than (ωC+Δ).
ところで、従来は論理回路の速度の速いものが作りにく
く、消費電力も大きくなるので、できるだけ動作速度が
遅くなるようにしていたため、つぎのような問題点があ
った。By the way, in the past, it was difficult to make logic circuits with high speed and the power consumption was high, so the operation speed was made as slow as possible, which caused the following problems.
(1)速度を犠牲にした分だけフィルタに高いQ特性の
ものを必要とすること。(1) The filter needs to have a high Q characteristic to compensate for the sacrifice of speed.
(2)高いQ特性のディジタルフィルタは次数が高くな
ること。(2) A digital filter with a high Q characteristic has a high order.
本発明は動作速度が速く、しかも次数の低いディジタル
フィルタを得ることも目的とする。Another object of the present invention is to obtain a digital filter with high operating speed and low order.
「課題を解決するための手段」
本発明はQPSK入力端子に入力したQPSK信号を2
つに分岐し、それぞれ乗算器、LPF、2値化器を介し
て復調出力端子へ送るとともに、前記2つのLPFの出
力を位相検出器を介してVCOへ送り、このVCOの信
号を前記一方の乗算器には移相器を介して、また、他方
の乗算器にはそのまま送ることにより入力した搬送波と
再生搬送波の位相差がOとなるように制御するようにし
たものにおいて、前記QPSK入力端子と乗算器との間
にA/D変換器を介在し、前記乗算器およびLPFはデ
ィジタル形を用い、前記位相検出器とVCOとの間にD
/A変換器を介在し、さらに。"Means for Solving the Problem" The present invention provides two
The outputs of the two LPFs are sent to the VCO via a phase detector, and the signal of this VCO is sent to the demodulation output terminal via a multiplier, an LPF, and a binarizer, respectively. The QPSK input terminal is controlled so that the phase difference between the input carrier wave and the reproduced carrier wave becomes O by sending it to the multiplier via a phase shifter and sending it as it is to the other multiplier. and a multiplier, an A/D converter is interposed between the multiplier and the LPF, and a digital type is used for the multiplier and the LPF, and an A/D converter is interposed between the phase detector and the VCO.
/A converter, and further.
前記LPFは搬送波の4倍の動作速度を有するものから
なるものである。The LPF has an operating speed four times that of the carrier wave.
「作用」
QPSK入力端子に入力したQPSK信号をA/D変換
器でディジタル量に変換し、その信号はディジタル乗算
器とディジタルLPFを通過し。"Operation" The QPSK signal input to the QPSK input terminal is converted into a digital quantity by an A/D converter, and the signal passes through a digital multiplier and a digital LPF.
2値化器と位相差検出器に送られる。ここで、再生搬送
波はcos ωctとQPSK信号cos ((Ll
ct+φ)とは乗算器でディジタル的に乗算されて+(
cos (ωct+φ)+cosφ)を得、LPFから
cosφの成分だけがとり出される。LPFの動作速度
がQPSK搬送波の4倍であるから、フィルタ次数を偶
数次、例えば4次にすると、最適なフィルタ特性となる
。The signal is sent to a binarizer and a phase difference detector. Here, the recovered carrier wave is cos ωct and QPSK signal cos ((Ll
ct+φ) is digitally multiplied by a multiplier and becomes +(
cos (ωct+φ)+cosφ), and only the component of cosφ is extracted from the LPF. Since the operating speed of the LPF is four times that of the QPSK carrier wave, optimal filter characteristics can be obtained by setting the filter order to an even number, for example, the fourth order.
2つのLPFの出力が位相差検出器へ送られ、この位相
差検出器ではQPSK信号の発生側の搬送波の位相と、
VCOより発生する再生搬送波の位相差とを比較しその
差がOとなるようにD/A変換した信号をVCOに加え
る。すなわち、VCOはディジタル動作が困難であるた
め、アナログ信号に変換して加える。VCOからは矩形
波が出力するが、これは実質的なディジタル信号であり
。The outputs of the two LPFs are sent to a phase difference detector, which detects the phase of the carrier wave on the generation side of the QPSK signal, and
The phase difference of the reproduced carrier wave generated by the VCO is compared, and the D/A converted signal is added to the VCO so that the difference becomes O. That is, since it is difficult for a VCO to operate digitally, it is converted into an analog signal and added. The VCO outputs a rectangular wave, which is essentially a digital signal.
これが−90°の移相器を介し、また直接乗算器へ加え
られてディジタル処理される。This is applied via a -90° phase shifter and directly to a multiplier for digital processing.
「実施例」 以下、本発明の一実施例を説明する。"Example" An embodiment of the present invention will be described below.
論理回路の動作速度はいくらでも速くなれると仮定する
と、前記例では2ωCのスペクトルが最も効率よく除去
されるものが好ましい、ディジタルLPFには通常FI
Rの直線位相フィルタが使用され、その周波数特性H(
e ” )は偶数次の場合、H(e”)=Σh (n)
cos (ω(rr−十) )となる、この式からω
:πすなわち動作速度の半分の周波数で無条件にH(e
”)はOになる。また一般にそれらのフィルタはω:π
以降は特性が折り返えしになるので、この条件のとき最
小のQで済むことがわかる。したがって、フィルタの動
作速度をQPSK搬送波の4倍にし、フィルタ次数を偶
数次にすると最適なものとなる。その例が第1図で、こ
の第1図に示した本発明のL P F (29)(30
)は、遅延器(35) (36) (37)、乗算器(
38) (39) (40)(41)、加算器(42)
(43) (44)をもって構成されている。ここで
、乗算器(38) 、 (39) 、 (40) 、
(41)のそれぞれ乗算係数をa、b、b、aとすると
、H(z) = a (z=+l) + b(z−+z
−3)= z −”(a (Z−+÷z ”)÷b <
:z++z+)>H(e”” ) = e −””(
2a cAs (前二) + 2b cos C千)
)= 2e−”” (a cos (+) + b e
os (”¥−) )となる。Assuming that the operating speed of the logic circuit can be increased as much as possible, in the above example, it is preferable to use one that can remove the 2ωC spectrum most efficiently.
A linear phase filter of R is used, and its frequency characteristic H(
e”) is of even order, H(e”)=Σh(n)
From this formula, ω becomes cos (ω(rr−1))
: π, that is, unconditionally H(e
”) becomes O. Also, in general, those filters have ω:π
After that, the characteristics turn around, so it can be seen that the minimum Q is sufficient under this condition. Therefore, it is optimal to make the operating speed of the filter four times that of the QPSK carrier wave and set the filter order to an even number. An example of this is shown in FIG. 1, where L P F (29) (30
) are delayers (35) (36) (37), multipliers (
38) (39) (40) (41), adder (42)
(43) It is composed of (44). Here, the multipliers (38), (39), (40),
If the multiplication coefficients in (41) are a, b, b, and a, then H(z) = a (z=+l) + b(z-+z
−3)=z −”(a (Z−+÷z ”)÷b <
:z++z+)>H(e””) = e −””(
2a cAs (first two) + 2b cos C thousand)
) = 2e-”” (a cos (+) + b e
os (“¥-))”.
このように構成されたL P F (29) (30)
の周波数特性は第2図のようになる。具体的には、搬送
波周波数が5.72MHz、ΔがIMHz(7)QPS
K信号伝送(伝送シンボルレートもI MHz)の場合
、高周波成分の抑圧は40dB以上もあるにも拘らず、
次数はわずか4次である。L P F (29) (30) configured in this way
The frequency characteristic of is shown in Fig. 2. Specifically, the carrier frequency is 5.72 MHz, Δ is IMHz (7) QPS
In the case of K signal transmission (transmission symbol rate is also I MHz), although the suppression of high frequency components is more than 40 dB,
The order is only 4th.
「発明の効果」
本発明は上述のように構成したので、動作速度が速く、
しかもフィルタ次数を低くしながら、高周波成分を充分
に除去できるものである。"Effects of the Invention" Since the present invention is configured as described above, the operating speed is fast.
Furthermore, high frequency components can be sufficiently removed while lowering the filter order.
第1図は本発明によるLPFの一実施例を示すブロック
図、第2図はLPFの特性図、第3図はスペクトル特性
図、第4図はディジタル処理用4僚相復調回路のブロッ
ク図、第5図はアナログ処理用4泣相復調回路のブロッ
ク図、第6図は一般的な衛星放送受信機のブロック図で
ある。
(1)・・・放送衛星、(2)・・・パラボラアンテナ
、(3)・・・BSコンバータ、(4)・・・BSチュ
ーナ、(5)・・・選局回路、(6)・・・FM復調回
路、(7)・・・映像−音声分離回路、(8)・・・デ
エンファシス回路、(9)・・・エネルギー拡散信号除
去回路、(10)・・・テレビ受像機、(11)・・・
映像入力端子、 (12)・・・4位相復調回路、 (
13)・・・、(14)・・・デエンファシス回路、
(15)・・・音声入力端子、(17) (18)・・
・乗算器、(19) (20)・・・LPF、(21)
(22)・・・2値化器、(23)・・・位相差検出
器、(24)・・・VCOl(25) −−−−90’
移相器、(26)・・・ピットクロック再生回路、 (
27)(28)・・・乗算器、(29) (30)・・
・LPF、(31)・・・A/D変換器、(32)・・
・D/A変換器。FIG. 1 is a block diagram showing an embodiment of the LPF according to the present invention, FIG. 2 is a characteristic diagram of the LPF, FIG. 3 is a spectrum characteristic diagram, and FIG. 4 is a block diagram of a four-phase demodulation circuit for digital processing. FIG. 5 is a block diagram of a four-phase demodulation circuit for analog processing, and FIG. 6 is a block diagram of a general satellite broadcasting receiver. (1)... Broadcasting satellite, (2)... Parabolic antenna, (3)... BS converter, (4)... BS tuner, (5)... Tuning circuit, (6)... ... FM demodulation circuit, (7) ... video-audio separation circuit, (8) ... de-emphasis circuit, (9) ... energy diffusion signal removal circuit, (10) ... television receiver, (11)...
Video input terminal, (12)...4-phase demodulation circuit, (
13)..., (14)... de-emphasis circuit,
(15)...Audio input terminal, (17) (18)...
・Multiplier, (19) (20)...LPF, (21)
(22)... Binarizer, (23)... Phase difference detector, (24)... VCOl (25) -----90'
Phase shifter, (26)... pit clock regeneration circuit, (
27) (28)... Multiplier, (29) (30)...
・LPF, (31)...A/D converter, (32)...
・D/A converter.
Claims (2)
に分岐し、それぞれ乗算器、LPF、2値化器を介して
復調出力端子へ送るとともに、前記2つのLPFの出力
を位相検出器を介してVCOへ送り、このVCOの信号
を前記一方の乗算器には移相器を介して、また、他方の
乗算器にはそのまま送ることにより入力した搬送波と再
生搬送波の位相差が0となるように制御するようにした
ものにおいて、前記QPSK入力端子と乗算器との間に
A/D変換器を介在し、前記乗算器およびLPFはディ
ジタル形を用い、前記位相検出器とVCOとの間にD/
A変換器を介在し、さらに、前記LPFは搬送波の4倍
の動作速度を有するものからなることを特徴とする4位
相復調回路。(1) The QPSK signal input to the QPSK input terminal is branched into two and sent to the demodulation output terminal via a multiplier, LPF, and binarizer, respectively, and the outputs of the two LPFs are sent via a phase detector. The signal from the VCO is sent to one of the multipliers via a phase shifter, and sent to the other multiplier as it is, so that the phase difference between the input carrier wave and the reproduced carrier wave becomes 0. In the device, an A/D converter is interposed between the QPSK input terminal and the multiplier, the multiplier and the LPF are of digital type, and an A/D converter is provided between the phase detector and the VCO. D/
A four-phase demodulation circuit including an A converter, and further comprising: an LPF having an operating speed four times that of a carrier wave.
求項(1)記載の4位相復調回路。(2) The four-phase demodulation circuit according to claim (1), wherein the LPF comprises a delay device, a multiplier, and an adder.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1305093A JP2932288B2 (en) | 1989-11-24 | 1989-11-24 | 4 phase demodulation circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1305093A JP2932288B2 (en) | 1989-11-24 | 1989-11-24 | 4 phase demodulation circuit |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03165146A true JPH03165146A (en) | 1991-07-17 |
| JP2932288B2 JP2932288B2 (en) | 1999-08-09 |
Family
ID=17941021
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1305093A Expired - Lifetime JP2932288B2 (en) | 1989-11-24 | 1989-11-24 | 4 phase demodulation circuit |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2932288B2 (en) |
-
1989
- 1989-11-24 JP JP1305093A patent/JP2932288B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP2932288B2 (en) | 1999-08-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5483695A (en) | Intermediate frequency FM receiver using analog oversampling to increase signal bandwidth | |
| US5315619A (en) | Carrier recovery processor for a QAM television signal | |
| US5257312A (en) | Time-discrete stereo decoder | |
| JPH0311814A (en) | Ssb modulator and ssb demodulator | |
| US3873931A (en) | FM demodulator circuits | |
| US6249559B1 (en) | Digital frequency phase locked loop (FPLL) for vestigial sideband (VSB) modulation transmission system | |
| US4270221A (en) | Phaselocked receiver with orderwire channel | |
| JPH03165146A (en) | 4-phase demodulation circuit | |
| US6587011B2 (en) | Low cost digital FM modulator | |
| US5510855A (en) | Satellite television broadcasting receiver including improved clamping circuit | |
| JP2893496B2 (en) | Data transmission circuit | |
| US7145610B2 (en) | Receiving method and apparatus of analog television signals technical field | |
| KR100196804B1 (en) | Delayed FM demodulation | |
| JP2932289B2 (en) | 4 phase demodulation circuit | |
| JP2932290B2 (en) | 4 phase demodulation circuit | |
| JPH03165646A (en) | Four-phase demodulation circuit | |
| JPH0779390A (en) | Receiver | |
| JP2979326B2 (en) | 4 phase demodulation circuit | |
| JPH01216686A (en) | Satellite broadcast reception circuit | |
| JP2890992B2 (en) | Satellite receiver | |
| JP3137410B2 (en) | AM / FM direct receiver | |
| JPH0359617B2 (en) | ||
| JP2993645B2 (en) | 4 phase demodulation circuit | |
| JP2545882B2 (en) | Data playback device | |
| JPH0750697A (en) | Four-phase phase demodulation circuit and phase comparator of four-phase phase demodulation circuit |