[go: up one dir, main page]

JPH03167712A - Carbonaceous solid electrolytic material and solid electrolytic battery using it - Google Patents

Carbonaceous solid electrolytic material and solid electrolytic battery using it

Info

Publication number
JPH03167712A
JPH03167712A JP1307227A JP30722789A JPH03167712A JP H03167712 A JPH03167712 A JP H03167712A JP 1307227 A JP1307227 A JP 1307227A JP 30722789 A JP30722789 A JP 30722789A JP H03167712 A JPH03167712 A JP H03167712A
Authority
JP
Japan
Prior art keywords
carbonaceous
solid electrolyte
sulfonated
sulfuric acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1307227A
Other languages
Japanese (ja)
Other versions
JPH0690881B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Seiji Shimomura
下村 誠司
Hidemasa Honda
本田 英昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Koa Oil Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1307227A priority Critical patent/JPH0690881B2/en
Publication of JPH03167712A publication Critical patent/JPH03167712A/en
Publication of JPH0690881B2 publication Critical patent/JPH0690881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain the light carbonaceous solid electrolytic material having excellent formability by composing the carbonaceous material of sulfonated carbonaceous material obtained by a treatment with the sulfonating agent. CONSTITUTION:Carbonaceous material is composed of the sulfonated carbonaceous material obtained by a treatment with the sulfonating agent. Carbonaceous mesoface and (or) raw coke manufactured by a thermal treatment of pitch class, which is one of the heavy bituminous material, are desirably used as the raw material of the solid electrolyte. Concretely, carbonaceous material as raw material is treated with the sulfonating agent such as sulfuric acid and/or fuming sulfuric acid, and the treated material is distributed in the water to be washed once with water or filtrated with a filter as it is to eliminate the residual sulfuric acid or fuming sulfuric acid, and sulfone group is led into carbonaceous mesoface. Light carbonaceous solid electrolytic material is obtained which is stabilized in the air and has excellent formability for manufacturing through a relatively simple process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電池用固体電解質に関し、特に軽量で成形性
に優れた炭素質固体電解質材料およびこの電解質を用い
た液漏れのない電池に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a solid electrolyte for batteries, and in particular to a carbonaceous solid electrolyte material that is lightweight and has excellent moldability, and a leak-free battery using this electrolyte. be.

〔発明の背景〕[Background of the invention]

近年、半導体技術の発展に伴い電子機器の消費電力は低
下される方向にある。これに伴い、電子機器に用いられ
る電池は小型、薄型、軽量化か望まれるようになってき
た。このト賽な要求に応えるものとして固体電解質電池
かある。固体電解質電池は、電解質にイオン導電性をa
する固体電解質を使用し、実質的に肢体成分を用いない
ため電池から7皮漏れがなく、このため岐漏れを防ぐ手
立てが不要となり容器の軽量化、簡素化か図れるという
特徴を有している。
In recent years, with the development of semiconductor technology, the power consumption of electronic devices has been decreasing. Along with this, it has become desirable for batteries used in electronic devices to be smaller, thinner, and lighter. Solid electrolyte batteries are available to meet this demanding demand. Solid electrolyte batteries have ionic conductivity in the electrolyte.
Because it uses a solid electrolyte that does not use any external components, there is no leakage from the battery, and therefore, there is no need to take measures to prevent leakage, and the container can be made lighter and simpler. .

現在、既に実用化あるいは開発段階にある固体電解質電
池としては、Na−S電泊、L L − 1 2電池、
t.i−v2o5電池等がある。
Currently, solid electrolyte batteries that are already in practical use or in the development stage include Na-S batteries, LL-12 batteries,
t. There are i-v2o5 batteries, etc.

Na−S電進は負極活物質にNa,正極活物質にSを使
用し、電解質にNaイオン導電性であるβ′アルミナ(
3Na2・16Al203)セラミックスを使用した3
00℃−350℃で作動する高温型電池として注目され
ている。
Na-S electric current uses Na as the negative electrode active material, S as the positive electrode active material, and β' alumina (β' alumina), which is conductive to Na ions, as the electrolyte.
3Na2・16Al203) 3 using ceramics
It is attracting attention as a high-temperature battery that operates between 00°C and 350°C.

また、Li−Iつ固体電解質電池は、負極活物質に金属
リチウム、正極活物質にはヨウ素とポリ2−ビニルビリ
ジンの錯体を使用し、固体電解質にはLiIを使用して
おり、リチウム電池の特徴である高い起電力を利用して
心,laペースメーカ−用として広く使用されている。
In addition, Li-I solid electrolyte batteries use metallic lithium as the negative electrode active material, a complex of iodine and poly-2-vinylpyridine as the positive electrode active material, and LiI as the solid electrolyte. Utilizing its characteristic high electromotive force, it is widely used for cardiac and LA pacemakers.

さらにLi−V205電池は負極活物質に金属リチウム
、正極活物質に■205、固体電解質にはポリホスファ
ゼン・リチウム塩複合物を使用している固体電解質電地
であり、上述のLi−Iつ電池同様、電解質にポリマー
を使用しているため、柔軟性、密着性を有し、接触物の
形態変化に追随でき自由な形状に戊型できるという利点
を有している。
Furthermore, the Li-V205 battery is a solid electrolyte battery that uses metallic lithium as the negative electrode active material, ■205 as the positive electrode active material, and a polyphosphazene/lithium salt composite as the solid electrolyte. Similarly, since a polymer is used for the electrolyte, it has flexibility and adhesion, and has the advantage of being able to follow changes in the shape of the object it comes in contact with, and can be shaped into any shape.

しかしながら、これらの固体電解質電池にち次のような
問題点かある。たとえば、Na−S電池については、高
温型電泊てあることにより使用時には300℃〜350
℃にして使用する1必要があり、その用途がいきおい制
限される。また、このため小型化、薄型化かできず、具
体的な用途としては、自動車用、工業用等の大型のもの
に限られるなどの欠点を有している。一方Li−1つ電
池、あるいはLi−V205電池では負極活物質の金属
リチウムが極めて活性であるため、耐酸化、耐湿のため
に電地の製造工程や封口技術が繁雑となる。また、これ
らの固体電解質物質としては、比較的複雑な構造をもつ
化合物を使用するため、これを合戊する反応工程も繁雑
となりコスト的にも右利である。例えば、Lt−V20
5電泊の固体電解質ポリホスファゼン・リチウム塩複合
物を合成する反応工程は次の通りの復雑なものである。
However, these solid electrolyte batteries have the following problems. For example, Na-S batteries are heated to temperatures of 300°C to 350°C during use due to the high temperature type battery.
It needs to be used at 1°C, which severely limits its uses. Moreover, for this reason, it cannot be made smaller or thinner, and its specific applications are limited to large-sized ones such as those for automobiles and industrial use. On the other hand, in a Li-1 battery or a Li-V205 battery, metallic lithium as a negative electrode active material is extremely active, so the manufacturing process and sealing technology for the conductive layer are complicated in order to resist oxidation and moisture. Furthermore, since compounds with relatively complex structures are used as these solid electrolyte materials, the reaction process for combining them is also complicated, which is advantageous in terms of cost. For example, Lt-V20
The reaction process for synthesizing the solid electrolyte polyphosphazene/lithium salt composite with five electrodes is complicated as follows.

すなわち、まず、ジクロ口ホスファゼン三量体を熱開環
重合でポリジクロ口ホスファゼンとし、これにオリゴエ
チレングリコールモノメチルエーテルのアルコラートを
反応させメトキシオリゴエチレンオキシポリホスファゼ
ンを得る。このポリマーのエチレングリコールジメチル
エーテル溶液に所望のリチウム塩を所望の濃度で溶解し
、溶媒を除去することにより複合系高分子固体′電解質
を合成するという繁雑な工程を必要とする。
That is, first, a dichloro-phosphazene trimer is made into a polydichloro-phosphazene by thermal ring-opening polymerization, and this is reacted with an alcoholate of oligoethylene glycol monomethyl ether to obtain a methoxyoligoethyleneoxypolyphosphazene. This requires a complicated process of dissolving a desired lithium salt at a desired concentration in an ethylene glycol dimethyl ether solution of this polymer and removing the solvent to synthesize a composite polymer solid electrolyte.

〔発明の概要〕[Summary of the invention]

本発明は上述した従来技術に鑑みてなされたものであり
、軽量かつ空気中で安定であり、しかも比較的簡易な工
程で製漬され得る炭素質固体電解質材料ならびにこれを
用いた電池を提供することを目的としている。
The present invention has been made in view of the above-mentioned prior art, and provides a carbonaceous solid electrolyte material that is lightweight, stable in the air, and can be prepared in a relatively simple process, and a battery using the same. The purpose is to

本発明者は、工業的に安価かつ安定的に人手し得るピッ
チ、メソフェースahピッチ、炭素質メソフェース、及
び生コークス等の炭素質+4料を原料とし、これにスル
ホン化剤を接触させることによって、比較的簡便な方広
により、炭素質材料成分中にスルホン基を導入すること
かでき、しかもこのようにして得られたスルホン化炭素
質材料か、電池用の固体電解質として優れた特性を有し
ていることを見出し、本発明を完或するに至ったもので
ある。
The present inventor uses carbonaceous +4 materials such as pitch, mesophase ah pitch, carbonaceous mesophase, and raw coke, which can be produced industrially inexpensively and stably by hand, as raw materials, and by contacting them with a sulfonating agent, It is possible to introduce a sulfone group into the carbonaceous material component by a relatively simple method, and the sulfonated carbonaceous material obtained in this way has excellent properties as a solid electrolyte for batteries. The present invention has been completed based on this discovery.

すなわち、本発明による炭素質固体電解質+4科は、炭
素質材料をスルホン化剤で処理することによって得られ
るスルホン化炭素質材料からなることを特徴とするもの
である。
That is, the carbonaceous solid electrolyte of the +4 family according to the present invention is characterized by consisting of a sulfonated carbonaceous material obtained by treating a carbonaceous material with a sulfonating agent.

さらに、本発明による固体電解質電池は炭素質材料をス
ルホン化剤で処理することによって得られるスルホン化
炭素質材t4からなる炭素質固体電解質材料と、2種項
の兄なる十オ料の電極からなることをjF!f徴とする
ものてある。
Furthermore, the solid electrolyte battery according to the present invention is made of a carbonaceous solid electrolyte material made of a sulfonated carbonaceous material t4 obtained by treating a carbonaceous material with a sulfonating agent, and an electrode of 100%, which is the older brother of the two types. Become jF! There are some f symptoms.

〔発明の具体的説明〕[Specific description of the invention]

本発明において固体電解質の原料として用いる炭素質材
料としては、重質瀝青物であるピッチ類の熱処理によっ
て製造される炭素質メソフェースおよび(または)生コ
ークスが好ましく用いられ得る。これら炭素質+4料の
原料として用いられるピッチ類は、コールタールピッチ
、石炭7夜化物の石炭系ピッチ、石油の蒸溜残渣油、ナ
フサの熱分解時に副生ずるナフサタールピッチ、ナフサ
等の流動接触分解法(FCC法)で副生ずるFCCデカ
ントオイル等の石而系ピッチ、PVC等合成高分子の熱
分解で得られるピッチ等であり、その炭化物が光学異方
性組織を有するものであれば、特に種類は問わない。こ
れらのピッチ類は約350℃〜500℃で熱処理される
。この熱処理によって炭素質メソフェース(生コークス
を含む)を生成させる。炭素質メソフェースの生成は熱
処理物を偏光顕微鏡下で観察することによって容易に知
ることができる。即ち、炭素質メソフェースは光学的等
方性相であるピッチ中に光学異方性相として識別される
。この時、炭素質メソフェースの形態は、炭素化初期の
段階で発生するメソフェース小球体であっても、この小
球体が成長、合体した、いわゆるバルクメソフェースで
あってもよい。
As the carbonaceous material used as a raw material for the solid electrolyte in the present invention, carbonaceous mesophase and/or raw coke produced by heat treatment of pitch, which is a heavy bituminous material, can be preferably used. The pitches used as raw materials for these carbonaceous + 4 materials are coal tar pitch, coal-based pitch of coal heptomide, petroleum distillation residue oil, naphtha tar pitch produced as a by-product during the thermal decomposition of naphtha, and fluid catalytic cracking of naphtha. (FCC method) as a by-product such as FCC decant oil, pitch obtained by thermal decomposition of synthetic polymers such as PVC, etc., especially if the carbide has an optically anisotropic structure. The type doesn't matter. These pitches are heat treated at about 350°C to 500°C. This heat treatment produces carbonaceous mesophase (including raw coke). The formation of carbonaceous mesophase can be easily detected by observing the heat-treated product under a polarizing microscope. That is, the carbonaceous mesophase is identified as an optically anisotropic phase in pitch, which is an optically isotropic phase. At this time, the form of the carbonaceous mesophase may be mesophase spherules generated at an early stage of carbonization, or a so-called bulk mesophase formed by growing and coalescing these spherules.

以下の記載においては特に炭素質メソフェースを原料と
する場合について説明するが、本発明はこれに限定され
るものではない。
In the following description, a case in which carbonaceous mesophase is used as a raw material will be explained in particular, but the present invention is not limited thereto.

炭素質メソフェースを生成させる熱処理条件は、熱処理
したピッチから分離される炭素質メソフ工−スの元素組
成によって決定され得る。特に、この熱処理は、水素の
含有率が2重量%以上になるようにすることか好ましい
。これは、水素の含有率か2重量%以下になるまで高度
に熱処理した炭素質メソフェースでは、メソフェースを
形戊している芳香族平面分子が大きく発達しかつ化学的
に安定なものになり容易にスルホン基が導入されにくく
なること、および、たとえスルホン基が導入されても電
子伝導性か大きくなり、イオン伝導性が要求される電池
用電解質としては必ずしも適さなくなる、という理由に
よる。
The heat treatment conditions that produce the carbonaceous mesoface can be determined by the elemental composition of the carbonaceous mesophase separated from the heat treated pitch. In particular, this heat treatment is preferably performed so that the hydrogen content becomes 2% by weight or more. This is because carbonaceous mesophase is highly heat-treated until the hydrogen content is reduced to 2% by weight or less, and the aromatic planar molecules forming the mesophase develop greatly and become chemically stable, making it easy to form carbonaceous mesophases. This is because it becomes difficult to introduce a sulfone group, and even if a sulfone group is introduced, the electronic conductivity increases, making it unsuitable as a battery electrolyte that requires ionic conductivity.

上記のようにして得られた炭素質材料を原料として、こ
れを硫酸または/および発煙硫酸などのスルホン化剤で
処理を行う。次いで、処理物を一旦、水に分散、水洗す
るか、そのままフィルターで枦過し、残存する硫酸また
は発煙硫酸を除去する。これらの操作により、炭素質メ
ソフェースにスルホン基か導入される。上記において、
炭素質メソフェースにスルホン基を導入するための条件
は次の通りである。
Using the carbonaceous material obtained as described above as a raw material, it is treated with a sulfonating agent such as sulfuric acid and/or fuming sulfuric acid. Next, the treated product is once dispersed in water and washed with water, or directly passed through a filter to remove residual sulfuric acid or fuming sulfuric acid. Through these operations, sulfone groups are introduced into the carbonaceous mesophase. In the above,
The conditions for introducing a sulfone group into the carbonaceous mesophase are as follows.

まず、スルホン化剤は硫酸、発煙硫酸および、これらの
混合物のいずれでも良く、また、硫酸と発煙硫酸の混合
比はO〜1 0 0 %から100〜0%まで、いかな
る比であってもよい。反応において硫酸、発煙硫酸およ
び、これらの混合物の混合試薬の炭素質メソフェースに
対する量比は、炭素質メソフェース1gに対して試薬5
ml以上とするのが好ましい。これ以下の量比では、ス
ルホン基の導入量が不十分となり、電池起電力が十分大
きくならず、また、反応の際に、炭素質メソフェース粒
子中に、試薬か吸収されることになり、その分、液相が
失われ反応温度が不均一になる場合かあるので好ましく
ない。スルホン化剤としては、上記の他に、クロルスル
ホン酸、亜硫酸、三酸化イオウ、塩化スリフリル、亜硫
酸ナトリウム、ジオキサンと無水硫酸の付加化合物、な
どが用いられ得る。
First, the sulfonating agent may be sulfuric acid, oleum, or a mixture thereof, and the mixing ratio of sulfuric acid and fuming sulfuric acid may be any ratio from 0 to 100% to 100 to 0%. . In the reaction, the quantitative ratio of sulfuric acid, oleum, and a mixture of these reagents to the carbonaceous mesophase is 5 reagents per 1 g of carbonaceous mesophase.
It is preferable to set it as ml or more. If the ratio is lower than this, the amount of sulfone groups introduced will be insufficient, and the cell electromotive force will not be large enough.Also, during the reaction, some reagents will be absorbed into the carbonaceous mesophase particles, and the This is not preferable because the liquid phase may be lost and the reaction temperature may become non-uniform. As the sulfonating agent, in addition to the above, chlorosulfonic acid, sulfurous acid, sulfur trioxide, surifyl chloride, sodium sulfite, an addition compound of dioxane and sulfuric anhydride, and the like can be used.

反応温度、時間については用いる原料にもよるが、一般
に50〜200℃、10〜300分が好ましい。50’
C以下または10分以下等のゆるやかな条件では、導入
されるスルホン基の量が少なく、これを電解質にして電
ltl!を組んだ時、満足できる電泊起電力が得られな
い場合かある。また、200℃または300分以上等の
厳しい条件では、導入されるスルホン基量が上述の好ま
しい条件とあまり変化がなく、かつ、反応後のスルホン
化メソフェースの収量か減少する。従って、上述の好ま
しい温度、時間の範囲からそれぞれの原料にあった適切
な条件を選ぶことになる。
The reaction temperature and time depend on the raw materials used, but are generally preferably 50 to 200°C and 10 to 300 minutes. 50'
Under gentle conditions such as less than C or less than 10 minutes, the amount of sulfone groups introduced is small, and this is used as an electrolyte to generate electricity! When assembled, there are cases where a satisfactory electromotive force cannot be obtained. In addition, under severe conditions such as 200° C. or 300 minutes or more, the amount of sulfone groups introduced does not change much from the above-mentioned preferred conditions, and the yield of sulfonated mesophase after the reaction decreases. Therefore, appropriate conditions suitable for each raw material are selected from the above-mentioned preferred temperature and time ranges.

本発明者らはその方広につき、さらに種々検討したとこ
ろ、スルホン化処理により導入されたスルホン基とスル
ホン化物の硫黄含6一量には一定の関係かあることが判
明した。即ち、本発明者らの知見によれば、スルホン化
処理により硫黄6有Mが原料(未処理)より2.5重量
96以上増加する条件を選ぶことにより、良好な結果が
得られる二とがわかった。硫黄含有量の土曽加が2.5
重量%未満てあると、これを電解質にして電池を組んだ
時、電池反応に関与するスルホン基の量が不十分となり
、十分な起電力が得られない場合かある。
The inventors of the present invention further investigated various aspects of the method and found that there is a certain relationship between the sulfone group introduced by the sulfonation treatment and the sulfur content of the sulfonated product. That is, according to the findings of the present inventors, good results can be obtained by selecting conditions in which the sulfur 6-M increases by 2.5 weight 96 or more compared to the raw material (untreated) due to the sulfonation treatment. Understood. Tsuchisoka with sulfur content is 2.5
If it is less than % by weight, when a battery is assembled using this as an electrolyte, the amount of sulfone groups involved in the battery reaction will be insufficient, and sufficient electromotive force may not be obtained.

本発明においては硫黄含有量の上限は特に限定されるも
のではないが、前述の反応温度が、50〜200℃の範
囲の場合は、高々10重量%である。
In the present invention, the upper limit of the sulfur content is not particularly limited, but when the above-mentioned reaction temperature is in the range of 50 to 200°C, it is at most 10% by weight.

また、炭素質メソフェースにスルホン基が導入されたこ
とは、赤外線スペクトルにより確認することができる。
Furthermore, the introduction of sulfone groups into the carbonaceous mesophase can be confirmed by infrared spectroscopy.

上述の反応条件でスルホン化した炭素質メソフェース即
ちスルホン化メソフェースの赤外線スペクトルを測定す
ると、1 1 8 0ca+−’と1 2 3 0cm
−’の位置に明らかにピークは認められ、スルホン基の
存在を示している。かくして得られたスルホン化メソフ
ェースの状態は、かさ密度0.6g;/ci程度のさら
さらした粉末状であり、また、常法により簡単に成型す
ることもてき、例えば1 0 0 kg/cJ程度の圧
力て成型するとかさ密度1.0g/cm程度の種々の形
状のものか得られる。
When the infrared spectrum of the sulfonated carbonaceous mesophase, that is, the sulfonated mesophase, was measured under the above reaction conditions, the infrared spectrum was 1180ca+-' and 1230cm.
A peak is clearly observed at the -' position, indicating the presence of a sulfone group. The state of the sulfonated mesophase obtained in this way is in the form of a free-flowing powder with a bulk density of about 0.6 g/ci, and can be easily molded by a conventional method, for example, with a bulk density of about 100 kg/cJ. When molded under pressure, various shapes with a bulk density of about 1.0 g/cm can be obtained.

この様にして得られたスルホン化メソフェースを2種類
の異なった電極で挟設して電池を組L゛二とによって起
電力を生じさせることが可能である。
It is possible to generate an electromotive force by sandwiching the sulfonated mesophase thus obtained between two different types of electrodes to form a battery set L2.

ここで使用する電極は鉛、銀、銅等の金属、二酸化鉛、
酸化銀、酸化鋼等の酸化物または導電性高分子化合物、
さらには導電性高分子化合物にヨウ素や過酸塩をドープ
したものであっても良い。正極には還元されやすい物質
、負極には酸化されやすい物質を選ぶ。2種類の異なっ
た電極で固体電解質であるスルホン化メソフェースを挾
むと強酸性基であるスルホン基の作用により正極におい
ては正極活物質の還元反応、負極においては負極活物質
の酸化反応が起こり起電力が生しる。その際、使用する
固体電解質であるスルホン化メソフエスは、目的に応じ
種々の形態を選ぶことかできる。
The electrodes used here are metals such as lead, silver, and copper, lead dioxide,
Oxides such as silver oxide and oxidized steel, or conductive polymer compounds,
Furthermore, a conductive polymer compound doped with iodine or persalt may be used. Choose a substance that is easily reduced for the positive electrode, and a substance that is easily oxidized for the negative electrode. When a sulfonated mesophase, which is a solid electrolyte, is sandwiched between two different types of electrodes, a reduction reaction of the positive electrode active material at the positive electrode and an oxidation reaction of the negative electrode active material occur at the negative electrode due to the action of the sulfone group, which is a strong acidic group, resulting in an electromotive force. is born. In this case, the solid electrolyte used, sulfonated mesofes, can be selected from various forms depending on the purpose.

即ち、粉体のままりテーナのようなものに組込んでも良
いし、また、成型し、それ自身単体て使用することもで
きる。また、この時、反応に関与する電解質中のイオン
の運動を活発にし起電力を向上せしめるため、水分を含
ませることも有効である。この場合、含水率30重量%
以下では、成型のため当電解質を加圧しても水かしみ出
すことはなく、固体電解質として十分使用に耐えるもの
である。さらに、ここで得られたスルホン化メソフェー
スは熱的に安定であり、例えば、300℃で熱処理して
もスルホン基は変化せず高温電泊の電解質としての使用
も期待できる。
That is, the powder may be incorporated into something like a retainer as it is, or it may be molded and used alone. At this time, it is also effective to include water in order to activate the movement of ions in the electrolyte involved in the reaction and improve the electromotive force. In this case, the water content is 30% by weight.
In the following, even when the electrolyte is pressurized for molding, water does not seep out, and the electrolyte can be used sufficiently as a solid electrolyte. Furthermore, the sulfonated mesophase obtained here is thermally stable, and the sulfone group remains unchanged even after heat treatment at 300° C., so it can be expected to be used as an electrolyte for high-temperature electrodeposition.

以下、実施例を挙げて、本発明をさらに詳しく説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) デイレードコー力一法で得られた生コークスを粉砕して
粒径を250μm以下にした。この元素組成は、炭素9
 4 .  9 N m 96、水素3.3重量?6、
窒累0,5重量%、硫黄0.  5重童Oo,酸素0.
8重量?6てあった。この2 0 gを容m 5 0 
L’llm1の三角フラスコに96%硫酸240mlを
入れたものへ少itずつ加えた。全量加えた後、予め1
00℃に加熱した油浴中で1時間加熱した。次いて、ガ
ラスフィルター(No.4)で冫戸過し、水で十分洗浄
した後、乾燥した。収率は、1 2 6 90であった
。また、こうして得られたスルホン化メソフェースの元
素組或は、炭素67.2重量00、水素2.8重量9る
、窒素0重量{)6、硫黄7,9重量?6、酸素22.
1重量%であった。電池電解質としてこのスルホン化メ
ソフェースをステンレス管で補強した内径10mmのフ
ェノール樹脂管に、最下部に正極活物質として二酸化鉛
粉末をQ.2g詰めたものの上へ、0.5g詰めた。こ
れを上部からステンレス製押し棒で加圧し成型したもの
に、水をスルホン化メソフェースIf?に対して20重
m 96 iiii下した。ステンレス製押し棒を取外
した後、スルホン化メソフェースの上に、負極活物質と
して厚さ0.5mmの鉛仮を接触させた。こうして組立
てた電池にIMΩの抵抗を負荷し、この抵抗の両端の毛
位等を測定したところ1、4Vてあった。
(Example 1) Raw coke obtained by a delayed coal force method was pulverized to a particle size of 250 μm or less. This elemental composition is carbon 9
4. 9 N m 96, hydrogen 3.3 weight? 6,
Nitrogen 0.5% by weight, sulfur 0. 5 heavy children Oo, oxygen 0.
8 weight? There were 6. The volume of this 20 g is m50
The mixture was added little by little to 240 ml of 96% sulfuric acid in a L'llm1 Erlenmeyer flask. After adding the entire amount, add 1
Heated in an oil bath heated to 00°C for 1 hour. Next, it was filtered through a glass filter (No. 4), thoroughly washed with water, and then dried. The yield was 12690. Also, the elemental composition of the sulfonated mesophase obtained in this way is carbon 67.2% by weight, hydrogen 2.8% by weight, 9% by weight, nitrogen 0% by weight {)6, sulfur 7.9% by weight? 6. Oxygen 22.
It was 1% by weight. This sulfonated mesophase was used as a battery electrolyte in a phenol resin tube with an inner diameter of 10 mm reinforced with a stainless steel tube, and lead dioxide powder was added as a positive electrode active material at the bottom of the tube. I packed 0.5g on top of the 2g stuffed stuff. This was pressurized from the top with a stainless steel push rod and molded, and water was added to the sulfonated mesoface If? 20 weight m 96 iii. After removing the stainless steel push rod, a temporary lead having a thickness of 0.5 mm was brought into contact with the sulfonated mesophase as a negative electrode active material. A resistor of IMΩ was loaded onto the battery thus assembled, and the voltage at both ends of the resistor was measured and found to be 1.4V.

(実施例2) 元素組成が炭素95、2重ffi?o、水素4.4重量
06、窒素0重量%、硫黄0,1重量96、酸素0,3
重量である炭素質メソフェースを粉砕し拉径を250μ
m以下にした。この2 Q gを容量500mlの三角
フラスコに96%硫酸240mlを入れたものへ少量ず
つ加えた。全量加えた後、予め200℃に加熱した浦浴
中で1時間加熱した。
(Example 2) Elemental composition is carbon 95, double ffi? o, hydrogen 4.4 weight 06, nitrogen 0 weight %, sulfur 0.1 weight 96, oxygen 0.3
The weight of carbonaceous mesoface is crushed to a diameter of 250μ.
m or less. This 2 Q g was added little by little to a 500 ml Erlenmeyer flask containing 240 ml of 96% sulfuric acid. After adding the entire amount, it was heated for 1 hour in a bath heated to 200°C in advance.

次いで、ガラスフィルター(No.4)で?戸過し、水
で十分洗浄した後、乾燥した。収率は、1 4 7 9
6であった。また、こうして得られたスルホン化メソフ
ェースの元素組成は、炭素57.4重量%、水素3、1
重量%、窒素0重量%、硫黄7.4重量%、酸素32.
1重量%であった。電池電解質としてこのスルホン化メ
ソフェースをステンレス管で補強した内径10mmのフ
ェノール樹脂管に、最下部に正極活物質として二酸化鉛
粉末を0.  2g詰めたものの上へ、0.5g詰めた
。これを上部からステンレス製押し棒で加圧し成型した
ものに、水をスルホン化メソフェース重量に対シて10
重量%滴下した。ステンレス製押し棒を取外した後、ス
ルホン化メソフェースの上に、負極活物質として厚さ0
.5m+gの鉛板を接触させた。こうして組立てた電池
にIMΩの抵抗を負荷し、この抵抗の両端の電位差を測
定したところ1,8Vであった。
Next, with a glass filter (No. 4)? After passing through the door and thoroughly washing with water, it was dried. The yield is 1 4 7 9
It was 6. The elemental composition of the sulfonated mesophase thus obtained was 57.4% by weight of carbon, 3.1% of hydrogen, and 1% of hydrogen.
% by weight, 0% by weight of nitrogen, 7.4% by weight of sulfur, 32% by weight of oxygen.
It was 1% by weight. This sulfonated mesophase was used as a battery electrolyte in a phenolic resin tube with an inner diameter of 10 mm, reinforced with a stainless steel tube, and 0.0 mm of lead dioxide powder was placed at the bottom as a positive electrode active material. I packed 0.5g on top of the 2g stuffed stuff. This was pressurized from the top with a stainless steel push rod and molded, and water was added to the sulfonated mesoface at a rate of 10% by weight.
It was added dropwise in weight%. After removing the stainless steel push rod, a zero-thickness film was placed on the sulfonated mesophase as the negative electrode active material.
.. A 5 m+g lead plate was brought into contact. A resistor of IMΩ was loaded onto the battery thus assembled, and the potential difference across the resistor was measured and found to be 1.8V.

Claims (6)

【特許請求の範囲】[Claims] 1.炭素質材料をスルホン化剤で処理することによって
得られるスルホン化炭素質材料からなることを特徴とす
る、炭素質固体電解質材料。
1. A carbonaceous solid electrolyte material comprising a sulfonated carbonaceous material obtained by treating a carbonaceous material with a sulfonating agent.
2.炭素質材料が、ピッチ類の熱処理することによって
得られる炭素質メソフェースおよび/または生コークス
である、請求項1に記載の炭素質固体電解質材料。
2. The carbonaceous solid electrolyte material according to claim 1, wherein the carbonaceous material is carbonaceous mesophase and/or raw coke obtained by heat treating pitches.
3.炭素質材料として、その水素含有量が2重量%以上
であるものを用いる、請求項1に記載の炭素質固体電解
質材料。
3. The carbonaceous solid electrolyte material according to claim 1, wherein the carbonaceous material has a hydrogen content of 2% by weight or more.
4.前記スルホン化剤が、硫酸または発煙硫酸からなる
、請求項1に記載の炭素質固体電解質材料。
4. The carbonaceous solid electrolyte material according to claim 1, wherein the sulfonating agent comprises sulfuric acid or fuming sulfuric acid.
5.スルホン化炭素質材料の硫黄含有量が、原料である
炭素質材料の硫黄含有量より2.5重量%以上増加した
ものである、請求項1に記載の炭素質固体電解質材料。
5. The carbonaceous solid electrolyte material according to claim 1, wherein the sulfur content of the sulfonated carbonaceous material is 2.5% by weight or more greater than the sulfur content of the carbonaceous material as a raw material.
6.炭素質材料をスルホン化剤で処理することによって
得られるスルホン化炭素質材料からなる炭素質固体電解
質材料と、2種類の異なる材料の電極からなることを特
徴とする、固体電解質電池。
6. A solid electrolyte battery comprising a carbonaceous solid electrolyte material made of a sulfonated carbonaceous material obtained by treating a carbonaceous material with a sulfonating agent, and electrodes made of two different materials.
JP1307227A 1989-11-27 1989-11-27 Carbonaceous solid electrolyte material and solid electrolyte battery using the same Expired - Lifetime JPH0690881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307227A JPH0690881B2 (en) 1989-11-27 1989-11-27 Carbonaceous solid electrolyte material and solid electrolyte battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307227A JPH0690881B2 (en) 1989-11-27 1989-11-27 Carbonaceous solid electrolyte material and solid electrolyte battery using the same

Publications (2)

Publication Number Publication Date
JPH03167712A true JPH03167712A (en) 1991-07-19
JPH0690881B2 JPH0690881B2 (en) 1994-11-14

Family

ID=17966577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307227A Expired - Lifetime JPH0690881B2 (en) 1989-11-27 1989-11-27 Carbonaceous solid electrolyte material and solid electrolyte battery using the same

Country Status (1)

Country Link
JP (1) JPH0690881B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325788A (en) * 1993-04-27 1994-11-25 Medtronic Inc Assembling method for electrochemical cell of novel structure
WO2001006519A1 (en) 1999-07-19 2001-01-25 Sony Corporation Proton conducting material and method for preparing the same, and electrochemical device using the same
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
WO2002027843A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell
WO2002027829A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Method of producing fuel cell
WO2002027831A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and production method therefor
JP2002110196A (en) * 2000-10-02 2002-04-12 Sony Corp Fuel cell manufacturing method
WO2002056405A1 (en) * 2001-01-15 2002-07-18 Sony Corporation Power generating device
WO2002058079A1 (en) * 2001-01-18 2002-07-25 Sony Corporation Proton conductor, process for producing the same, and electrochemical device
JP2002216791A (en) * 2001-01-19 2002-08-02 Sony Corp Fuel cell, fuel cell module and stack
JP2002216794A (en) * 2001-01-19 2002-08-02 Sony Corp Method of producing proton conductor membrane and method of producing fuel cell
US6495290B1 (en) 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
WO2003003492A1 (en) * 2001-06-29 2003-01-09 Sony Corporation Proton conductor and electrochemical device using the same
JPWO2002058177A1 (en) * 2001-01-19 2004-05-27 ソニー株式会社 PROTON CONDUCTOR MEMBRANE, PROCESS FOR PRODUCING THE SAME, FUEL CELL WITH PROTON CONDUCTOR MEMBRANE, AND PROCESS FOR PRODUCING THE SAME
WO2005029508A1 (en) 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
US6890676B2 (en) 2002-02-05 2005-05-10 Sony Corporation Fullerene based proton conductive materials
EP1071149A3 (en) * 1999-07-19 2005-07-20 Sony Corporation Proton conductor and method for manufacturing thereof, and fuel cell
US7128888B2 (en) 2001-10-11 2006-10-31 Sony Corporation Proton conductor and method for manufacturing the same, and electrochemical device
JP2006342092A (en) * 2005-06-08 2006-12-21 Toyo Ink Mfg Co Ltd Method for producing solid acid and solid acid
US7153608B2 (en) 1999-07-19 2006-12-26 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
JP2007265844A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode assembly using the same, and fuel cell
JP2008066110A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Fuel cell electrolyte and fuel cell
WO2008102913A1 (en) 2007-02-21 2008-08-28 Nippon Oil Corporation Sulfonic acid group-containing carbonaceous material
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887558B2 (en) * 2000-11-07 2012-02-29 ソニー株式会社 How to use the fuel cell

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325788A (en) * 1993-04-27 1994-11-25 Medtronic Inc Assembling method for electrochemical cell of novel structure
US6821665B2 (en) 1999-07-19 2004-11-23 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US6777133B2 (en) 1999-07-19 2004-08-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US7153608B2 (en) 1999-07-19 2006-12-26 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
EP1071149A3 (en) * 1999-07-19 2005-07-20 Sony Corporation Proton conductor and method for manufacturing thereof, and fuel cell
KR100714347B1 (en) * 1999-07-19 2007-05-04 소니 가부시끼 가이샤 Proton Conducting Material and Method for Preparing the Same, and Electrochemical Device Using the Same
EP1205942A4 (en) * 1999-07-19 2008-12-17 Sony Corp Proton conducting material and method for preparing the same, and electrochemical device using the same
AU746761B2 (en) * 1999-07-19 2002-05-02 Sony Corporation Proton conducting material and method for preparing the same, and electrochemical device using the same
US6495290B1 (en) 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US7157183B2 (en) 1999-07-19 2007-01-02 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US7771891B2 (en) 1999-07-19 2010-08-10 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
WO2001006519A1 (en) 1999-07-19 2001-01-25 Sony Corporation Proton conducting material and method for preparing the same, and electrochemical device using the same
WO2002027831A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and production method therefor
US6824912B2 (en) 2000-09-29 2004-11-30 Sony Corporation Fuel cell and method for preparation thereof
WO2002027843A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell
WO2002027829A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Method of producing fuel cell
JPWO2002027843A1 (en) * 2000-09-29 2004-02-12 ソニー株式会社 Fuel cell
US6726963B2 (en) 2000-09-29 2004-04-27 Sony Corporation Method of preparation of fuel cell
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
JPWO2002027829A1 (en) * 2000-09-29 2004-02-05 ソニー株式会社 Fuel cell manufacturing method
US6827748B2 (en) 2000-09-29 2004-12-07 Sony Corporation Fuel cell and method for preparation thereof
JPWO2002027831A1 (en) * 2000-09-29 2004-02-12 ソニー株式会社 Fuel cell and method of manufacturing the same
JP2002110196A (en) * 2000-10-02 2002-04-12 Sony Corp Fuel cell manufacturing method
US7045240B2 (en) 2001-01-15 2006-05-16 Sony Corporation Power generating apparatus having a proton conductor unit that includes a fullerene derivative
WO2002056405A1 (en) * 2001-01-15 2002-07-18 Sony Corporation Power generating device
US7485391B2 (en) 2001-01-18 2009-02-03 Sony Corporation Proton conductor, process for producing the same, and electrochemical device
JP2004192808A (en) * 2001-01-18 2004-07-08 Sony Corp Proton conductor, method for producing the same, and electrochemical device
WO2002058079A1 (en) * 2001-01-18 2002-07-25 Sony Corporation Proton conductor, process for producing the same, and electrochemical device
JP2002216794A (en) * 2001-01-19 2002-08-02 Sony Corp Method of producing proton conductor membrane and method of producing fuel cell
JP2002216791A (en) * 2001-01-19 2002-08-02 Sony Corp Fuel cell, fuel cell module and stack
JPWO2002058177A1 (en) * 2001-01-19 2004-05-27 ソニー株式会社 PROTON CONDUCTOR MEMBRANE, PROCESS FOR PRODUCING THE SAME, FUEL CELL WITH PROTON CONDUCTOR MEMBRANE, AND PROCESS FOR PRODUCING THE SAME
WO2003003492A1 (en) * 2001-06-29 2003-01-09 Sony Corporation Proton conductor and electrochemical device using the same
US7128888B2 (en) 2001-10-11 2006-10-31 Sony Corporation Proton conductor and method for manufacturing the same, and electrochemical device
US7198863B2 (en) 2002-02-05 2007-04-03 Sony Corporation Fullerene based proton conductive materials
US6890676B2 (en) 2002-02-05 2005-05-10 Sony Corporation Fullerene based proton conductive materials
US7008713B2 (en) 2002-02-05 2006-03-07 Sony Corporation Fullerene-based proton conductive materials
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
JPWO2005029508A1 (en) * 2003-09-16 2007-11-15 財団法人理工学振興会 Sulfonic acid group-introduced amorphous carbon, its production method, and its use
JP4582546B2 (en) * 2003-09-16 2010-11-17 国立大学法人東京工業大学 Sulfonic acid group-introduced amorphous carbon, its production method, and its use
WO2005029508A1 (en) 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
US8709273B2 (en) 2003-09-16 2014-04-29 Tokyo Institute Of Technology Sulfonated amorphous carbon, process for producing the same and use thereof
JP2006342092A (en) * 2005-06-08 2006-12-21 Toyo Ink Mfg Co Ltd Method for producing solid acid and solid acid
JP2007265844A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode assembly using the same, and fuel cell
JP2008066110A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Fuel cell electrolyte and fuel cell
WO2008102913A1 (en) 2007-02-21 2008-08-28 Nippon Oil Corporation Sulfonic acid group-containing carbonaceous material
US8575281B2 (en) 2007-02-21 2013-11-05 Nippon Oil Company Sulfonic acid group-containing carbonaceous material
JP5614737B2 (en) * 2007-02-21 2014-10-29 Jx日鉱日石エネルギー株式会社 Solid acid catalyst containing sulfonic acid group-containing carbonaceous material and method for producing various compounds by reaction using the same

Also Published As

Publication number Publication date
JPH0690881B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH03167712A (en) Carbonaceous solid electrolytic material and solid electrolytic battery using it
Liu et al. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications
Ciszewski et al. Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors
KR101063834B1 (en) Amorphous carbon introduced with sulfonic acid group, preparation method thereof, and use thereof
TWI553048B (en) Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
KR980006582A (en) Carbonaceous Electrode Material for Secondary Battery and Manufacturing Method Thereof
JPH0677458B2 (en) Battery active material
KR20110110067A (en) Graphene oxide reducing agent including a reducing agent containing a halogen element, a method for producing a reduced graphene oxide and the use of the prepared reduced graphene oxide
JP7149340B2 (en) Process for producing functionalized semiconductor- or conductor materials and their use
CN110867606A (en) Preparation method of sulfide solid electrolyte
US4061719A (en) Process of conductive carbon black for use in depolarization masses in dry batteries
CN1162928C (en) Carbon powder having enhanced electrical characteristics and use of same
US1899064A (en) Manufacture of electrodes
Yoshio et al. Naphthalene sulfonate formaldehyde (NSF)-resin derived carbon beads as an anode material for Li-ion batteries
JP2000138141A (en) Method for producing carbon porous body for electric double layer capacitor polarizable electrode
US588905A (en) Siegfried iiammaciier
Wang et al. Synthesis, crystal structure and characterization of a 2-D network organic-inorganic hybrid polymer with [α-BW12O40] 5− as building blocks
CN100580818C (en) Proton conductive material, amorphous carbon with sulfonic acid group introduced, and production method thereof
JP2008138118A (en) Fluorinated sulfonic acid group-introduced amorphous carbon-containing composition, production method thereof and use thereof
JPWO2007029496A1 (en) Fluorinated sulfonic acid group-introduced amorphous carbon, its production method and its use
JP2004265638A (en) Mixed conductive carbon and electrode
JP2021054888A (en) Composition, cured product, solid polymer fuel cell, ion exchange membrane, electrochemical cell, water electrolysis method, and water treatment method
RU2480404C2 (en) Water-soluble carbon nanocluster, method for production thereof and use thereof
JPS58103334A (en) Perfluoropolyether and its manufacturing method
US3773915A (en) Compound of rhodium and molybdenum and method of manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term